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ABSTRACT

Objective: The study sought to determine which patient characteristics are associated with the use of patient-

facing digital health tools in the United States.

Materials and Methods: We conducted a literature review of studies of patient-facing digital health tools that

objectively evaluated use (eg, system/platform data representing frequency of use) by patient characteristics

(eg, age, race or ethnicity, income, digital literacy). We included any type of patient-facing digital health tool ex-

cept patient portals. We reran results using the subset of studies identified as having robust methodology to de-

tect differences in patient characteristics.

Results: We included 29 studies; 13 had robust methodology. Most studies examined smartphone apps and text

messaging programs for chronic disease management and evaluated only 1-3 patient characteristics, primarily age

and gender. Overall, the majority of studies found no association between patient characteristics and use. Among

the subset with robust methodology, white race and poor health status appeared to be associated with higher use.

Discussion: Given the substantial investment in digital health tools, it is surprising how little is known about the types

of patients who use them. Strategies that engage diverse populations in digital health tool use appear to be needed.

Conclusion: Few studies evaluate objective measures of digital health tool use by patient characteristics, and

those that do include a narrow range of characteristics. Evidence suggests that resources and need drive use.
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INTRODUCTION

Background and significance
Availability of interactive digital health tools that enable patients to

access health information and personal health data has increased

rapidly over the past decade, alongside growing access to the Inter-

net and smartphone ownership.1–4 These patient-facing tools, in-

cluding smartphone apps, text messaging programs, and social

media tools, among others, have been associated with improved
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clinical and behavioral outcomes, such as preventive health

behaviors, chronic disease management, and patient-provider

communication.3,5–8

Despite both high availability and interest in digital health tools

among ethnically, economically, and linguistically diverse patient

groups,9,10 adoption (or use) of these tools by patients is low.2,3,11

Furthermore, data from national patient surveys and evaluations of

patient portals in the United States demonstrate differential adop-

tion of digital health tools by various groups based on sociodemo-

graphics.2,3,12–22 Specifically, older adults, racial or ethnic

minorities, and those with low socioeconomic status, low educa-

tional attainment, limited health literacy, and chronic illness use pa-

tient portals less often compared with advantaged populations.19–22

There is also research demonstrating that patient-facing digital

health tools themselves are at risk of exacerbating health dispar-

ities23 but that little effort has been undertaken to address this. For

example, despite lack of uptake by diverse populations, there is little

evidence that health systems incorporate approaches to address

health disparities in the development, implementation, and use of

patient portals.19,24

In a conceptual model for understanding and preventing such

disparities, Veinot et al23 proposed that differences in access, adop-

tion or use, adherence, or effectiveness of digital health tools con-

tribute to their risk of exacerbating health disparities. Moreover, the

effectiveness of digital health tools depends largely on access, adop-

tion or use, and adherence.23 As described previously, effectiveness

of digital health tools on various behavioral and clinical outcomes

has been evaluated, and there is a significant body of research exam-

ining adoption or use of patient portals linked to electronic health

records.25–28 However, we lack a review of evidence on adoption or

use for the vast array of digital health tools beyond patient por-

tals.29–33 In particular, there is little understanding of which patient

characteristics are associated with use of these digital health tools,

which may differ from those associated with patient portal use be-

cause they feature greater flexibility in design with respect to patient

needs and preferences. In the setting of increasing availability and

prioritization of patient-facing digital health tools and the risk of

these tools widening existing health disparities, it is critical to better

understand factors influencing their uptake.23,34,35

Objective
We conducted a literature review of studies of patient-facing digital

health tools (excluding patient portals) to identify which patient

characteristics were associated with adoption or use of these digital

health tools in the United States. We included only studies with ob-

jective (rather than self-reported) measures of use (eg, system or

platform usage data representing frequency or duration of use).

METHODS

We adhered to PRISMA (Preferred Reporting Items for Systematic

Reviews and Meta-Analyses) guidelines36; however, we did not pre-

sent data synthesis, as this is a literature review rather than a system-

atic review.

