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ABSTRACT

Objectives: Sharing patient data across institutions to train generalizable deep learning models is challenging

due to regulatory and technical hurdles. Distributed learning, where model weights are shared instead of pa-

tient data, presents an attractive alternative. Cyclical weight transfer (CWT) has recently been demonstrated as

an effective distributed learning method for medical imaging with homogeneous data across institutions. In this

study, we optimize CWT to overcome performance losses from variability in training sample sizes and label dis-

tributions across institutions.

Materials and Methods: Optimizations included proportional local training iterations, cyclical learning rate, lo-

cally weighted minibatch sampling, and cyclically weighted loss. We evaluated our optimizations on simulated

distributed diabetic retinopathy detection and chest radiograph classification.

Results: Proportional local training iteration mitigated performance losses from sample size variability, achiev-

ing 98.6% of the accuracy attained by centrally hosting in the diabetic retinopathy dataset split with highest

sample size variance across institutions. Locally weighted minibatch sampling and cyclically weighted loss both

mitigated performance losses from label distribution variability, achieving 98.6% and 99.1%, respectively, of the

accuracy attained by centrally hosting in the diabetic retinopathy dataset split with highest label distribution var-

iability across institutions.

Discussion: Our optimizations to CWT improve its capability of handling data variability across institutions.

Compared to CWT without optimizations, CWT with optimizations achieved performance significantly closer to

performance from centrally hosting.

Conclusion: Our work is the first to identify and address challenges of sample size and label distribution vari-

ability in simulated distributed deep learning for medical imaging. Future work is needed to address other sour-

ces of real-world data variability.
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INTRODUCTION

In recent years, deep learning has brought about rapid progress in

image classification and object detection.1,2 Due to the proficiency

of convolutional neural networks (CNNs) at pattern recognition,

these innovations have also translated to progress in automating

clinical tasks within medical imaging. For instance, deep CNNs

have allowed breakthroughs in areas such as retinopathy diagno-

sis,3,4 lung nodule detection,5 and brain tumor segmentation.6,7

Training deep learning models for medical applications is often

challenged by insufficient quantities of patient data, especially for

rare diseases. Further, it has been shown that models trained at a

single institution have limited generalizability when applied to data

from other institutions.8,9 Thus it is desirable for multiple institu-

tions with patient data to collaborate to pool data to create larger,

more diverse datasets. However, patient data-sharing efforts are of-

ten complicated by regulatory, technical, and privacy concerns. Spe-

cifically, there are legal and ethical barriers to sharing patient data

that have made institutions very protective in their willingness to

disperse data. Additionally, there is the cost to develop the necessary

infrastructure to securely store pooled data.10 As such, data-

distributed learning, or federated learning, where the partially

trained model weights are transferred between institutions instead

of the data itself, has become an attractive alternative.11,12 Indeed,

distributed learning has been highlighted as a foundational area of

research within medical imaging.13 Recently, data-distributed deep

learning methods have been successfully developed for training med-

ical image classification models with a cyclical weight transfer

(CWT) approach.10

In the CWT approach, models are trained at 1 institution at a

time for a number of iterations before transferring the updated

weights to the next institution in a cyclical fashion until model con-

vergence.10 A key limitation with the existing implementation of

CWT is that it is not optimized to handle variability in sample sizes,

label distributions, resolution, and acquisition settings in the train-

ing data across institutions. In fact, CWT performance decreases

when these variabilities are introduced.10 In order for CWT to be

utilized in practice, it must be capable of handling such institutional

variabilities that would be found in most real-world medical imag-

ing datasets.

Cyclical learning rates (CLR) have been used for hyperparameter

optimization for more efficient model training in nondistributed ma-

chine learning tasks,14 but it is unclear whether they could be ap-

plied towards distributed tasks to optimize performance.

Additionally, weighted sampling of data in random minibatch selec-

tion during training15,16 as well as weighted loss functions17 have

been used in literature with standard machine learning tasks to han-

dle data with label imbalances, but, again, it is unclear how these

approaches could affect model performance in a distributed setting.

