Skip to main content
. 2020 Jun 1;20(11):3127. doi: 10.3390/s20113127

Table 12.

Comparison with related works in relation to dataset, methodology, and estimation error.

Author Method Used Number of Subjects Performance Criteria Systolic Blood Pressure Diastolic Blood Pressure
Kachuee et al. [24] SVM MIMIC II (1000 subjects) MAE
MSE
RMSE
R
12.38
-
-
-
6.34
-
-
-
Kim et al. [23] Multiple nonlinear regression (MLP) 180 recordings, 45 subjects MAE
MSE
RMSE
R
5.67
-
-
-
-
-
-
-
Kim et al. [23] Artificial neural network (ANN) 180 recordings, 45 subjects MAE
MSE
RMSE
R
4.53
-
-
-
-
-
-
-
Cattivelli et al. [25] Proprietary algorithm MIMIC database (34 recordings, 25 subjects) MAE
MSE
RMSE
R
-
70.05
-
-
-
35.08
-
-
Zhang et al. [27] Support vector machine (SVM) 7000 samples from 32 patients MAE
MSE
RMSE
R
11.64
-
-
-
7.62
-
-
-
Zhang et al. [27] Neural network (nine input neurons) 7000 samples from 32 patients MAE
MSE
RMSE
R
11.89
-
-
-
8.83
-
-
-
Zadi et al. [59] Autoregressive moving average (ARMA) models 15 subjects MAE
MSE
RMSE
R
-
-
6.49
-
-
-
4.33
-
Slapničar et al. [30] Deep learning
(spectro-temporal ResNet)
MIMIC III database (510 subjects) MAE
MSE
RMSE
R
9.43
-
-
-
6.88
-
-
-
Su et al. [28] * Deep learning
(long short-term memory (LSTM))
84 subjects MAE
MSE
RMSE
R
-
-
3.73
-
-
-
2.43
-
This work Gaussian process regression (GPR) 222 recordings, 126 subjects MAE
MSE
RMSE
R
3.02
45.49
6.74
0.95
1.74
12.89
3.59
0.96

* Deep learning algorithm on a small database.