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ABSTRACT

Objectives: Comorbidity network analysis (CNA) is a graph-theoretic approach to systems medicine based on

associations revealed from disease co-occurrence data. Researchers have used CNA to explore epidemiological

patterns, differentiate populations, characterize disorders, and more; but these techniques have not been com-

prehensively evaluated. Our objectives were to assess the stability of common CNA techniques.

Materials and Methods: We obtained seven co-occurrence data sets, most from previous CNAs, coded using

several ontologies. We constructed comorbidity networks under various modeling procedures and calculated

summary statistics and centrality rankings. We used regression, ordination, and rank correlation to assess these

properties’ sensitivity to the source of data and construction parameters.

Results: Most summary statistics were robust to variation in link determination but somewhere sensitive to the

association measure. Some more effectively than others discriminated among networks constructed from dif-

ferent data sets. Centrality rankings, especially among hubs, were somewhat sensitive to link determination

and highly sensitive to ontology. As multivariate models incorporated additional effects, comorbid associations

among low-prevalence disorders weakened while those between high-prevalence disorders shifted negative.

Discussion: Pairwise CNA techniques are generally robust, but some analyses are highly sensitive to certain

parameters. Multivariate approaches expose additional conceptual and technical limitations to the usual pair-

wise approach.

Conclusion: We conclude with a set of recommendations we believe will help CNA researchers improve the ro-

bustness of results and the potential of follow-up research.
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INTRODUCTION

Systems medicine consists in the adoption into medical research of

principles and techniques from systems biology, described as global,

integrative, and holistic.1–3 Networks have become a staple of sys-

tems biology4 and seen extensive use in systems medicine.5 An ongo-

ing focus is the “diseaseome” characterized by comorbid

associations among disorders. Clinical comorbidity refers to disease

that complicates an index condition for an individual patient. These

patterns can reveal clinically relevant differences in prognosis or re-

sponse to treatment and produce statistical associations in popula-

tion studies called epidemiological comorbidities.6,7 Comorbidity

network analysis (CNA) is a systems approach to epidemiology that

studies networks aggregated from measures of co-occurrence be-

tween pairs or larger subsets of disorders.8,9 CNAs seek to uncover

novel clinical associations, to stratify patient populations, and to

identify disorders and multimorbidities for further investigation,

among other aims.10

Network science11 rests predominantly on the theory of mathe-

matical graphs. The relations that constitute a comorbidity network
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are usually discretized from incidence data, which makes the analy-

sis of large data sets more computationally tractable but for which

no standard procedure exists and which may result in confounding

of covariance and loss of sign and magnitude information. More-

over, network tools often rely on theoretical assumptions that do

not hold for association data, such as the importance of indirect

connections between nodes for the transfer of material, activity, or

information, which underpin concepts such as community,

brokerage, and centrality.12,13 The graph-theoretic operationaliza-

tions of these concepts do not have natural epidemiological

interpretations.

OBJECTIVES

We distinguish four concerns with conventional CNA, adapting ter-

minology from14 and:15 (1) Source of incidence data differ in their

conventions, completeness, and representativeness, and the conse-

quent differences in network structure have not been explored

(results reproducibility). (2) The method of link determination, with

respect to statistical signal and association strength, varies across

studies, and the effects of adjusting these parameters have not been

assessed (stability). (3) Networks aggregated from pairwise associa-

tions discard information about higher-order interactions, though

these potential effects are important to epidemiological understand-

ing and to the systems paradigm (robustness). (4) The use of net-

work statistics relies on correspondences between theoretical

constructs and instrumental definitions, but little theoretical guid-

ance is available for network representations of comorbid associa-

tions (interpretability).