Search strategy
We developed a search strategy in collaboration with a clinical li-

brarian (J.B.W.) that combined 2 main concepts: health information

technology (including search terms reflecting mobile and smart-

phone, apps, texting, and other mobile health and digital health

terminology) and patient engagement (including search terms

reflecting uptake and participation; see Supplementary Appendix A1

for complete details). We intentionally omitted the word use from

the search strategy, as it was nonspecific (given the lack of uniform

terminology to describe this construct) and yielded a large number

of irrelevant articles. We conducted a search using Boolean opera-

tors that combined keywords and MeSH (Medical Subject Head-

ings) terms in PubMed on July 27, 2018. Because of our specific

focus on implementation of digital tools in the health and medical

fields, we chose to search within the biomedical literature in

PubMed alone. Given the rapid change of technological advance-

ments and our goal of understanding how technology is currently

used to inform patient engagement efforts, we limited the search to

articles published in the last 5 years (July 2013 to July 2018).

Exclusion criteria
Articles were reviewed and excluded at 2 levels using criteria devel-

oped by all authors. At the first level, we reviewed titles and

abstracts and excluded articles if they were not original research (eg,

review articles, commentaries, study protocols, etc.), did not de-

scribe a patient-facing digital health tool, or were not conducted in

the United States. We defined patient-facing digital health tools

(hereafter also referred to as “digital health tools” or “tools”) as

technologies with which patients could directly interact in order to

enter and access personal health data, obtain health or disease-

specific information, or monitor a health behavior or achieve a

health goal (eg, text messaging app with reminders to take blood

pressure medications).37 At the second screening level, we reviewed

the full text of articles and excluded articles that did not evaluate

use by patient characteristics (eg, age, gender, race or ethnicity,

health literacy, health status), were studies of patient portals (as

there are existing reviews focused on portals and other digital health

tools are becoming increasingly ubiquitous), or included pediatric

populations (as these evaluated surrogates’ rather than patients’

characteristics). Using DistillerSR (Evidence Partners, Ottawa, On-

tario, Canada), title and abstract screening were completed by 1 re-

viewer (C.T.), with 2 additional reviewers (S.S.N. and C.L.)

completing a subset of screening to ensure agreement on the catego-

rization. Two reviewers (S.S.N. and C.T.) completed full text screen-

ing, with a subset double-screened to ensure concordance among

reviewers. Any discordance (<5% of articles) was discussed in per-

son among S.S.N., C.T., and C.L. until agreement was reached.

Data extraction: Outcome and predictor variables
We extracted only use measures that were evaluated by patient char-

acteristics. Use was measured differently across studies, and in-

cluded reach, retention over time, frequency of engagement (eg,

number of times app was opened), and duration of engagement (eg,

viewing time per link on a website).

We extracted patient characteristics that were included in the

evaluations of use. In other words, we were not interested in the gen-

eral description of the sample by patient demographics like age and

gender, but rather in whether the study reported on use stratified by

patient characteristics. The full list of patient characteristics

extracted from each study included age, gender, race, health status,

education, digital literacy, income, health literacy or numeracy, and

limited English proficiency. We chose these variables based on previ-

ous research2,3,15 and a consensus approach of all authors in deter-

mining factors likely to influence digital health use. For each digital

health tool, we determined which patient characteristics were
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statistically significantly associated or not associated with use, as

well as the direction of the association, if any.

Data extraction: Determination of patient-level varia-

tions in use
Owing to the tremendous variation in how patient characteristics

were measured, they were categorized into relative subgroups that

could be applied to all studies (eg, age was divided into “older” vs

“younger” subgroups). We then extracted whether the article

reported a statistically significant (P< .05) vs nonsignificant associa-

tion between any patient characteristic and the use outcomes. If

there was a statistically significant association reported, we identi-

fied which patient subgroup was favored. For example, if use of a

smartphone app was higher among younger compared with older

individuals, the smartphone app was determined to favor younger

individuals. If there was no statistically significant association be-

tween a patient characteristic and a use measure, this was reported

as nonsignificant.