In this study, to our knowledge, we are the first to identify that

data variability in training sample sizes and label distributions

across institutions can significantly decrease performance of distrib-

uted learning models for medical imaging. We present modifications

to CWT to mitigate performance losses that arise from introducing

variability in training sample sizes and label distributions across in-

stitutional training splits, and we evaluate the efficacy of our modifi-

cations to simulated distributed tasks for (DR) detection and

abnormal chest radiograph classification. Specifically, we use pro-

portional local training iterations (PLTI) and a CLR to address sam-

ple size variability, and we use locally weighted minibatch sampling

and cyclically weighted loss to address label distribution variability.

Such modifications allow CWT to be more practically useful and

more generalizable to real-world medical image classification tasks

where such variability is likely to arise.

MATERIALS AND METHODS

In this section we detail the binary classification datasets used to

evaluate our methods, the deep learning image classification model

used to classify images, our distributed training method (CWT), and

our modifications to CWT designed to account for variability in

sample sizes across institutions and variability in label distribution

across institutions. We use 2 different datasets to evaluate our meth-

ods: the Kaggle Diabetic Retinopathy Detection dataset18 and the

NIH Chest X-ray14 dataset.19

Diabetic retinopathy dataset
The Kaggle Diabetic Retinopathy Detection dataset consists of a to-

tal of 88 702 left and right eye retinal fundus images from 44 351

patients. Each image is given a label from 0–4 for severity of diabetic

retinopathy (DR), where 0 is “No DR,” 1 is “Mild,” 2 is

“Moderate,” “3 is Severe,” and 4 is “Proliferative DR.” The image

pixel resolutions range from 433 px � 289 px to 5184 px � 3456

px. For our distributed tasks, we binarized the labels to 0 for “No

DR” and 1 for “Moderate,” “Severe,” or “Proliferative DR”

(“Mild” images, which represent a middle ground between Healthy

and Diseased, were excluded), so 0 and 1 represent negative and

positive images respectively. Additionally, we only utilized right eye

images to avoid the possibility of confounding resulting from using

multiple images from the same patient. Of the remaining images, we

randomly selected 3200 positive images and 3200 negative images

to comprise the training set, 1600 positive images and 1600 negative

images to comprise a validation set, and 1600 positive images and

1600 negative images to comprise a held-out test set. We prepro-

cessed these 12 800 images using the approach outlined by the Kag-

gle Diabetic Retinopathy Competition winner Benjamin Graham.20

To summarize, the preprocessing consisted of rescaling the images

to have the same eye radius of 300 pixels, subtracting the local aver-

age color in each image, and clipping images to remove boundaries.

We further resized the preprocessed images to 256px � 256px for

memory efficiency to serve as the input to our deep learning models.

Chest X-ray dataset
To assess the reproducibility of our methods, we repeated all experi-

ments on the NIH Chest X-ray14 dataset. The preprocessing and

splitting of this dataset are outlined in the Supplementary Material.

Deep image classification model
For both datasets, we used a 22-layer GoogLeNet as our deep classi-

fication model.21 We included a batch normalization layer after

each convolutional layer and a dropout layer with probability 0.5

before the final readout layer. We used random minibatch sampling

with batch size of 32. We used the Adam optimization algorithm for

model weight optimization with an initial learning rate of 0.001 for

the DR dataset and an initial learning rate of 0.0015 for the chest X-

ray (CXR) dataset.22 Weights were initialized with Xavier Initializa-

tion. For both datasets, we had an exponential learning rate decay

with a decay rate of 0.99 every 200 training iterations (every epoch).

We used cross-entropy loss with an L2 regularization coefficient of

0.0001 as the loss function for both datasets. We also terminate
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model learning early if there are 4000 consecutive training iterations

(20 epochs) without improvement in validation loss. Finally, during

training, we perform real-time data augmentation by introducing

random 0–360-degree rotations, random shading, and random con-

trast adjustment to each image in a minibatch at every training itera-

tion. We repeated all experiments using a 50-layer ResNet23 instead

of a 22-layer GoogLeNet for classification to assess any CNN

architecture-dependent effects on distributed model performance.

All computation was performed on NVIDIA Tesla K80 GPUs.