Motivated by these concerns, we set out to answer four research

questions (Figure 1): (1) How sensitive are the measured strengths of

pairwise associations to the choice of network model, in particular

whether the model takes additional comorbid associations or

patient-level covariates into account? (2) How sensitive are network

summary statistics to network model parameters, including the

choice of model and model-specific parameters like the choice of as-

sociation measure and the cutoff for link determination? Does this

sensitivity impair the use of these statistics to characterize and dis-

tinguish underlying populations? (3) How sensitive is centrality

analysis to these parameters? Does this sensitivity problematize the

identification of highly comorbid “hub” disorders or the centrality

rankings of less central disorders? (4) How does the relational origin

of network-analytic tools limit their application or interpretability

on co-occurrence data? Do the sensitivity results help inform the

answer?

MATERIALS AND METHODS

Data sets
We acquired eight data sets for our analysis (Table 1): Six were pro-

vided by the authors of previous CNAs, but only in a form suitable

for pairwise analysis.16–20 One (MIMIC-III) is freely available to

researchers upon submission of a study design and completion of a

short online course.21 For computational feasibility, we crosswalked

diagnosis codes to the Clinical Classification Software (CCS) ontol-

ogy.22 The last, results of the 2011 National Ambulatory Medical

Care Survey (NAMCS), was obtained from the website of the Cen-

ters for Disease Control and Prevention (https://www.cdc.gov/nchs/

ahcd/index.htm). We extracted indicators for 13 chronic disorders

for analysis purposes. Coded ontologies included the International

Classification of Diseases, 9th and 10th Revisions, Clinical Modifi-

cations (ICD9 and ICD10) and the custom ontology of reference 16.

The data sets vary widely in the underlying patient population, in

the collection of their data by healthcare institutions, and in the

researchers’ pre-processing protocols; variation along each of these

dimensions contributes to overall variation due to the data source.

Disentangling these factors would require a more thorough study us-

ing several sources of patient-level data.

SOFTWARE

We performed analyses in R,23 using the tidyverse collection24 and a

combination of igraph,25 tidygraph,26 and ggraph.27 English

descriptions of ICD9 and ICD10 codes were obtained from icd.28

Full code to reproduce our analyses is available at https://bitbucket.

org/corybrunson/comorbidity.

Pairwise constructions
The majority of CNAs construct networks from pairwise co-

occurrence data, that is, the values that fill a 2� 2 contingency ta-

ble. From these data, we calculated both evidential and evaluative

thresholds: Evidential thresholds were test-wise error rates

(TWERs), optionally adjusting for multiple comparisons using the

family-wise error rate (FWER) Bonferroni correction or the false dis-

cover rate (FDR) Benjamini–Hochberg correction, both of which

have been used in the CNA literature.18,20,29–31 Evaluative thresh-

olds were minimum absolute values of a binary association measure

(BAM). We used four BAMs, two risk ratios and two correlation

coefficients: the odds ratio OR ¼ a=b
c=d ;32,33 Pearson’s binary correla-

tion coefficient / ¼ ad�bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðaþcÞðbþdÞðcþdÞ
p ;34 Forbes’ coefficient of as-

sociation F ¼ a=ðaþbÞ
ðaþcÞ=ðaþbþcþdÞ ;

34 and the tetrachoric correlation

coefficient rt calculated using a latent bivariate normal model.35 OR

is recommended as a standard measure of epidemiological comor-

bidity32 and has been used in several CNA studies.19,36,37 Several

other studies have used / and F together, in part to check the robust-

ness of their results,17,38–41 though these refer to F as “relative

risk.”42 rt has not appeared in CNA literature but enables later com-

parisons between pairwise and multivariate models. We calculated

rt using psych43 and implemented the approximation of reference 44

to calculate standard errors. In the pairwise analysis, only positive

associations were included.