Selection of studies to support more robust subgroup

analysis
As not all included studies were designed with the primary objective

of evaluating use by patient characteristics, we identified the subset

of included studies with a greater likelihood of internal validity in

the examination of patient subgroup relationships. We did this to

determine if there was a similar or stronger relationship between pa-

tient characteristics and use for studies that were more likely to sup-

port such inference. More specifically, we adapted criteria from a

validated measure of risk of bias38 to evaluate whether included

studies (1) clearly included and reported characteristics of nonusers

of the digital health solution, (2) included �50 participants in analy-

ses of use, and (3) presented multivariable relationships to assess

whether a characteristic was predictive of use while holding all other

characteristics constant. If a study met at least 2 of these 3 criteria, it

was selected for subgroup analysis. We then replicated the data ex-

traction described previously on this subset of studies.

Analyses
We took extracted data and first calculated descriptive statistics to

summarize study and patient characteristics. Next, we determined

the number of studies in which use outcomes were associated with

each patient characteristic (including the direction of the associa-

tion), as well as the number in which they were not associated with

each patient characteristic. We did this analysis for all included stud-

ies and repeated it for the subgroup of studies described previously.

RESULTS

We identified 3367 studies using our search criteria; 29 studies met

our final inclusion criteria (Figure 1, Supplementary Appendix

A2).36

Study and patient characteristics
Study and patient characteristics are summarized in Table 1, with

additional details in Supplementary Appendix A3.

The most commonly included patient characteristics were age

(21 studies), gender (20 studies), race (18 studies), and health status

(15 studies). Definitions, measurement, and categorization of patient

characteristics varied across studies (see Supplementary Appendix

A4).

The digital health tools comprised 6 types of technologies: smart-

phone or tablet applications (11 studies), text messaging (11 stud-

ies), interactive voice response (IVR) (4 studies), Internet (3 studies),

social media (2 studies), and activity-tracking devices (1 study).

Eleven studies focused on chronic disease management. Twenty-six

of the 29 studies were conducted at academic medical centers.

Studies selected for subgroup analysis
Supplementary Appendix A5 lists the studies that were selected for a

more robust subgroup analysis and summarizes their appropriate-

ness for subgroup analysis per each criterion and overall.

Thirteen of the 29 studies evaluating use met criteria for sub-

group analysis. As an exemplar study of use that met criteria for ap-

propriateness of subgroup analysis, Heminger et al39 evaluated use

of Text2Quit, an interactive text messaging program aimed at smok-

ing cessation, among 262 participants, including nonusers. They cre-

ated a multivariable linear regression model that included all

sociodemographic data to determine which patient characteristics

were associated with use, which was defined as the sum of user-

initiated survey responses, keyword usage, and web logins.

Association of patient characteristics with use of digital

health tools
Figure 2 summarizes the association between use of digital health

tools and patient characteristics, showing the overall number of

studies per finding as well as the proportion of those that met crite-

ria for a more robust analysis. Overall, among the studies evaluating

use of digital health tools, most were not associated with age (n ¼
14 of 21), gender (n ¼ 15 of 21), race (n ¼ 12 of 20), health status

(n ¼ 7 of 15), education (n ¼ 7 of 9), digital literacy (n ¼ 4 of 5), in-

come (n ¼ 4 of 5), or health literacy or numeracy (n ¼ 3 of 4). Only

1 study evaluated use by English proficiency and found that the digi-

tal health tool favored those with limited English proficiency (Span-

ish speakers spent more time per link on a website). However, this

same study also found that white participants had more link views

compared with racial or ethnic minority participants.40 The remain-

ing studies of digital literacy, income, and health literacy or numer-

acy favored those with adequate digital or health literacy or

numeracy and those with higher income.

