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ABSTRACT Infectious diseases pose a serious threat to public health due to its high infectivity and
potentially high mortality. One of the most effective ways to protect people from being infected by these
diseases is through vaccination. However, due to various resource constraints, vaccinating all the people in a
community is not practical. Therefore, targeted vaccination, which vaccinates a small group of people, is an
alternative approach to contain infectious diseases. Since many infectious diseases spread among people
by droplet transmission within a certain range, we deploy a wireless sensor system in a high school to
collect contacts happened within the disease transmission distance. Based on the collected traces, a graph is
constructed to model the disease propagation, and a new metric (called connectivity centrality) is presented
to find the important nodes in the constructed graph for disease containment. Connectivity centrality
considers both a node’s local and global effect to measure its importance in disease propagation. Centrality
based algorithms are presented and further enhanced by exploiting the information of the known infected
nodes, which can be detected during targeted vaccination. Simulation results show that our algorithms can
effectively contain infectious diseases and outperform other schemes under various conditions.

INDEX TERMS Wireless sensor system, human contact, node centrality, disease containment.

I. INTRODUCTION
Infectious diseases pose a serious threat to public health due
to its high infectivity and potentially high mortality. Over
the last few decades, infectious diseases have caused sev-
eral regional and worldwide pandemics, resulting in many
infections and deaths. For example, during H1N1 pandemic
in 2009, more than 600,000 cases were lab-confirmed and
more than 14,000 were dead all over the world [1]. Accord-
ing to World Health Organization (WHO), the epidemic
of Ebola in 2014 has caused significant mortality in many
West African countries, with a reported case with fatal-
ity rate of 70% [2]. Even for a seasonal influenza, it is
estimated to affect 5% to 15% of the global population
and cause 3 to 5 million cases of severe infections and
250,000 to 500,000 deaths worldwide each year [3].

To prevent infectious diseases, one of the most effective
ways is to vaccinate the susceptible individuals. However, due
to resource constraints such as the limited vaccine supply,
in many cases, it may not be practical to vaccinate all the
susceptible individuals, especially when a new infectious

disease outbreaks. Therefore, targeted vaccination, which
vaccinates a small group of people in a community, is an alter-
native approach to contain infectious diseases. The challenge
is how to find the group of people whose vaccination will
averagely result in the maximum reduction of disease spread.
Targeted vaccination has been studied in some previous

works [4]–[7]. However, these works are limited to theo-
retical analysis based on synthetic networks such as ran-
dom, homogeneous or scale-free network, which may not
reflect the real contact patterns among people in different
scenarios. For example, based on the contact traces collected
from high school students, where each student carries a sen-
sor node to record the contacts with others by sending and
receiving packets (details shown in Section III), we show in
Figure 1 that the distributions of the number of nodes’ con-
tacts (i.e., the number of packets received from other nodes)
and neighbors (i.e., the number of nodes from which packets
are received) are different from the power-law distributions.
Since students in the high school spend most of their time
in classes and students in the same class may have contacts
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FIGURE 1. Distributions of the number of nodes’ (a) neighbors and
(b) contacts.

with each other, most of the nodes in the network will have
similar number of neighbors and contacts. As observed from
our collected trace, the number of nodes’ neighbors and the
number of nodes’ contacts are more likely to follow normal
distributions rather than power-law distributions.

The problem of targeted vaccination has some similarity
to virus (worm) containment in the area of computer net-
works, such as cellular networks [8]–[10] or online social
networks [11]–[14]. Based on cluster partition and commu-
nity detection, different schemes have been proposed for virus
(worm) containment [8], [11]. By using various techniques
to divide the network into different partitions, these schemes
contain the viruses (worms) within the infected partition
before they spread out. More specifically, the nodes that
separate network partitions are vaccinated in [8] and the
neighbors of overlapped nodes between two communities are
vaccinated in [11]. However, these works mainly focus on
containing the worm (virus) in cellular network or online
social network, which has different propagation patterns from
infectious disease. For infectious disease, it will be transmit-
ted with a probability when two people contact with each
other. However, in cellular network or online social network,
a node will be infected immediately once it contacts with
an infected node. In addition, they implicitly assume that all
nodes in the network are eligible for vaccination, which is
not true in disease containment (e.g., we cannot vaccinate an
infected node). Thus, we cannot directly apply these schemes
to targeted vaccination.

Different from the aforementioned works, we deploy a
wireless sensor system in a high school to collect contacts
among students. Since the wireless signal strength degrades
as the communication distance increases [15], we can mea-
sure the wireless signal strength and then infer when and
where students meet with each other. This information is
important for modeling the propagation of infectious disease.
Many respiratory infectious diseases (e.g., influenza) spread
among people by droplet transmission, requiring an infected
and a susceptible person to be in close physical contact at a
short maximum distance [16]–[18]. With our wireless sensor
system, we can find student contacts within such distance,
and construct a disease propagation graph to model the
infectious disease propagation. Then, targeted vaccination
becomes a problem of selecting important nodes in a graph
to contain infectious disease.