Figure 1. Motivation and design of this study.
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Pairwise network construction was thus based on five parame-

ters: the source of data D; the TWER a; the error rate correction C,

if any; the BAM m (possibly none); and the BAM cutoff h. We no-

tate specific networks NðD;a;C;m; hÞ and substitute bullets • for

values to indicate families of networks taken over all values in the

following ranges:

• D: Columbia, MedPAR(3), MedPAR(5), Sct. Hans, Michigan,

Stanford, Columbia*, MIMIC
• a: 10�p; p ¼ 1; . . . ; 6
• C: none (ø), Bonferroni (FWER), Benjamini–Hochberg (FDR)
• m: 1 (unit), OR, /, F, rt

• h: each of four values specific to each measure: (The threshold

ranges of hm for each BAM m were chosen so that the corre-

sponding quantiles of pairs in each data set are roughly equal.)

hOR ¼ 1; 2; 6; 60, h/ ¼ 0; 0:005; 0:05; 0:2,

hF ¼ 1; 2; 6; 60, hrt
¼ 0; 0:1; 0:4; 0:6.

Multivariate constructions
Conventional measures of comorbidity fail to account for incidence

rates of other disorders. Clinically unrelated disorders may co-occur

due to common risk factors or complications, and such “transitive

correlations”45 are important potential explanations for clustering

patterns observed in comorbidity networks.36 Partial correlations ac-

count for these confounding effects by generalizing the calculation of

regression coefficients: the full partial correlation r0ij ¼ bb ijbr j=br i be-

tween response variables yi and yj is a standardized effect estimate

from the regression model of yi on all other responses, including yj

(and satisfies r0ij ¼ r0ji).
46 This concept relies on normality assumptions

for regression; we use a matrix formulation Rt
0 to obtain partial tet-

rachoric correlations rt
0 from the tetrachoric correlations Rt. We com-

puted rt
0 differently for high-volume, low-dimension data43 and, via

shrinkage estimates, for low-volume, high-dimension data.47,48

Another way to account for such confounding is to use an inter-

action model based on an underlying covariance matrix. An estima-

tor of this matrix can be scaled to obtain an estimated correlation

matrix P ¼ ðqijÞ. Epidemiological comorbidities may also arise from

patient-level covariates, as when clinically relevant subpopulations

(eg, elderly or infirm patients) are at heightened risk of multiple,

otherwise etiologically unrelated disorders. We adapted the joint in-

teraction–distribution model (JIDM) of reference 49 to jointly

model disorder interactions and patient-level covariates, and by

omitting covariates other than intercepts we obtain a comparable in-

teraction model. We denote the models JIDM0 and JIDM1 and their

correlation matrices bP0 and bP1. We adapted this workflow from ref-

erence 49 using JAGS50 via R2jags.51

From the NAMCS data, we generated a 13� 13 correlation ma-

trix for each model, controlling for age, gender, ethnicity, insurance

status, region, and metropolitan status in JIDM1. From the MIMIC

data, we excluded JIDM1, to reduce computational cost and to limit

the scope of the analysis. Each model included every CCS code. We

compared all four models on the chronic disorders in NAMCS using

correlation biplots. We visualized the relationships among the corre-

lation estimates using scatterplots. Of the two data sources, one

(NAMCS) is low-dimensional but high-volume while the other

(MIMIC-III) is comparatively high-dimensional and low-volume.

This enables us to more confidently take general lessons from the

model comparisons.

Global network structure
To assess the effects of the construction parameters on the pairwise

models, we calculated several unweighted summary statistics on the

networks Nð•; •; ø; •; •Þ and fit two regression models to each vector

of statistics. The first model (Equation 1) included only the predic-

tors Di (categorical) and logðaiÞ (continuous) and was evaluated on

the networks Nð•; •; ø; 1; øÞ, while the second (Equation 2) was

evaluated on the lot and also included an interaction effect of mi

(categorical) with hi (continuous) in order to allow for the different

effects of the evaluative cutoff using different association measures.

To simplify computations, we took as the response variable the dif-

ference yi ¼ si � s�between si and the average value s�on the networks

Nð•; •;øÞ. The coefficient bDi
associated with each dataset Di then

indicates the direction in which a statistic deviates, on Di, from its

values on the other Dj.