Distributed training
We performed a simulated distributed learning task involving 4 par-

ticipating institutions by dividing the training data into 4 institu-

tional splits (details on the 4 splits for our distributed experiments

are explained in the sections below). We use CWT as our baseline

distributed approach because it is a synchronous nonparallel ap-

proach, and therefore robust to discrepancies in machine configura-

tions across training institutions.10 Cyclical weight transfer involves

starting training a newly initialized model at 1 of the institutions for

a certain number of iterations, transferring the updated model

weights to initialize the subsequent institution and training at that

institution for a certain number of iterations, transferring the

updated weights to the next institution, and so on until model con-

vergence. A schematic of CWT with 4 participating institutions is in-

cluded in Figure 1. We also repeated all experiments with a reversed

ordering of institutions (4 to 1).

Sample size variability
A common variability that is likely to arise in real (nonsimulated)

distributed learning tasks is differing sample sizes across institu-

tional training splits, especially in a setting whether there are both

small (eg, community hospitals) and large institutions (eg, academic

university hospitals). Figure 2A shows an example of a distributed

training split with variability in sample sizes across institutions. It

has been demonstrated that introducing variability in sample sizes

across institutional training splits results in performance losses with

CWT.10 In vanilla CWT (CWT without any optimizations), the

model is trained for a fixed, equal number of iterations at each insti-

tution. If 1 of the institutions has a smaller training sample than the

other institutions do, then on average over the course of training,

each training example from that institution will be sampled with

higher frequency than the training examples from other institutions.

Thus, when the CWT model is being trained at this institution, the

model is susceptible to overfitting to the training data from this in-

stitution and catastrophic forgetting of the data from other institu-

tions. And likewise, if 1 of the institutions has a larger training

sample than the other institutions do, then on average each training

example from that institution will be sampled with lower frequency

than the training examples from other institutions. Thus, when the

CWT model is being trained at this institution, the model is suscepti-

ble to underfitting the training data from this institution. We devel-

oped the following 2 modifications to CWT to mitigate

performance losses arising from variability in sample sizes across in-

stitutional training splits.

Proportional local training iterations

Instead of a fixed number of training iterations at each institution,

we will train the model at each institution for a number of iterations

proportional to the training sample size at the institution. Formally,

if there are i participating institutions 1; . . . ; i, with training sample

sizes of n1; . . . ; ni respectively, then the number of training iterations

at institution k will be f � nkPi

j¼1
nj

where f is some scaling factor. With

this modification, each training example across all institutions is

expected to appear the same number of times on average over the

course of training. If f ¼
Pi

j¼1
nj

B where B is the batch size, then a sin-

gle full cycle of CWT represents an epoch over the full training data.

Cyclical learning rate

Another way of equalizing the contribution of each image across the

entire training set to the model weights is to adjust the learning rate

at each training institution. Having a smaller learning rate at institu-

tions with smaller sample sizes and a larger learning rate at institu-

tions with larger sample sizes will prevent disproportionate impact

of the images at institutions with small or large sample sizes on the

model weights. Specifically, we expect that lowering the learning

rate at institutions with smaller training samples will mitigate the

overfitting and catastrophic forgetting that occurs at institutions

with smaller training sample sizes, and increasing the learning rate

at institutions with larger training samples will mitigate the underfit-

ting that occurs at institutions with larger training sample sizes. We

do this by constructing a CLR where the learning rate at an institu-

tion is proportional to the number of training samples at the institu-

tion. If there are i participating institutions 1; . . . ; i, with training

sample sizes of n1; . . . ; ni respectively, then the learning rate ak while

training at institution k is

ak ¼
nkia
Pi

j¼1 nj

where a is the global learning rate. Note that we include i in the nu-

merator and the total number of training samples in the denomina-

tor as scaling factors so that the average learning rate across the

institutions is equal to the global learning rate. It is important for

the average learning rate to be equal to the global learning rate to

control for hyperparameter differences that could confound results.

Figure 1. Schematic of cyclical weight transfer with 4 participating institutions

(I1, I2, I3, and I4), where I1 is the starting institution. Each arrow represents

transfer of updated model weights Wt ;i at cycle t for i 2 f1; 2; 3; 4g.
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Label distribution variability
Another common variability that is likely to arise in real distributed

learning tasks is differing label distributions across institutional

training splits, due to local differences in prevalence of the disease of

interest. Figure 2B shows an example of a distributed training split

with variability in sample sizes across institutions. It has been dem-

onstrated that introducing variability in the label distributions

across institutional training splits results in performance losses with

CWT.10 We developed the following 2 modifications to CWT to

mitigate performance losses arising from variability in label distribu-

tion across institutional training splits.