Based on the disease propagation graph, node centrality
can be used to measure its importance during disease prop-
agation. Although there are some centrality measures [19]
such as degree centrality, betweenness centrality and close-
ness centrality, they all have disadvantages when applied
to disease containment. For example, degree centrality only
considers the connection between a node and its neighbors,
and thus is limited by its local effect. Betweenness central-
ity measures the global effect, but it does not describe the
difference between a node’s influence on its neighbors and
that on those nodes far away. Closeness centrality does not
work when the graph is disconnected. In disease propagation,
an infected node will infect nodes closer with much higher
possibility than those far away. Thus, we propose a new
metric called connectivity centrality, which takes into account
a node’s influence on all others and considers nodes closer
more important. Based on the proposed centrality measure,
we design centrality based algorithm for targeted vaccination.
In infectious disease containment, not all nodes are eligible
for vaccination. For example, vaccination for a node which
has already been infected will not be effective. Some of these
infected nodes can be detected during vaccination. With this
information, we enhance the centrality based algorithm by
considering both a node’s infecting capability and its infected
possibility.We evaluate the centrality based algorithm and the
enhanced algorithm, and compare them with other schemes.
The trace driven simulation results show that our algorithms
can significantly reduce the infection rate. Although our algo-
rithms are illustrated based on the contact trace collected from
a high school, they are trace-independent and can work in
other networks.

The rest of this paper is organized as follows. Section II
reviews related work and Section III describes our trace col-
lection.We propose centrality based algorithms and enhanced
algorithm in Section IV and evaluate the performance in
Section V. Section VI concludes the paper. A preliminary
work has been published in [20].

II. RELATED WORK
A rich body of work has focused on infectious disease con-
tainment. Various disease propagation patterns have been
studied in [21] and [22]. Based on the disease propagation
model, Prakash et al. [21] derived the epidemic threshold
for a given network under which an epidemic will not hap-
pen and above which an epidemic will happen. Moreover,
they have designed a greedy strategy, which vaccinates the
node that causes the largest drop in the eigenvalue of the
system matrix. Cohen et al. [22] proposed a mathematical
model and an immunization policy based on a small frac-
tion of random acquaintances, and analytically studied the
critical threshold for complete immunization. However, these
techniques mainly focus on how to avoid the spreading of
infectious disease becoming an epidemic, without consider-
ing how to decrease the number of infected individuals in
a community.
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With using the SIR (Susceptible-Infected-Removed) epi-
demiological model, Madar et al. [23] studied the epidemic
spreading behavior in scale-free networks and proposed dif-
ferent immunization strategies. In [24], Hayashi et al. inves-
tigated the spread of viruses in growing scale-free networks
with new users coming, and compared the performance of
targeted vaccination and random vaccination under such net-
work models. However, in these works, they assume that the
graph is scale-free and the connections between nodes follow
power law distribution.

By analyzing a real cellular network trace, Zhu et al. [8]
constructed a graph to describe the social relationships
between mobile phones, and proposed two algorithms
(balanced partitioning and cluster partitioning) to contain
mobile worms at the early stage. Nguyen et al. [11] uti-
lized community structures to contain viruses in online social
networks. They presented community detection algorithms
to find the overlapping communities and patched the nodes
in the overlapped areas to prevent worms spreading from
one community to another. With the community structure,
Lu et al. [12] calculated the intra-centrality (within com-
munity) and inter-centrality (between community) and com-
bined them together to select nodes for vaccination. The
Facebook trace in New Orleans regional network was used
in [11] and [12]. However, these works mainly focus on
the worms (viruses) in cellular networks or online social
networks, which have different propagation patterns from
infectious diseases. In addition, they implicitly assume that
any node in the network can be selected as vaccinated node,
while in disease containment, this is not true (e.g., we cannot
vaccinate a node that has already been infected).

This paper extends the preliminary version of our algo-
rithm appeared in [20]. In [20], we proposed connectivity
centrality and designed an algorithm based on the proposed
centrality. In this paper, we enhance the centrality based algo-
rithm by exploiting information of the known infected nodes
which can be detected during targeted vaccination. Given a
set of known infected nodes, we measure node’s infecting
capability and its possibility to be infected, and consider these
two factors to select nodes to be vaccinated.

III. TRACE COLLECTION
Most infectious diseases spread among people through virus,
which is transmitted by airborne infectious particles or small
respiratory droplets when two people contact within a certain
distance [16]–[18]. Besides, the activity of many infectious
viruses (e.g., influenza virus) varies in indoor and outdoor
environment because of the different ambient airflow pat-
terns [25], [26]. Therefore, collecting the contacts among
people within the disease transmission distance and indicat-
ing whether a contact happened indoor or outdoor are impor-
tant for modeling disease propagation and designing disease
containment algorithms. However, most of the existing traces
do not consider these two factors, and thus we deploy a
wireless sensor system in a high school and collect our own
traces.

FIGURE 2. A mobile mote carried by a student.