Equation 1

yi ¼
X

D

bdI Di ¼ Dð Þ þ balog aið Þ þ �i

Equation 2

yi ¼
X

D

bdI Di ¼ Dð Þ þ balog aið Þ þ
X

m

bm;hI mi ¼ mð Þhi þ �i

�i � Nð0; r2Þ

The statistics included the proportion of disorders in the largest

connected component LCP, the graph density d, the mean degree �k,

the Gini index G;52 the degree assortativity r;53 the triad closure C,

the mean graph distance �‘, the modularity Q using Walktrap,54,55

and the location and scale parameters bl and br of the log-normal

family, which best fit the degree sequence tails.56,57 We comple-

mented these regressions with a principal components analysis

(PCA) on the same centered and scaled statistics.

Table 1. Sources of pairwise disorder co-occurrence data used in this study, originally aggregated from patient-level data for previous stud-

ies and made available by their authors (except MIMIC-III and NAMCS)

Source Time period Patients Ontology Terms

Columbia University Medical Center16 Unreported 1.5 million Rzhetsky et al.16 161

MedPAR17 1990–1993 32 million ICD9 (level 5) 16 459

ICD9 (level 3) 657

Sct. Hans Hospital18 1998–2008 5543 ICD10 (level 3) 351

University of Michigan Health System19 Unreported 1.62 million ICD9 (level 5) 14 489

STRIDE (Stanford University)20 2008–2013 277 290 Rzhetsky et al. 16 161

MIMIC-III (Beth Israel Deaconess)21 2001–2012 38 645 CCS 113–273

NAMCS 2011 10 908 Chronic disorders 13
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Centrality rankings
CNAs often characterize disorders by their centrality in a comorbid-

ity network:17 and58 used (weighted and unweighted, respectively)

degree centrality to measure the connectedness of disorders, or their

“total” epidemiological comorbidity;58 also used betweenness cen-

trality to measure the potential influence of an index disorder on a

patient’s comorbidities. Several other teams invoked degree, be-

tweenness, and closeness centrality as general indicators of a disor-

der’s importance.39,59,60 Three studies corroborated the

exceptionally high centrality of hypertension in comorbidity net-

works,39,58,61 while another examined the centralities of disorders

comorbid with hypertension.60 An increasingly popular approach is

to compare centralities across study populations:61 compared the be-

tweenness centralities of diagnoses between demographic strata

such as low- and high-income populations, and62 compared degree

centralities of disorders between COPD and non-COPD populations

in a case–control design.61 found that the betweenness rankings of

disorders were sensitive to their link pruning procedure, and59 noted

that the centralities of adverse events in their VAERS networks

changed noticeably from month to month.

We calculated degree, betweenness, and closeness centralities in

the networks Nð•; 0:01; •; •; øÞ. We compared centrality rankings

on entire ontologies using Kendall rank correlations,63,64 which we

analyzed geometrically using variance decompositions and biplots.

We also identified the several most central disorders from each net-

work and assessed their consistency directly. Finally, we used many-

to-one maps between ontologies (level-5 to level-3 ICD9 and level-5

ICD9 to the ontology of reference 16) to compare group centrality

measures for concepts in the finer ontology with node centralities

for concepts in the coarser ontology.65

Ethical considerations
This study did not involve human or other animal subjects. We con-

ducted secondary analysis on data sets collected and aggregated by

other researchers, which are available either publicly or upon re-

quest. Of these, patient-level data were only available in MIMIC-III,

but our analysis relied exclusively on aggregated data.

RESULTS

Global network structure
Table 266 summarizes the linear model of Equation 2 fit to various

global statistics. The effect estimates bm;h of the interactions m� hm

can be compared after scaling the ranges of the hm. Almost all effects

are discernible with P < :001. The PCA biplot (Figure 267) comple-

ments these estimates with information about their relative

differences.

