Skip to main content
. 2020 Jun 4;20(11):3197. doi: 10.3390/s20113197
The proposed ABC-SubSim algorithm for structural model updating using modal data
Input
  M, K0: the mass and nominal stiffness matrix
  y = {f^ri, ϕ^ri}: the measured frequencies and mode shapes, i = 1:Ns, r = 1:Nm
  θ0, p(θ): the nominal value and prior PDF of model parameters
Output
  θopt, Θpost: the optimal value and posterior samples of model parameters
/*Initialization*/
  Rtol, Stol: tolerances for stopping criterion of subset simulation
  P0, N: the conditional probability and the number of samples in each level of subset simulation
  w0: calculate the initial values for the weighting factors based on nominal value θ0
  εw: tolerances for stopping criterion of weighting factors iteration
  k = 1
while (k==1 or |wkwk1|/wk1>εw) do /*External loop for weighting factors iteration*/
  Sample [(θ0(1),x0(1)),,(θ0(n),x0(n)),,(θ0(N),x0(N))], where (θ,x)~p(θ)p(x|θ)
  j = 1
  while (j==1 or Rj >Rtol and Sj > Stol) do /*Internal loop for subset simulation*/
    for n: 1, …, N do
      Evaluate ρj(n)=ρ(η(xj1(n)),η(y))
    end for
    Sort and renumber the samples [(θj1(n),xj1(n)),n:1,,N] so that ρj(1)ρj(2)ρj(N)
ϵj=12(ρj(NP0)+ρj(NP0+1))
    for l = 1, …, NP0 do
      Select as a seed (θj1(l),xj1(l))Dj
  •        

    Run a self-regulating modified Metropolis algorithm [29] to generate 1/P0 states of a Markov chain lying in Dj: [(θj(l),1,xj(l),1),,(θj(l),1/P0,xj(l),1/P0)]

    end for
    Renumber [(θj(l),m,xj(l),m),l=1,,NP0;m=1,,1/P0] as [(θj(1),xj(1)),,(θj(N),xj(N))]
    j = j + 1
    Update Rj and Sj
  end while
  k = k + 1
  •    

    Take the optimal value in the last level of subset simulation samples as the initial guess for a local optimization search operator, and conduct the local optimization search to obtain a fine optimum.

  Update the weighting factors wk based on the newly obtained optimal model parameters
end while