When considering only the 13 studies of use that met criteria for

a more robust analysis, there appears to be a relationship between

use and 2 characteristics: race and health status. Notably, half of

digital health tools that examined use by race (n ¼ 6 of 12) favored

those who self-identify as white, while only 1 favored those who

identify as a racial minority. Digital health tools that favored white

populations compared with racial minorities included an Internet-

based intervention for human immunodeficiency virus prevention

among men who have sex with men,41 a text messaging program for

assessing diabetes risk,42 a text messaging and IVR program for

medication adherence among adults with diabetes,43 an Internet-

and IVR-based program for weight management,44 a smartphone

app for management of schizophrenia after hospital discharge,45

and an Internet program about nutrition.40 In these studies, use was

measured as any adoption, retention over months, frequency of

interactions with the digital health tool, or time spent using the digi-

tal health tool. Our subgroup analysis also found that half of the

studies that examined use by health status (n ¼ 4 of 8) favored those

with poorer health status, while only 2 favored those with better

health status. Digital health tools that favored those with poorer

health status included a social media intervention for people living
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with human immunodeficiency virus,46 smartphone apps and an

Internet-based program for mental health management,47,48 and a

text messaging tool to improve postoperative care.49 Measures of

use in these studies included any use of the tools and frequency of

interactions with the tools.

DISCUSSION

In this review of recent evidence, we found only 29 studies evaluat-

ing use by patient characteristics. There was almost no uniformity

across studies in how use was measured. The majority of studies in-

cluded only 1-3 patient characteristics, primarily age and gender.

For other factors, notably digital literacy and health literacy, the

representation was extremely low, despite a growing body of work

documenting barriers to digital health use by these fac-

tors.12,13,15,17,28,50 Moreover, the wide variability in measurement

of patient characteristics represents the need for future work in digi-

tal health to not only include but also measure these variables in a

standardized and validated manner.

For most patient characteristics, the majority of studies found no

statistically significant association between the patient characteristic

and use. For example, while older age is often assumed to be a

barrier to engaging in digital health, our results suggest that for a

range of digital health tools, age does not predict use. In fact, in

some cases, use is higher among older adults. Nevertheless, among

studies including large enough sample size of diverse subjects and

nonusers, we did observe differences in digital health use by race

and health status. These differences seemed to favor white partici-

pants and those with poorer health status more often. Literature

evaluating patient portals has similarly found lower use among ra-

cial and ethnic minority populations20,32,51–53 but has not found an

association between use and health status.30,54,55 Possible reasons

for differences by race or ethnicity include cultural differences and

patterns of use of digital health tools that may vary between social

networks.23 For example, privacy concerns regarding electronic

health records are expressed more frequently among African Ameri-

cans compared with whites, and this may extend to other digital

health tools.23 Additionally, people whose friends or social networks

can help learn how to use digital health tools are more likely to use

them.56,57 Our findings suggest that studies that prioritize inclusion

of adequate sample sizes of diverse populations and of those with

lived experiences with the health conditions of interest58 might be

better positioned to provide greater generalizability about uptake of

patient-facing digital health tools in real-world dissemination.59

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. US: United States.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 5 837