The evidential and evaluative thresholds effect dramatic changes

in graph density d, which largely explain their effects on connectivity

(LCP; �k; l;
�‘). Stricter thresholds also led to greater hierarchical

structure (r;Q). Uniquely, triad closure increased with stricter evi-

dential cutoffs but decreased with stricter evaluative cutoffs. Graph

density aligned with the first principal component, which accounted

for 40% of the variation among the global statistics.

The second principal component separated more connected and

homogeneous networks from those with greater assortativity and

triad closure, and more effectively discriminated among the data

sources. Each data source produced networks with distinctive prop-

erties, and stricter thresholds enhanced these distinctions. Stanford

and Columbia* yielded similar networks via identical ontology and

processing, though MedPAR(3) and Michigan produced similar net-

works with no such commonalities; MedPAR(3) and MedPAR(5),

like Columbia and Columbia*, differed only in ontology, but the

former yielded similar networks while the latter highly dissimilar

ones.

Centrality rankings
For each data source and centrality measure, different error rate cor-

rections and BAMs yielded very different rankings of disorders in

the underlying ontology. For an example taken at random, rankings

of full ICD9 codes based on Michigan data were sensitive to the

BAM though robust to the correction (Figure 3). In other cases,

rankings were variably more sensitive to the BAM (MedPAR(3), Co-

lumbia*) or to the correction (Sct. Hans, MIMIC). Overall, degree

centrality was more sensitive to the correction and closeness and be-

tweenness centrality more sensitive to the BAM.

In contrast, the hubs identified using each centrality measure

were consistent across constructions for each data source. Hubs

identified from regional EHR data included epilepsy, limb pain, re-

spiratory problems, vitamin deficiency, benign neoplasms, and tu-

berculosis; other data sources produced their own distinctive hubs:

non-specific diagnoses of fluid and electrolyte imbalances, urinary

tract disorders, and bacterial infections (MedPAR), which may be

associated with increased hospital and nursing home care as well as

with aging itself; gait and mobility disorders, which are strongly as-

sociated with nervous disorders (Sct. Hans); and acute posthemor-

rhagic anemia (APHA), a common symptom of injury-induced

blood loss (MIMIC). Prevalence did not strongly predict centrality,

but all hubs were highly prevalent disorders.

Centrality rankings using node versus group centrality on net-

works constructed using different ontologies were weakly concor-

dant or else discordant, even when constructed using crosswalked

data from the same source. Group betweenness centrality was com-

putationally prohibitive, so only degree and closeness centrality

were used.

Multivariate constructions
The four correlation matrices Rt;Rt

0; bP0;bP1 yielded both increas-

ingly noisy and progressively less positive association estimates;

each set of estimates was roughly linearly related to the others. In Rt

and Rt
0, all 13 disorders loaded positively onto the first eigenvector,

which was most aligned with HT, HLD, and IHD; whereas bP0 and
bP1 oriented some disorders, including depression and cancer, in op-

position. Several associations changed sign or discernibility as well

as magnitude from model to model, though negative associations in

Rt were negative throughout and positive associations in bP1 were

positive in Rt (Figure 4).

These patterns were reproduced using MIMIC data from each

critical care unit. The roughly linear relationships between model

estimates held only among more prevalent disorders, while those

among less prevalent disorders amounted to noise. In contrast to the

robustness in pairwise analyses, and despite the correlation between

prevalence and centrality, hub identification was highly inconsistent

across network models based on a common care unit.

DISCUSSION

Robustness
We found that data sources are generally more determinative of

global network properties and top centrality rankings than network
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construction parameters, which lends support to the use of CNA to

assess differences in network structures between different popula-

tions.61,68,69 These differences both sustain and become clearer as

links are pruned (up to conventional limits). Global network proper-

ties that rely on link weights, including weight distributions and

distance-based centrality rankings, are less robust to the relevant pa-

rameter choices of error rate correction and of association measure.