Locally weighted minibatch sampling

With this modification at each institution, the local training samples

are weighted by label during minibatch sampling so that the data

from each label are equally likely to get selected. Suppose there are

L possible labels, and for each label m 2 f1; . . . ;Lg there are nk;m

samples with label m at institution k. Then each training sample at

institution k with label m is given a weight of 1
l�nk;m

for random

minibatch sampling at each local training iteration. With such a

sampling approach, we can ensure that the minibatches during train-

ing have a balanced label distribution at each institution even if the

overall label distribution at the training institution is imbalanced.

Cyclically weighted loss

The standard cross-entropy loss function for sample x is CEðxÞ
¼ �

PL
j¼1 yx;j logðpx;jÞ where L is the number of labels, yx 2 R

Lis a

one-hot ground truth vector for sample x with 1 at the entry corre-

sponding to the true label of x and 0 at all other entries, and px;j is

the model prediction probability that sample x has label j. We intro-

duce a cyclically weighted loss function that gives smaller weight to

the loss contribution from labels overrepresented at an institution,

and vice versa for underrepresented labels. The modified cyclically

weighted cross-entropy loss function at institution k becomes

CEk xð Þ ¼ �
PL

j¼1 yx;j logðpx;jÞ
L � nk;j

where nk;j is the proportion of samples at institution k with label j.

Figure 2. Examples of heterogeneous training splits of the diabetic retinopathy dataset with 4 participating institutions consisting of 20 total images (10 healthy

and 10 diseased). (A) Training split with sample size variability; institutions 1, 2, 3, and 4 have 2, 4, 6, and 8 samples respectively, and the data at each institution

have a balanced label distribution. (B) Training split with label distribution variability; each institution has equal number of data samples but varying label distri-

bution.
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RESULTS

We create institutional training splits with varying degrees of sam-

ple size or label distribution variability across institutions. The

specific splits are detailed in the sections below. We then evaluate

the performance of a model trained on centrally hosted data and

distributed models on these institutional splits. Centrally hosted

data is when all data are located at a central repository and serve

as our benchmark. The distributed models we consider are the

originally described CWT method (“vanilla CWT”),10 CWT with

PLTI or CLR to address sample size variability, and CWT with la-

bel distribution variability or cyclically weighted loss to address la-

bel distribution variability. In both the DR and CXR datasets,

CWT with PLTI produced significantly higher performance than

did CWT without optimizations in institutional splits with high

sample size heterogeneity. In both datasets, both locally weighted

minibatch sampling and cyclically weighted loss significantly in-

creased vanilla CWT performance in institutional splits with high

label distribution heterogeneity. Note that in Figures 3 and 4, if

the number of training runs were increased to a large enough num-

ber, the mean central hosting accuracy would converge to horizon-

tal lines. The differences in central hosting performance across

experiments can be attributed to run-to-run variations in model

performance due to stochasticity in model initialization, minibatch

selection, and dropout.

Figure 3. Results on the diabetic retinopathy test set. Each point represents the mean accuracy across 10 runs, and error bars are 95% confidence intervals for the

mean accuracy. (A) Diabetic retinopathy test set accuracies vs sample size standard deviation for the various sample size splits with centrally hosted and distrib-

uted training. (B) Diabetic retinopathy test set accuracies vs sample size standard deviation for the various label distribution splits with centrally hosted and dis-

tributed training.
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Sample size variability
In order to test our methods on sample size variability for both the

DR and CXR datasets, we created the institutional training splits as

given in Table 1. The institutional splits were randomly selected

from the training sets of size 6400. The results of centrally hosting

(pooling all institutional data together) as well as distributed learn-

ing—vanilla CWT, cyclical weight transfer with PLTI (CWT þ
PLTI), and cyclical weight transfer with cyclical learning rate (CWT

þ CLR) using the splits from Table 1—are given in Table 2,

Figure 3A for the DR dataset, and Figure 4A for the CXR dataset.