A. SYSTEM OVERVIEW
Due to the frequent and close contacts among students every
day, schools are regarded to play a major role in the spread of
infectious diseases into the community [27], [28]. Therefore,
we deployed our trace collection system in a high school
which has about 800 students. The Crossbow TelosB mote,
which has a low-power microcontroller, an IEEE 802.15.4
radio and extended memory, is used to collect student con-
tacts. Since the wireless signal strength degrades as the com-
munication distance increases, we can measure the wireless
signal strength and then infer when and where students meet
with each other. In the wireless sensor system, we have
two types of motes: mobile motes and stationary motes.
Mobile motes are carried by students to collect their contacts.
As shown in Figure 2, each mobile mote is placed in a pouch
attached to a lanyard and worn by a student around his (her)
neck. During a school day, the mobile motes are carried
by students and each of them is labeled with a unique ID.
The mobile mote broadcasts a beacon every 20 seconds and
keeps listening to the wireless channel to record beacons from
other motes. The beacon includes mote type, mote ID, and its
local sequence number which is initialized to 0 and increased
by one after each beacon broadcast. Stationary motes are
deployed at some fixed places (e.g., classrooms, dining halls
and restrooms) to indicate the contact locations. Each station-
ary mote is also assigned a unique ID and broadcasts beacons
with its mote type, ID and sequence number at an interval
of 20 seconds. The sequence number starts at 0 when the
mote is powered on and increased by one after each broad-
cast. During trace collection, all the motes keep broadcasting
beacons periodically and only mobile motes record beacons
from others. Beacons from other mobile motes are recorded
as contact information and beacons from stationary motes
are recorded to infer whether the contacts happen indoor or
outdoor.

The wireless sensor system is deployed during a flu season
in 2012. On each school day, the mobile motes are distributed
to students around 7 am and received back around 4 pm.
In order not to disturb students’ activities, the stationary
motes are deployed at night before the trace collection and
their starting times are recorded manually. The experiment
was conducted across two weeks in March 2012. Averagely,
3.4 million contacts were collected between mobile motes
each day.
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B. DESIGN CONSIDERATIONS
1) DISEASE TRANSMISSION DISTANCE
According to [17], [18], and [29], the airborne droplets can
only transmit from one person to another when their contact
distance is less than 9 feet. Thus, 9 feet is a critical distance
for disease propagation and we only need to collect contacts
within this distance. By using received signal strength indi-
cator (RSSI), which reflects the distance between the sending
and receiving nodes, we can determine if a contact happens
within a specific range by checking if the corresponding
RSSI is above certain threshold for a given transmission
power.

Different from many existing sensor network applica-
tions [30]–[33], where wireless nodes are supposed to com-
municate with each other with the highest transmission power
to achieve higher data delivery rate and reach larger cov-
erage area, we choose a lower transmission power in our
system to save energy. Since a TelosB mote only has two
AA batteries as its power supply, if it keeps working at the
highest transmission power level, its batteries will die very
quickly. According to our preliminary experimental results,
the transmission power of −16.9 dBm (power level 6 for
TelosB mote) is strong enough to ensure a high data delivery
rate within a distance of 9 feet. Under this transmission
power, the RSSI of the packet received within 9 feet is larger
than −80 dBm. Therefore, in our implementation, the trans-
mission power of the mobile mote is set to −16.9 dBm and a
beacon from the mobile mote is recorded only if its RSSI is
larger than −80 dBm.

2) INDOOR OR OUTDOOR
Since the infecting capability of infectious disease varies in
indoor and outdoor environment due to the different ambient
airflow patterns [25], [26], stationary motes are deployed to
provide location information for inferring where a contact
happens. In our system, stationary motes periodically broad-
cast beacons with transmission power of −11 dBm (power
level 10 for TelosB mote) and they are carefully deployed to
cover the entire buildings in the school. Thus, if a mote is
indoor at some time, it will receive beacons from at least one
stationary mote at that time. Further, if a beacon is received
from a mobile mote and at the same time both the sender and
receiver have recorded beacons from some stationary motes,
we can infer that this contact happens indoor; otherwise, it
happens outdoor. Therefore, we can discern whether a contact
happens indoor or outdoor by checking beacons received
from the stationary motes.

IV. TARGETED VACCINATION
In this section, we first construct a graph to model dis-
ease propagation based on the collected traces. Then, we
propose centrality based algorithm for disease containment,
and further enhance the solution by exploiting the knowl-
edge of the infected nodes which have been detected during
vaccination.

A. DISEASE PROPAGATION GRAPH
If there is a contact between two students, there will be
some probability for the infectious disease to be transmitted
between them. Therefore, we can construct a graph (called
disease propagation graph) to model disease propagation
based on the collected human contacts. The disease propaga-
tion graph is represented byG = (V ,E), where V is the set of
vertices andE is the set of edges. In graphG, each node u ∈ V
represents a participant and an edge e = (u, v) ∈ E exists
when there is contact between u and v. Since the infectious
disease is transmitted bidirectional, G is an undirected graph.

In the disease propagation graph, we assign each edge
(u, v) a weight w(u, v) to describe the disease propagation
probability between these two nodes. Two factors should
be considered when assigning the edge weight: contact fre-
quency and contact location. For two nodes that contact with
each other frequently (i.e., they spend a lot of time together),
if one node gets some infectious disease, the other one is most
likely to be infected. Thus, the more frequently two nodes
encounter, the larger weight should be assigned to the cor-
responding edge. Another factor that affects the probability
of infection is contact location. According to [25] and [26],
infectious disease such as influenza, is more likely to spread
quickly in indoor environment than outdoor environment.
Thus, contacts happen indoor should be assignedmoreweight
than contacts happen outdoor.