Uniquely, triad closure C was affected differently by evidential

and evaluative link pruning: removing statistically fainter associa-

tions increased C, while removing lower-magnitude associations de-

creased C. This suggests that many weak but discernible

comorbidities are transitive, arising from mutual associations in the

incidence data. This further motivates the use of multivariate models

to obtain association estimates controlled for such effects.

Among high-prevalence disorders, the primary spectrum from

lower to higher incidence observable in the pairwise and partial cor-

relation networks is obscured in the joint interaction–distribution

networks. These models also reveal that much observed epidemio-

logical comorbidity can be accounted for by patient-level factors

such as age, ethnicity, and insurance status. Whereas these differen-

ces nevertheless follow predictable patterns, differences in associa-

tions among less prevalent disorders appeared to amount to noise.

Overall, conventional pairwise CNA is robust to the researcher

degrees of freedom inherent to network construction, but multivariate

models call into question not only global network properties but the

signs and magnitudes of the constituent pairwise associations.

Insufficiency of pairwise models

Network analysis is fundamentally dyadic, and comorbidity net-

work construction hinges on the method of link determination,

which we have shown to depend profoundly on the network model

employed. This raises the prospect that pairwise association mining,

while certain to reveal many thitherto unknown comorbidities, may

turn up a mixed bag of novel associations, including many that

would turn out to be unremarkable or even inverted after control-

ling for co-related disorders. For example, the unexpected associa-

tions between hypothyroidism and shingles (OR ¼ 2:9) and between

Keloids and a history of asthma (OR ¼ 17:4) uncovered by reference

36 might turn out to be negatively associated once the confounding

associations they propose (cancer treatments and racial identity, re-

spectively) are accounted for. Such differences could be epidemio-

logical, but it is also plausible that they are in part administrative,

for example, if a limited number of diagnoses are recorded during

patient encounters even though others may be present in each pa-

tient (see also reference [19]). The authors of reference [39] point

out that mined associations do not imply relevance or validity, and

that some detected associations may be spurious. However, one les-

son of our analysis is that mining for pairwise associations in a sys-

tem as complex as human health may be little better than chance at

selecting comorbidities that survive even statistical scrutiny.

A great deal of statistical machinery exists to facilitate this. In

adapting JIDMs in particular, we appeal to the field ecology litera-

ture, on the basis of an ecological–epidemiological analogy: Disor-

ders afflicting persons and communities are analytically similar to

species occupying geographical sites—in the case of viral, bacterial,

and fungal infections, indeed a special case. Association network

analysis itself is rooted in ecology, which produced many if not most

of the measures commonly used to weight association networks.70,71

More recently, ecologists have honed several other methods to ac-

count for the same limitations of pairwise network construction dis-

cussed here.72–74 The assumptions underlying an ecological data
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analytic technique will frequently be met by epidemiological data, in

which case the results will be interpretable in a way that translates

between the settings.

Interpretability
Though we have focused on the robustness of numerical results,

equally important is the validity of interpretations. Association net-

work models are increasingly popular for high-dimensional data

sets, and the conclusions drawn about an underlying complex sys-

tem must be informed by the process that converts the raw data to

the network model. Though arising from fundamentally different

constructions, these networks are often characterized using concepts

grounded in the study of social networks, electrical circuits, and

other relational data.

A chronic triad

The triad of hypertension, diabetes, and arthritis help illustrate these

problems (Figure 4, Table 3): Each of the three pairs is positively

correlated, based on their 2� 2 contingency tables. The HT–DM

correlation weakens but remains in the multivariate models; the

HT–arthritis correlation weakens more dramatically, to the point

that it is not discerned at P < :05 in the JIDM controlling for demo-

graphic covariates; and the DM–arthritis correlation is discernibly

negative in each of the multivariate models.
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Table 3. Point estimates and their upper and lower bounds on 95%