Repeating these experiments with reversed ordering of institutions

during training of CWT models produced similar results, as shown

in Supplementary Material Table 1 and Supplementary Material

Figures 1A and 1B. Repeating these experiments with a 50-layer

ResNet instead of a 22-layer GoogLeNet for classification also

Figure 4. Results on the chest X-ray test set. Each point represents the mean accuracy across 10 runs, and error bars are 95% confidence intervals for the mean

accuracy. (A) Chest X-ray test set accuracies vs sample size standard deviation for the various sample size splits with centrally hosted and distributed training. (B)

Chest X-ray test set accuracies vs sample size standard deviation for the various label distribution splits with centrally hosted and distributed training.
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produced similar results, as shown in Supplementary Material Table

2 and Supplementary Material Figures 2A and 2B.

Label distribution variability
In order to test our methods on label distribution variability for both

the DR and CXR datasets we created the institutional training splits

as given in Table 3. The institutional splits were randomly selected

from the training sets of size 6400, with increasing degrees of label im-

balance in splits 6–10. The results of centrally hosting (pooling all in-

stitutional data together) as well as distributed learning—vanilla

CWT, cyclical weight transfer with locally weighted minibatch sam-

pling (CWT þ LWMS), and cyclical weight transfer with cyclically

weighted loss (CWT þ CWL) using the splits from Table 3—are given

in Table 4, Figure 3B for the DR dataset, and Figure 4B for the CXR

dataset. Repeating these experiments with reversed ordering of institu-

tions during training of CWT models produced similar results, as

shown in Supplementary Material Table 3 and Supplementary Mate-

rial Figures 1C and 1D. Repeating these experiments with a 50-layer

ResNet instead of a 22-layer GoogLeNet for classification also pro-

duced similar results, as shown in Supplementary Material Table 4

and Supplementary Material Figures 2C and 2D.

DISCUSSION

Distributed learning is a promising approach to train deep learning

models on multi-institutional patient data, with only model

Table 1. Institutional training splits with varying degrees of sample

size standard deviation across the 4 institutions. The number of

positive (þ) and negative (�) samples at each institution are also

indicated (each split is balanced)

Split Inst 1 þ/� Inst 2 þ/� Inst 3 þ/� Inst 4 þ/�
Sample size

Std. Dev.

1 800/800 800/800 800/800 800/800 0.0

2 960/960 853/853 747/747 640/640 238.4

3 1120/1120 907/907 693/693 480/480 477.2

4 1280/1280 960/960 640/640 320/320 715.5

5 1440/1440 1013/1013 587/587 160/160 953.9

Table 2. Diabetic retinopathy (DR) and Chest X-ray (CXR) mean and

standard deviation test set accuracies across 10 runs for the vari-

ous sample size splits with centrally hosted and distributed train-

ing. Bold entries represent optimizations that resulted in

significantly better performance than performance of cyclical

weight transfer without optimizations for the same split

Model

DR test set accuracy

Mean 6 Std. Dev.

CXR test set accuracy

Mean 6 Std. Dev.

Split 1

Central hosting 78.2 6 0.8 76.8 6 0.7

CWT 77.6 6 0.6 76.7 6 0.6

CWT þ PLTI 77.5 6 0.7 76.3 6 0.5

CWT þ CLR 77.6 6 1.2 75.8 6 0.6

Split 2

Central Hosting 78.1 6 0.8 76.9 6 0.6

CWT 77.4 6 0.6 75.3 6 0.6

CWT þ PLTI 77.5 6 0.8 76.1 6 0.8

CWT þ CLR 77.4 6 0.8 75.5 6 0.8

Split 3

Central Hosting 77.7 6 0.9 76.8 6 0.8

CWT 76.1 6 0.5 74.4 6 0.8

CWT þ PLTI 76.8 6 0.7 75.6 6 0.7

CWT þ CLR 77.1 6 0.7 75.4 6 0.7

Split 4

Central Hosting 78.2 6 0.7 76.7 6 0.9

CWT 75.4 6 0.6 73.9 6 0.5

CWT þ PLTI 77.3 6 0.4 75.8 6 0.4

CWT þ CLR 76.5 6 0.6 75.1 6 0.8

Split 5

Central hosting 78.3 6 0.6 76.7 6 0.4

CWT 74.5 6 0.7 73.6 6 0.6

CWT þ PLTI 77.2 6 1.0 75.6 6 0.5

CWT þ CLR 75.7 6 0.8 74.2 6 0.6

Table 3. Institutional training splits with varying degrees of positive

label sample size standard deviation across the 4 institutions. The

number of positive and negative samples at each institution are

also indicated (each split has equal total sample size across institu-

tions)

Split Inst 1 þ/� Inst 2 þ/� Inst 3 þ/� Inst 4 þ/�
þ Sample Size

Std. Dev.

