Skip to main content
. 2020 Jun 7;20(11):3248. doi: 10.3390/s20113248
Algorithm 1 The proposed method:
Input: Model point set X and scene point set Y.
Output: Transformed model point set.
Initialize: Parameters T, τ, ς, ρ, λ1init, λ2init, and K, and probabilities pmn=1/(MN).
Begin: Construct kernel matrix, and perform the QR decomposition of model point set.
Repeat:
  • Compute the AD and AD-correspondences using Equations (3) and (4), respectively;

  • Compute the RD and RD-correspondences using Equation (5) and Hungarian method, and assign confidence for RD-correspondences using Equations (6)–(8);

  • Compute the collaborative correspondences and corresponding matrix using Equations (9) and (10), respectively;

  • Compute the transformation parameters of affine and nonaffine parts using Equations (22) and (23), respectively;

  • Update T=τT, λ1=λ1initT, and λ2=λ2initT.

Until: Achieve the maximum number of iterations;
Output the transformed points using Equation (14).