confidence or credible intervals for the HT–DM–arthritis triad in

network models of the NAMCS data

Disorder 1 Disorder 2 Model Lower Estimate Upper

Arthritis DM Pairwise 0.144 0.163 0.182

Arthritis DM Partial �0.083 �0.064 �0.045

Arthritis DM JIDM0 �0.101 �0.054 �0.005

Arthritis DM JIDM1 �0.142 �0.091 �0.039

Arthritis HT Pairwise 0.360 0.377 0.393

Arthritis HT Partial 0.165 0.184 0.202

Arthritis HT JIDM0 0.018 0.060 0.102

Arthritis HT JIDM1 �0.072 �0.026 0.021

DM HT Pairwise 0.563 0.576 0.588

DM HT Partial 0.334 0.351 0.368

DM HT JIDM0 0.299 0.341 0.382

DM HT JIDM1 0.201 0.245 0.291
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What to make of these differences? The correlation between HT

and arthritis may be mediated by gender, the only demographic vari-

able found to have opposite effects on their incidence in JIDM1

(effects on HT and DM all had the same sign); though the correla-

tion was very weak already in JIDM0, suggesting that it was largely

attributable to other comorbid associations. The more puzzling rela-

tionship is that between HT and DM, which is complicated by the

coarseness of the ontology: NAMCS does not distinguish types 1

versus 2 DM, nor osteo- (OA) versus rheumatoid (RA) arthritis. It is

not obvious, though, that parsing these subtypes would explain

away the association: Systematic reviews75,76 have cemented an epi-

demiological comorbidity between type 2 DM and OA, and there is

emerging agreement on one between DM and RA,77 in both cases

likely mediated by BMI.

In any event, the DM–arthritis correlation turns negative upon

accounting for the effects of the other chronic disorders; it is less

likely due to a protective effect than to diabetic and arthritic popula-

tions generally having different multimorbid profiles. The disorders

statistically associated with both in the partial correlation and en-

dogenous joint interaction–distribution networks include cancer

(negatively), CVD (positively), and depression (differently), in addi-

tion to HT, and only cancer remains as a discernible covariate of

both after accounting for demographics. The coarseness of these

indicators precludes drill-down analysis, but their relative unique-

ness and their obviation while controlling for demographics suggest

that their effect on the DM–arthritis association may be a proxy for

a demographic stratification.

Meanings of centrality

The use of centrality measures is another case in point. The degree

of a disorder, calculated as the number of disorders it is comorbid

with in a patient population, is sensible enough a measure of its

“total comorbidity”17 and a useful concept both epidemiologically

and clinically. The weights (using BAMs) associated with these

comorbidities are also clearly useful for discriminating between

stronger and weaker co-occurrence rates, hence higher or lower risk

factors for patients with an index disorder. However, we found that

the choice of disease ontology has a significant impact on comorbid-

ity rankings, so much so that the centralities of disorders before

crosswalking to a coarser ontology are not predictive of the centrali-

ties of their counterparts after crosswalking. For the following dis-

cussion, we constructed a typical comorbidity network, using the

Rzhetsky data and ontology with a Bonferroni-corrected 5% eviden-

tial cutoff and weighting (positive) links by the Forbes coefficient F.

First note that none of the weights commonly used to quantify

total comorbidity are additive: In our example network, amebiasis,

a gastrointestinal infection rare in the United States, and rheumatoid

arthritis, a common chronic autoimmune disorder, have 5 and 67

comorbid relations, respectively. Though having very different etiol-

ogies and afflicting very different patient populations, these disor-

ders have approximately the same weighted degree (529 and 561).

This does not translate to their being similarly severe in any recog-

nized sense, or to their belonging at a similar ranking amidst the

other disorders in the ontology.