6 800/800 800/800 800/800 800/800 0.0

7 960/640 853/747 747/853 640/960 119.2

8 1120/480 907/693 693/907 480/1120 238.6

9 1280/320 960/640 640/960 320/1280 357.8

10 1440/160 1013/587 587/1013 160/1440 477.0

Table 4. Diabetic retinopathy (DR) and Chest X-ray (CXR) mean and

standard deviation test set accuracies across 10 runs for the vari-

ous label distribution splits with centrally hosted and distributed

training. Bold entries represent optimizations that resulted in sig-

nificantly better performance than performance of cyclical weight

transfer without optimizations for the same split

Model

DR test set accuracy

Mean 6 Std. Dev.

CXR test set accuracy

Mean 6 Std. Dev.

Split 6

Central hosting 78.3 6 0.9 76.5 6 0.9

CWT 77.9 6 1.0 76.2 6 0.7

CWT þ LWMS 78.0 6 1.0 75.9 6 0.9

CWT þ CWL 77.7 6 1.2 76.4 6 0.7

Split 7

Central hosting 78.0 6 0.7 76.7 6 0.7

CWT 77.0 6 0.8 75.5 6 0.5

CWT þ LWMS 77.7 6 0.7 76.3 6 0.9

CWT þ CWL 78.0 6 0.8 76.1 6 0.7

Split 8

Central hosting 78.4 6 0.5 77.0 6 0.6

CWT 76.3 6 0.8 74.9 6 0.8

CWT þ LWMS 77.3 6 0.5 75.8 6 1.0

CWT þ CWL 77.8 6 0.7 76.2 6 0.8

Split 9

Central hosting 78.4 6 0.7 76.2 6 0.8

CWT 75.9 6 0.8 73.5 6 0.8

CWT þ LWMS 77.1 6 0.9 75.6 6 0.6

CWT þ CWL 77.1 6 0.6 75.1 6 0.4

Split 10

Central hosting 77.9 6 0.6 76.6 6 0.4

CWT 74.4 6 0.6 73.5 6 0.7

CWT þ PLTI 76.8 6 0.8 75.9 6 0.7

CWT þ CWL 77.2 6 0.8 75.4 6 0.6
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parameters being transferred among institutions. By circumventing

the need for sharing patient data, such approaches could catalyze de-

velopment of deep learning models with medical datasets. Existing

distributed learning approaches focus on nonmedical applications,

but there are unique, unaddressed challenges to distributed learning

with medical data. Specifically, unlike typical distributed learning

approaches where the data are distributed optimally to maximize

performance of the learning method, in medical scenarios the data

are not shared, and consequently there are variations in the amount

of data, distribution of labels, and resolution of images across insti-

tutions, which we have observed in preliminary work to decrease

model performance in CWT. To our knowledge, we are the first to

study the deleterious impact of data variability on distributed learn-

ing for medical imaging and to develop strategies to address it. Spe-

cifically, our goal is to optimize CWT to overcome these challenges.

We implemented various strategies to mitigate performance

losses that arise from distributed training with CWT when data

across institutional splits are heterogeneous. Specifically, we modi-

fied cyclical weighted transfer by including PLTI and CLR to ad-

dress sample size variability across institutional training splits, and

locally weighted minibatch sampling and cyclically weighted loss to

address label distribution variability across institutional training

splits. We evaluated our methods with simulated distributed learn-

ing tasks with 4 participating institutions using the Kaggle Diabetic

Retinopathy Detection and Chest X-ray14 datasets. We used perfor-

mance from centrally hosting all training data as a theoretical maxi-

mum performance (and therefore goal performance) for our

distributed methods.