Considering both contact frequency and contact location,
the edge weight w(u, v) is calculated as:

w(u, v) =

∑T
t=0 r(u, v, t)η(u, v, t)

T

where

r(u, v, t) =

{
1 if there is a contact between u and v at t;
0 otherwise.

η(u, v, t) =


1 if the contact between u and v at

time t happens indoor;
η0 otherwise.

and T is the time period of the trace used for constructing the
graph.

In our trace collection system, each mote (either mobile
mote or stationary mote) periodically broadcasts a beacon
whose local sequence number is initialized to 0 and increased
by one after each broadcast. Since there are many stationary
motes whose starting times are manually recorded, bea-
cons received from these motes can be used to synchro-
nize local sequence numbers in the beacons received from
mobile motes. Therefore, we use the synchronized global
sequence number to represent time t . r(u, v, t) is set to 1
when u receives a beacon from v at t or v receives a beacon
from u at t . η(u, v, t) is set to η0 if the contact happens
outdoor. Since infectious disease is relatively inactive in out-
door environment, 0 < η0 < 1 and its value depends on the
characteristic of the specific disease.
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B. CENTRALITY BASED TARGETED VACCINATION
The disease propagation graph shows how each node contacts
with others and how disease propagates among them. In the
graph, each node has different influence on others and thus
plays a different role during disease propagation. Since the
importance of each node on disease propagation can be mea-
sured by centrality, we propose centrality based algorithm for
targeted vaccination.

In literature, there are some well known centrality
metrics [19] such as degree, betweenness and closeness
centrality.

Degree centrality measures how well a node is connected
with its neighbors and it is defined as:

Cd (u) =
∑
v∈N (u)

w(u, v)

where N (u) is the set of u’s neighboring nodes.
Betweenness centrality measures to what extent a node

can connect two other nodes through a shortest path and it is
defined as:

Cb(u) =
∑

s6=u 6=t,s,t∈V

σst (u)
σst

where σst is the total number of shortest paths from node s to t
and σst (u) is the total number of shortest paths from node s to t
that go through node u.

Closeness centrality measures how close a node is to
others and it is defined as:

Cc(u) =
|V | − 1∑

v6=u,v∈V
d(u, v)

where |V | is the cardinality of V and d(u, v) is the shortest
path distance between u and v.

FIGURE 3. An example of different centrality metrics in the disease
propagation graph. The edge weight w(u, v ) is shown in the graph and

1
w(u,v ) is used as the distance between two neighboring nodes u and v

when calculating distance based centralities. Both node i and j have the
highest degree centrality of 0.45; node d has the highest betweenness
centrality of 25; all the nodes have the same closeness centrality of 0;
node e has the highest connectivity centrality of 0.504.

Although these centralities can be used to measure the
node’s importance in a graph, they are not applicable to
describe a node’s influence on others during disease prop-
agation. For example, Figure 3 shows an example of using
different centralities to remove one node to contain the dis-
ease. Both betweenness and closeness centralities are dis-
tance based and the weight between any two neighboring
nodes should represent their distance. However, in the disease

propagation graph, the edge weight is assigned based on the
disease propagation probability. The larger the edge weight
is, the closer the nodes are and the smaller their distance
is. Therefore, when calculating distance based centralities,

1
w(u,v) is used as the distance between two neighboring nodes
u and v. As shown in Figure 3, both node i and j have the
highest degree centrality; node d has the highest betweenness
centrality; all the nodes have the same closeness centrality
of 0. However, none of these centralities returns the optimal
vaccinated node e, whose removal will not only separate the
graph into different parts, but also remove edges with large
edgeweights. This is because degree centrality only considers
the connection between a node and its neighbors, and thus
is limited by its local effect; betweenness centrality consid-
ers the global effect, but it does not describe the difference
between a node’s influence on its neighbors and that on those
nodes far away; with considering the distance between two
nodes, closeness centrality treats a node’s influence on others
differently, but its value is dominated by the path with longer
distance since all the distances are simply added together, and
it does not work in a disconnected graph.

In disease propagation graph, infectious disease is more
likely to be transmitted to nodes closer than nodes further
away. Thus we propose a new centrality metric called connec-
tivity centrality to measure how contagious an infected node
is to others and it is defined as:

Ccon(u) =
∑

v 6=u,v∈V

c(u, v)

where

c(u, v) =


1

d(u, v)h(u, v)
if there is a path from u to v;

0 otherwise.

and h(u, v) denotes the number of hops between u and v along
the shortest path.

Connectivity centrality takes into account a node’s effect
on others and considers nodes closermore important, and thus
it is better than other centrality metrics for measuring node’s
influence on disease propagation. For example, in Figure 3,
the optimal vaccinated node e is the node with the highest
connectivity centrality.