Furthermore, despite the known high digital literacy, health liter-

acy, numeracy, and language demands of many digital health tools,

there were few studies examining use by these characteristics.60–63 It

is imperative that these characteristics be included in evaluation

studies of digital health tools in order to inform the real-world use-

fulness and likely uptake of such tools. Studies of usability of digital

health tools, though few in number, have overwhelmingly found

that adequate digital literacy, health literacy or numeracy, and En-

glish proficiency are associated with higher usability.31,64–66 This

underscores the need not only to evaluate use by these patient char-

acteristics but also to dedicate research to understanding usability

by key patient characteristics, as usability predicts adherence to digi-

tal health tool use.23

Despite the large investment in an increasing number of digital

health tools available to patients, few are using them, and this num-

ber has not grown appreciably over the past several years.67 Further-

more, while research has demonstrated the potential of these tools

in widening existing health disparities,23 there has been little atten-

tion paid thus far to who users vs nonusers are. Our review under-

scores this and highlights that even among the studies that consider

the relationship between patient characteristics and use, a wider

range of patient characteristics and greater attention to robust meth-

odology is needed. Some studies included in this review had robust

methodology and did include a wide range of patient characteristics,

demonstrating that it is possible to design and conduct such studies

well. In fact, those studies that included digital literacy, health liter-

acy, and English proficiency also tended to have more robust meth-

odology. In order to understand why adoption of digital health tools

remains so low, it is essential to consistently and deliberately assess

their use. It is particularly necessary to do so among diverse popula-

tions that more accurately reflect the U.S. population, rather than

among self-selecting, homogeneous, advantaged populations. Re-

gardless of whether a digital health tool has been shown in a study

to be effective in improving a behavioral or clinical outcome, these

upstream factors of use and usability will ultimately determine

whether it will be successful in improving health and ensuring health

equity.23 As digital health tools continue to be rapidly developed

and promoted, and patients are increasingly empowered to manage

their personal health data,3,68 this becomes even more necessary.

This study has several limitations. Because of the wide variation

in the definitions, measurements, and reporting of our outcome

measures, we used terms capturing patient engagement in our search

strategy for studies evaluating use—it is possible that we have not

captured all relevant studies, particularly if they used different termi-

nology for these measures. For the same reasons, we were unable to

perform a meta-analysis of effect size or use a single validated tool

to assess risk of bias or quality. However, we developed a set of

proxy criteria to decide which of our included studies were method-

ologically appropriate for a subgroup analysis. We were similarly

unable to assess publication bias; however, a large number of the in-

cluded studies had negative (nonsignificant) findings. We limited

our search to PubMed, given our specific focus on biomedical litera-

ture, and may therefore have missed studies available only in other

databases. Finally, owing to the significant contribution of social

factors (including patient characteristics highlighted in this study) to

poor health outcomes in the United States compared with other

high-income countries,69 we limited inclusion to U.S. studies, which

could limit generalizability of results.

In conclusion, by specifically examining studies with objective

measures of use, our results offer a substantially better understand-

ing than provided by prior literature of patient adoption of digital

health tools within different populations, including those vulnerable

populations with high burden of disease and health inequity. Similar

to studies of patient portal use, we found lower use of digital health

tools among racial and ethnic minority populations. Evaluating use

among diverse populations is critical in order to inform strategies to

address low adoption of and adherence to patient-facing digital

health tools. These efforts are important not only to increase patient

uptake and sustained use of digital health tools, but also to identify

inequities that may be perpetuated by growing availability of these

tools.
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Table 1. Study characteristics (N ¼ 29)

Patient characteristicsa

Age 21 (72.4)

Sex 20 (69.0)

Race/ethnicity 18 (62.1)

Health status or comorbidities 15 (51.7)

Education 9 (31.0)

Digital literacy 5 (17.2)

Income 5 (17.2)

Health literacy or numeracy 4 (13.8)

Limited English proficiency 1 (3.5)

Primary type of digital health toola

Smartphone or tablet app 11 (37.9)

Text messaging 11 (37.9)

Interactive voice response 4 (13.8)

Internet 3 (10.4)

Social media 2 (6.9)

Activity tracker 1 (3.5)

Health area of focus

Chronic disease management 11 (37.9)

Tobacco or substance use 7 (24.1)

Weight management 5 (17.2)

Prevention/promotion 4 (13.8)

Otherb 2 (6.9)

Study settinga

Academic medical center 26 (89.7)

Community medical center 6 (20.7)

Governmentc 5 (17.2)

Tech company/organization 5 (17.2)

Values are n (%).
aTwenty-four studies evaluated >1 patient characteristic. Three studies

equally evaluated 2 types of digital health tool. Twelve studies included >1

setting.
bOther includes hospital discharge planning and postoperative care.
cIncludes Veterans Health Administration, military bases and U.S. Army,

and local departments of public health.
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