When we introduced sample size variability across the institu-

tional training splits, vanilla CWT performance on both the DR and

CXR datasets decreased. For the DR dataset, vanilla CWT test set

accuracy decreased from 77.6% with split 1 (equal sample sizes) to

74.5% with split 5 (highest variance in sample sizes). For both data-

sets, including PLTI was the most effective at mitigating this perfor-

mance loss when variability was introduced. The DR test set

accuracy with PLTI with split 5 was 77.2%, so PLTI almost

completely bridged performance losses from sample size variability

across institutional training splits. The DR test set accuracy with a

CLR with split 5 was 75.7%. While the improvement over vanilla

CWT performance was significant, the improvement was not as sig-

nificant as that from PLTI.

Additionally, when we introduced label distribution variability

across the institutional training splits, again, vanilla CWT perfor-

mance on both the DR and CXR datasets decreased. For the DR

dataset, vanilla CWT test set accuracy decreased from 77.9% with

split 6 (balanced label distributions across all institutions) to 74.4%

with split 10 (highest variance in positive training samples across

institutions, representing highest label imbalance). Neither locally

weighted minibatch sampling nor cyclically weighted loss was as ef-

fective as PLTI at completely eradicating performance losses arising

from variability, but for both datasets, both modifications improved

CWT performance when label distribution variability was intro-

duced. The DR test set accuracy with locally weighted minibatch

sampling and cyclically weighted loss with split 10 were 76.8% and

77.2% respectively, so both modifications are promising for bridg-

ing performance losses from CWT when label distribution variabil-

ity across institutional training splits is introduced.

Furthermore, there are no notable effects of reversing institution

order on the performance of our models. Our CWT models train for

hundreds of cycles until the validation loss stops improving and

training is terminated. Starting training with different institutions

may result in significantly different models after 1 cycle. However,

the subsequent hundreds of cycles of training make the effects of the

first training institution on the model negligible. There are also no

notable differences in model performance as a result of using a 50-

layer ResNet instead of a 22-layer GoogLeNet for classification, in-

dicating the exact choice of deep CNN architecture is not important

for the use cases in our article.

Sample sizes and label distributions are likely sources of data het-

erogeneity across institutions in real-world distributed learning tasks

for medical image analysis because patient distributions are likely to

vary across healthcare institutions. Thus, our optimizations extend

the applicability of distributed training with CWT to real-world sce-

narios where such patient data heterogeneity across institutions is

present. Our work has the potential to propel the multi-institutional

collaborative training of deep learning models in these scenarios

without the need for any patient data-sharing.

There are several limitations to our study. First, our institutional

splits are created from single datasets, so introducing heterogeneity

across institutions in number of data samples and label distribution

of data samples may still not fully capture other forms of heteroge-

neity that may be present across real-world institutions such as race,

gender, and image acquisition settings. Furthermore, another possi-

ble source of data heterogeneity that is possible is variance in image

resolution across institutions, due to the use of nonstandardized im-

aging equipment and methods across sites. It has been observed that

variability in resolution can also result in decreases in cyclically

weighted loss performance.10 It remains future work to address this

variability. A potential approach to address resolution imbalance

includes training image super-resolution networks24 to improve data

quality of institutions with low-resolution or low-quality images,

which may ultimately improve classification accuracy. Also, in this

study, we focused on the utilization of CWT as our distributed

learning approach. Future work can explore performance loss miti-

gation for other distributed learning methods such as asynchronous

stochastic gradient descent and split learning.25,26

CONCLUSION

In this study, we identified that variability in training sample sizes

and label distributions across institutional data results in significant

performance losses in distributed learning for medical imaging, and

we developed modifications to CWT to mitigate these performance

losses. We evaluated our methods in 2 simulated distributed medical

image classification tasks of DR detection and thoracic disease clas-

sification from chest radiographs. Proportional local training itera-

tions was effective in almost completely mitigating performance

losses from introducing sample size variability. Locally weighted

minibatch sampling and cyclically weighted loss were both effective

at mitigating performance losses from variations in the label distri-

bution. Our optimizations to CWT make it more robust to data var-

iability in sample size and label distribution in simulated multi-

institutional distributed learning, and future work is needed to ad-

dress other sources of real-world data variability.
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