Based on node centrality, we can propose a straightforward
algorithm. To find k vaccinated nodes, we sort all the nodes
based on their centrality values and choose the top k nodes.
However, in disease containment, not all nodes are eligible
for vaccination. For example, vaccinating a node which has
already been infected will not be effective. In addition, some
nodes may refuse to get vaccinated because of their concerns
on potential side effects [34]. Therefore, in the centrality
based algorithm, after sorting, we select the first k nodes
which are eligible for vaccination as the targeted nodes.

C. ENHANCED TARGETED VACCINATION
Centrality based algorithm selects the nodes with the highest
influence to be vaccinated. This is because once these nodes
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FIGURE 4. Targeted vaccination with some known infected nodes.

are infected, they are able to infect more nodes due to their
close connections. However, it only considers the infecting
capability of a node, without considering how possible it
will be infected. Both these two factors should be taken into
account for vaccination. For example, as shown in Figure 4,
each edge has the same weight and a is known as an infected
node. By using centrality based algorithm, both d and e can
be selected as the candidate nodes due to their high centrality.
However, since a has already been infected, d will be a
better choice because it is more likely to be infected soon,
and vaccinating d will potentially protect more nodes from
being infected. In order to describe both a node’s infecting
capability and its infected possibility, we propose infecting
score and infected score by exploiting the information of the
infected nodes which can be detected during vaccination, and
combine these two scores together to determine which nodes
should be vaccinated.

1) INFECTING SCORE
When centrality is used to measure node’s influence on
others, it implicitly assumes that all the other nodes are
uninfected. However, if there are some known infected nodes
in the graph, the calculated centralitymay not accuratelymea-
sure node’s importance. For example, as shown in Figure 5,
the black nodes are infected nodes. With centrality based
algorithm, node e should be chosen to be vaccinated first
since e has the highest centrality no matter which centrality
metric is used. However, considering that node d , f , h and j
have already been infected, node b will be a better choice
since its removal will separate node a and c from the infected
nodes, while e’s removal will still leave infected nodes in all
partitions.

FIGURE 5. Node’s infecting capability under a set of known infected
nodes. Node e has the highest degree, betweenness, closeness and
connectivity centrality (Cd (e) = 0.4, Cb(e) = 72, Cc (e) = 0.056 and
Ccon(e) = 0.522), but node b, which has the highest infecting score under
I = {d , f ,h, j} (ϕ(b, I) = 0.2), is a better choice for vaccination.

Let I denote the set of known infected nodes;
e.g., I = {d, f , h, j} in Figure 5. To measure node b’s
influence under the infected node set I , nodes in I should not
be considered since these nodes have already been infected
and b has no influence on them. Also, b has no influence on
the nodes that are closer to an infected node than to b. For
example, even if node b is infected, it will not affect node
i’s infection status which only depends on the connection
between i and f . As a result, node b’s influence should be
different with the knowledge of the infected nodes (f in
this example). Thus, we define infecting score to measure
the infecting capability of a node under infected node set I .
As illustrated in Section IV-B, connectivity centrality
describes the local and global effects of a node, which is better
than other centralities in measuring its importance during
disease propagation. Based on connectivity centrality, node
u’s infecting score under infected node set I is defined as
follows:

ϕ(u, I ) =
∑

v∈S(u,I )

c(u, v)

where

S(u, I ) = {v | c(u, v) ≥ max
w∈I

c(w, v), v ∈ V \ {u}}

Based on this definition, ϕ(u, I ) = Ccon(u) when
I = ∅, i.e., connectivity centrality is a special case
for calculating the infecting score when no node is
infected.

2) INFECTED SCORE
Tomeasure the importance of a nodemore accurately, besides
infecting score, infected score is introduced to measure
the possibility for it to be infected, which is calculated as
follows:

ψ(u, I ) =


1 if u ∈ I ;∑
v∈N (u)

ψ(v, I ) ·
w(u, v)

max
w∈V

Cd (w)
if u /∈ I . (1)

Figure 6 illustrates how to apply the above equation to a
simple graph, which contains three nodes a, b and c. Suppose
I = {a}; i.e., node a has been detected as an infected node.

FIGURE 6. Infected score calculation in a simple graph.
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By applying Equation 1, we have the following linear equa-
tions:

ψ(a, I ) = 1

ψ(b, I ) = ψ(a, I ) ·
w(a, b)
W

+ ψ(c, I ) ·
w(c, b)
W

ψ(c, I ) = ψ(a, I ) ·
w(a, c)
W

+ ψ(b, I ) ·
w(b, c)
W

(2)

where W = max{Cd (a),Cd (b),Cd (c)}.
In the disease propagation graph, for two nodes u and v, we

havew(u, v) = w(v, u). Thus, Equation 2 can be easily solved
as follows:

ψ(a, I ) = 1

ψ(b, I ) =
w(a, b)W + w(a, c)w(b, c)

W 2 − [w(b, c)]2

ψ(c, I ) =
w(a, c)W + w(a, b)w(b, c)

W 2 − [w(b, c)]2

For a disease propagation graph G = (V ,E) with edge
weight w(u, v), we can calculate infected score for each node
u ∈ V by applying Equation 1. In this way, a |V | × |V | linear
equation system can be generated.