Betweenness and closeness centrality rely on a different version

of additivity that is equally problematic. The graph distance in this

network (To calculate graph distances, replace edge weights F with
1

F�1þ 1.) between type 1 diabetes and breast cancer (in female

patients) is the same as that between multiple epiphyseal dysplasia

(MED) and hepatitis E (HepE), approximately 0:30, though the for-

mer two disorders are significantly correlated (ie, directly linked,

P < 10�27) while the latter two can only be reached from each

other via three intermediate disorders: multiple epiphyseal dysplasia

$ Albright–Sternberg syndrome $ cerebral palsy $ hepatitis C $
HepE. Yet this indirect sequence of associations leading to HepE is

does not have an established clinical interpretation, nor does it imply

a natural comparison to the relative risk of MED encoded by the di-

rect link. Furthermore, controlling for covariates and subsetting

populations may significantly alter the magnitudes and signs of these

links, with unpredictable effects on indirect distances.

These limitations are highlighted by weighting issues, but they

arise from the network model itself, which is premised on a principle

of “guilt by association” that implicates one node in the effects of

another according to their proximity in the network. In the related

field of genomics, this principle “does not reflect the dynamic nature

of biological networks,”13 and the same may be said of epidemiolog-

ical networks. As in genomics, comorbidity network centrality anal-

ysis is demonstrably effective at prioritization, but without

underlying theory it will be difficult to know what critical patterns it

may miss, or even what it means for a disorder to be “central” in

any specific sense (Such concerns are not specific to CNA. Inconsis-

tency and uncertainty over the interpretations of centrality measures

in the study of human communication networks led [12] to propose

the concise set of conceptualizations and measures discussed above:

degree, based on the idea of communication activity with other

nodes; betweenness, based on the control of communication among

other actors, and closeness, based on either independence from the

control of others or efficiency of dissemination. These interpreta-

tions extend to other kinds of resource exchange, but they do not

have straightforward interpretations on correlation networks.).

Limitations
Our results come with their own limitations. As discussed above, the

data sets best-suited to the investigations undertaken here were only

available to us as pairwise contingency tables, rather than as case-

level incidence data, so that multivariate comparisons were per-

formed only on open-access sources with important caveats beyond

those of all administrative healthcare data. Necessarily, we evalu-

ated only a handful of CNA techniques. Our focus was cross-

sectional, whereas many recent CNAs have used longitudinal or

case–control designs, often tailoring conventional techniques to

these settings. Additional work will be necessary to evaluate these

approaches. Additionally, though we have discussed some use cases

from our analysis, we have not conducted the kinds of follow-up

studies CNA is often used to support. It will be necessary to validate

this longer-term workflow as methods are standardized and basic

science driven by CNA accumulates. Finally, the companion goal of

validating CNA techniques is made difficult by the lack of any

ground truth underneath the real-world incidence data used in

CNA. Some headway may be gained in future through simulation

studies, for instance making use of the generative framework under-

lying the JIDM, though ultimately this may require network analy-

ses of data generated from artificial complex systems, such as multi-

level, whole-system models.

CONCLUSION

To pre-empt and mitigate the concerns raised in the introduction,

we urge CNA researchers to include the following steps (according

to their objectives):
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• Make patient-diagnosis incidence data available for secondary

use. This will enable ontological crosswalking and multivariate

modeling, though it may require additional processing to address

privacy concerns.
• Provide theoretical justification for the disorder ontology from

which networks are constructed. This choice can have dramatic

effects on the resulting network structure, including which nodes

are identified as hubs.
• Provide theoretical justification for weighting networks. Indirect

relations are highly sensitive to the association measure; if

weighting is important, then results using different measures

should be compared.
• To summarize global structure, report at least the largest compo-

nent size, assortativity, and clustering coefficient. These statistics

are likely to effectively discriminate between networks con-

structed from different populations.
• Provide theoretical justification for using pairwise versus partial

correlations. Controlling for confounding effects can radically

change the network structure, and free efficient software exists to

calculate partial correlations from pairwise.
• Validate associations among common disorders or within spe-

cific subsets of disorders using multivariate (eg, joint interaction–

distribution) models. These methods do not yet scale but can dis-

tinguish primary from secondary or transitive associations

among a manageable set of variables.
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