Suppose the node set V = {u1, u2, u3, . . . , u|V |}, the
infected set I = {up1 , up2 , up3 , . . . , up|I |} and the unin-
fected set V \ I = {uq1 , uq2 , uq3 , . . . , uq|V\I |}. For simplicity,
we denote ψ(u, I ) as ψ(u) and denote normalized weight
w(u,v)

max
w∈V

Cd (w)
as w′(u, v). By applying Equation 1 for each node,

we have the following equations:

ψ(up1 ) = 1
...

ψ(up|I | ) = 1
ψ(uq1 ) = ψ(up1 )w

′(up1 , uq1 )
+· · ·+ψ(up|I | )w

′(up|I | , uq1 )+ψ(uq2 )w
′(uq2 , uq1)

+ · · · + ψ(uq|V\I | )w
′(uq|V\I | , uq1 )

...

ψ(uq|V\I | ) = ψ(up1 )w
′(up1 , uq|V\I | )

+ · · · + ψ(up|I | )w
′(up|I | , uq|V\I | )

+ ψ(uq1 )w
′(uq1 , uq|V\I | )

+ · · · + ψ(uq|V\I |−1 )w
′(uq|V\I |−1 , uq|V\I | )

It can be easily transformed to a linear equation system
denoted by matrices:[

I|I |×|I | O|I |×|V\I |
A1|V\I |×|I | A2|V\I |×|V\I |

]
·

[
X1
X2

]
=

[
b1
b2

]
(3)

where I|I |×|I | is an identity matrix,O|I |×|V\I | is a zero matrix,

A1 =


w′(up1 , uq1 ) · · · w′(up|I | , uq1 )
w′(up1 , uq2 ) · · · w′(up|I | , uq2 )

...
...

...

w′(up1 , uq|V\I | ) · · · w′(up|I | , uq|V\I | )

,

A2 =


−1 · · · w′(uq|V\I | , uq1 )

w′(uq1 , uq2 ) · · · w′(uq|V\I | , uq2 )
...

...
...

w′(uq1 , uq|V\I | ) · · · −1

,

X1 =

 ψ(up1 )
...

ψ(up|I | )

, X2 =

 ψ(uq1 )
...

ψ(uq|V\I | )

,
and

b1 =

 1
...

1

, b2 =

 0
...

0

.
Theorem 1: The system of linear equations given in

Equation 3 has a single unique solution.
The proof of Theorem 1 can be found in Appendix A.

As long as a linear equation system shown in Equation 3
can be obtained, some well known methods such asGaussian
Elimination, Cramer’s Rule, etc., can be used to solve it and
we can get the infected score of each node under a certain
infected node set I .

3) COMBINED SCORE
Infecting score measures how a node infects others once
it is infected, while infected score evaluates how possible
this node will be infected with the current knowledge of the
infected set I . Both factors should be taken into account when
selecting the vaccinated nodes. Therefore, we combine them
as follows to get a node u’s combined score.

ζ (u, I ) =
ϕ(u, I )

max
v∈V\I

ϕ(v, I )
·

ψ(u, I )
max
v∈V\I

ψ(v, I )

At each round, the node with the highest combined score
is selected as the candidate node. If this node is eligible for
vaccination, it is removed from the graph and the combined
score is recalculated based on the updated graph; if it has
already been infected, it is added into set I and the node
with the highest combined score based on the updated I is
chosen as candidate. This process is repeated until k nodes
are selected for vaccination. Comparing with the adaptive
algorithm in [20], our enhanced algorithm exploits the infor-
mation of some known infected nodes during vaccination and
combines both a node’s infecting score and infected score
together to evaluate a node’s influence in disease propaga-
tion. The pseudo code of the enhanced algorithm is shown
in Algorithm 1.

V. PERFORMANCE EVALUATIONS
In this section, we evaluate the performance of our centrality
based algorithm and enhanced algorithm.

A. SIMULATION SETUP
The performance of our algorithms is evaluated based on the
trace collected in the high school. The trace is divided into
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Algorithm 1: Enhanced Targeted Vaccination
Input : G = (V ,E), k
Output: Set of vaccinated nodes K
/* Set U contains the nodes that are
not eligible for vaccination. */

1 K = ∅, I = ∅, U = ∅;
2 u = argmax

v∈V
ζ (v, I );

3 while |K | < k do
4 if u is qualified for vaccination then
5 K = K ∪ {u};
6 remove u from G to get G′;
7 G = G′;
8 u = argmax

v∈V\U
ζ (v, I );

9 else
10 if u is infected then
11 I = I ∪ {u};
12 end
13 U = U ∪ {u};
14 u = argmax

v∈V\U
ζ (v, I );

15 end
16 end

two halves based on the time when it was collected.We firstly
use half of the trace as the training data to build the disease
propagation graph, and use the other half for performance
evaluations. Then we exchange the two halves and run the
training and testing again for cross validation.

At the very beginning, we randomly choose a small group
of nodes (1%) as the seed set of infection sources to initiate
the infection process. The trace is executed based on time
units. At each time unit (20 seconds), the SIR model [35] is
used to simulate the infection process. In SIR, each node has
three states: S (Susceptible), I (Infected) and R (Recovered).
For a node which is initially at state S, it will be infected
with probability β (called transmission probability) indoor
and η0β (η0 is set to 0.5) outdoor by contacting with an
infected node. Once the node is infected, it will move into
state I. An infected node may recover with a probability δ
(δ is set to 0.0003) at each time unit and goes back to state R.
Nodes in state R will not get infected again since they have
got immunization already.

Although some vaccination strategies have been proposed
for certain diseases, e.g., ring vaccination for smallpox and
targeted mop-up campaigns for polio, these strategies are
based on the knowledge of infected nodes, which is not
known in many scenarios. Therefore, instead of compar-
ing with these strategies, we compare our centrality based
algorithms and enhanced algorithm (Enhanced) with the
community based scheme (AFOCS) [11] and the cluster
based scheme (Cluster) [8]. Degree centrality, betweenness
centrality and connectivity centrality are used to implement
centrality based algorithm (denoted as Degree, Betweenness

and Connectivity respectively). Closeness centrality is not
used here since it does not work when the graph is discon-
nected.
Vaccinating Threshold α is used to control when the tar-

geted vaccination starts. It is measured as the percentage of
infected nodes in the network. This parameter represents the
time delay since the infectious disease starts propagating till
a vaccine is generated. Once the percentage of infected nodes
reaches the threshold α, we start to distribute vaccines to the
selected nodes.

FIGURE 7. Effect of vaccinating threshold α (β = 0.003). (a) α = 2.5%.
(b) α = 10%.

B. COMPARISONS OF INFECTION RATES
Figure 7 shows how the infection rate changes when the
percentage of vaccinated nodes increases with α = 2.5%
and 10% respectively. As shown in the figure, no matter
which scheme is used, the number of infected nodes will
decrease with more vaccines distributed. Enhanced achieves
better performance than other schemes under different α.
When α = 2.5% and 20% of nodes are vaccinated, the
infection rate of Enhanced is about 45%, but the infection
rate of other schemes are higher than 50%. For the centrality
based algorithms, under different α, Degree performs better
than Betweenness since disease is easier to transmit from
the infected nodes to their neighbors than to those far away.
Connectivity performs better than Betweenness and Degree,
verifying that connectivity centrality is better to measure
node’s importance for disease propagation.

Comparing Figure 7a with Figure 7b, we can see that
AFOCS and Cluster perform worse than Connectivity when
α = 2.5%, but better when α = 10%. The reason is
as follows. If more nodes are infected before vaccination
(i.e., α is larger), these infected nodes are more likely to be
clustered together around the infected nodes. Since AFOCS
and Cluster contain the disease by isolating infected com-
munities or clusters, they can perform better when α is
larger. However, their infection rate is still much higher than
Enhanced.

C. INFECTION RATE VS. TIME
Figure 8 shows how the infection rate changes over time
with α = 2.5% and 10%, respectively. The spread of the
disease can be divided into three phases. At the beginning, the
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FIGURE 8. Infection rate vs. time (percentage of vaccinated nodes = 40%,
β = 0.003). (a) α = 2.5%. (b) α = 10%.

FIGURE 9. Effect of the disease transmission probability β (α = 2.5%).
(a) β = 0.002. (b) β = 0.004.

disease is slowly spread from the infection sources. Then, it
propagates widely and the infection rate increases quickly.
Finally, no more nodes will get infected and the infection
rate keeps stable. Comparing with other schemes, Enhanced
performs better as the infection rate increases more slowly
and is bounded under a much lower level.

D. EFFECT OF TRANSMISSION PROBABILITY
Figure 9 shows how the disease transmission probability β
affects the spread of disease. As can be seen, Enhanced
outperforms other schemes under different β. For centrality
based algorithms, Connectivity achieves better performance
than Degree and Betweenness. Comparing centrality based
algorithms with Cluster, both Connectivity and Degree per-
form better than Cluster when β = 0.002, but Cluster
performs better than Connectivity and Degree when
β = 0.004. The reason is as follows. Generally speaking,
if the infected nodes are uniformly distributed, centrality
based algorithms will perform better; if the infected nodes
are clustered together, Cluster will perform better. With a
lower β, nodes will be infected more randomly, and then their
distribution looks more uniform. With a higher β, nodes with
close connections will be infected more easily and thus the
infected nodes are more likely to be clustered together.

E. EFFECT OF NODE WILLINGNESS
Because of the concerns on the potential side effects, not all
nodes are willing to be vaccinated even if they are highly
suggested. Thus, we assume each node is willing to be
vaccinated with the same probability (called willingness).

FIGURE 10. Effect of node willingness (percentage of vaccinated
nodes = 20%, β = 0.003). (a) α = 2.5%. (b) α = 10%.

Figure 10 shows how node willingness affects the disease
spread when different schemes are used under different α.
Comparing to other schemes, Enhanced is much more robust
when node willingness varies. This is because the vaccinated
nodes are adaptively chosen at each round in Enhanced. Even
if a node is not willing to be vaccinated, its influence on
the disease propagation is considered when selecting the next
vaccinated nodes. However, in other schemes, the vaccinated
nodes are calculated beforehand and node willingness is not
considered. For AFOCS and Cluster, if certain bridge nodes
(the nodes which connect different communities or clusters)
are unwilling to be vaccinated, the goal for isolating the
infected communities or clusters may fail.

F. PERFORMANCE IN SCALE-FREE NETWORKS
In some social networks, the number of nodes’ neighbors
follows power law distribution and the networks are scale
free. In order to evaluate the performance of our algorithms
in these networks, we generate a synthetic scale-free graph
using Barabasi-Albert model [36]. Then we generate contacts
in 1400 time steps based on the topology of this graph.
At each time step, a node generates contacts with each neigh-
bor with probability p, where p is set to 0.3 in our simulation.
With the synthetic contact trace, we can initiate the infection
process and compare our enhanced algorithmwith other algo-
rithms. As shown in Figure 11, even in the scale-free network,
Enhanced achieves better performance than other schemes.
Comparing with AFOCS and cluster, centrality based algo-
rithms perform better because they vaccinate the nodes with

FIGURE 11. Infection rate vs. time in scale-free network (percentage of
vaccinated nodes = 40%, β = 0.003). (a) α = 2.5%. (b) α = 10%.
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more neighbors first and these nodes are more likely to be
infected in scale-free networks.

VI. CONCLUSION
In this paper, we deployed a wireless sensor system in a high
school to collect contacts happened between two students
when they are within the disease transmission distance. Based
on the collected traces, we construct a disease propagation
graph to model the disease propagation, and propose a new
metric called connectivity centrality to find the important
nodes in the constructed graph for disease containment.
Different from centrality measures like degree, betweenness
or closeness centrality, connectivity centrality considers both
a node’s local and global effect to measure its importance
in disease propagation. Centrality based algorithms are pre-
sented and further enhanced by exploiting the information
of the known infected nodes which can be detected during
vaccination. We evaluate our algorithms and compare them
with other schemes based on the real and synthetic traces.
Simulation results show that our algorithms can contain
infectious diseases effectively and outperform other schemes
under various conditions.

APPENDIX
Proof of Theorem 1:

In Equation 3, since

X1 =


ψ(up1 )
...

ψ(up|I | )

 =
 1
...

1

,
if we replace w′(uqi , uqj ) with aij for simplicity, Equation 3
can be rewritten as {

A′1X1 = b′1 (4)

A′2X2 = b′2 (5)

where A′1 = I|I |×|I |, b′1 = b1,

A′2 =



1 −a21 −a31 · · · −a|V\I |1
−a12 1 −a32 · · · −a|V\I |2
−a13 −a23 1 · · · −a|V\I |3
...

...
...

...
...

−a1|V\I | −a2|V\I | −a3|V\I | · · · 1


and

b2 =


∑|I |

i=1 w
′(upi , uq1 )
...∑|I |

i=1 w
′(upi , uq|V\I | )

.
Thus, to prove that the system of linear equations given

in Equation 3 has a single unique solution, we only need
to prove that Equation 5 has a single unique solution. Let
z = [z1, z2, . . . , z|V\I |]> denote a non-zero column vector

of |V \ I | real numbers and let z> denote the transpose of z,
then we have

z>A′2z = z1(z1 − a21z2 − a31z3 − · · · − a|V\I |1z|V\I |)

+ z2(−a12z1 + z2 − a32z3 − · · · − a|V\I |2z|V\I |)

+ . . .

+ z|V\I |(−a1|V\I |z1 − a2|V\I |z3 − · · · + z|V\I |)

Considering that aij = aji, the above equation can be rewrit-
ten as

z>A′2z =
|V\I |∑
i=1

zi2 −
|V\I |∑
i=1

|V\I |∑
j=1,j>i

(2aijzizj) (6)

Since (√aijzi −
√aijzj)2 ≥ 0, i.e., 2aijzizj ≤ aijzi2 + aijzj2,

we have
|V\I |∑
i=1

|V\I |∑
j=1,j>i

(2aijzizj) ≤
|V\I |∑
i=1

|V\I |∑
j=1,j>i

(aijzi2 + aijzj2)

=

|V\I |∑
i=1

[(
|V\I |∑
j=1,j 6=i

aij)z2i ]

and equality holds only when z1 = z2 = · · · = z|V\I | 6= 0.

Since aij is used to denote w′(uqi , uqj ),
∑|V\I |

j=1,j 6=i aij ≤ 1

and equality cannot hold for every i. Thus, for any non-zero
column vector z, we have

z>A′2z =
|V\I |∑
i=1

zi2 −
|V\I |∑
i=1

|V\I |∑
j=1,j>i

(2aijzizj)

≥

|V\I |∑
i=1

[(1−
|V\I |∑
j=1,j 6=i

aij)zi2]

> 0

Therefore, symmetric matrix A′2 is positive definite and X2
in Equation 5 can be uniquely solved. Since X1 in Equation 4
can also be uniquely solved, we prove that the system of linear
equations given in Equation 3 has a single unique solution.
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