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Multiple Vital-Sign-Based Infection Screening
Outperforms Thermography Independent

of the Classification Algorithm
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Abstract—Goal: Thermography-based infection screening at in-
ternational airports plays an important role in the prevention of
pandemics. However, studies show that thermography suffers from
low sensitivity and specificity. To achieve higher screening accu-
racy, we developed a screening system based on the acquisition of
multiple vital-signs. This multimodal approach increases accuracy,
but introduces the need for sophisticated classification methods.
This paper presents a comprehensive analysis of the multimodal
approach to infection screening from a machine learning perspec-
tive. Methods: We conduct an empirical study applying six classifi-
cation algorithms to measurements from the multimodal screening
system and comparing their performance among each other, as well
as to the performance of thermography. In addition, we provide
an information theoretic view on the use of multiple vital-signs for
infection screening. The classification methods are tested using the
same clinical data, which has been analyzed in our previous study
using linear discriminant analysis. A total of 92 subjects were re-
cruited for influenza screening using the system, consisting of 57
inpatients diagnosed to have seasonal influenza and 35 healthy con-
trols. Results: Our study revealed that the multimodal screening
system reduces the misclassification rate by more than 50% com-
pared to thermography. At the same time, none of the multimodal
classifiers needed more than 6 ms for classification, which is neg-
ligible for practical purposes. Conclusion: Among the tested clas-
sifiers k-nearest neighbors, support vector machine and quadratic
discriminant analysis achieved the highest cross-validated sensi-
tivity score of 93%. Significance: Multimodal infection screening
might be able to address the shortcomings of thermography.

Index Terms—Classification, infection screening, machine learn-
ing, supervised learning.

I. INTRODUCTION

IN recent years, the outbreak of severe acute respiratory syn-
drome and other highly contagious diseases has highlighted
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the importance of rapid mass screening at international air-
port quarantines and places of mass gathering, like schools and
hospitals, as a part of strategies for the prevention of pandemics.
Currently, thermography is used for this purpose. However, stud-
ies have shown that this approach suffers from low sensitivity
and specificity [1]. In addition, screening based on skin tem-
perature alone can be insufficient for the detection of infected
individuals, since it is affected by many factors, e.g., medication
with antipyretics [2].

To address these problems, a novel multimodal infection
screening system has been developed, which is based on the
contactless acquisition of heart rate, respiration rate and fa-
cial temperature [3]–[5]. The inclusion of additional vital-signs
leads to increased screening accuracy [3], but also introduces the
need for more sophisticated classification methods. In contrast
to traditional screening systems based solely on thermography,
classification using simple thresholding is not applicable any-
more.

The multimodal screening system has been tested with sev-
eral classification algorithms in different application scenarios,
including linear discriminant analysis (LDA) [6] and an unsu-
pervised algorithm based on self-organizing maps with k-means
clustering [3]. Classification via support vector machine has
been tested on an improved version of the screening system
designed for use in paediatric wards [7] and logistic regression-
based classification has been tested in a study carried out in a
hospital environment [8]. However, a comprehensive analysis of
the information processing aspect in the context of multimodal
infection screening has yet to be presented. To date, all studies
evaluating the multimodal system have focused on the perfor-
mance of different classification methods applied to different
datasets and evaluated without cross validation.

While these studies contributed to a better understanding of
the multivital-signs approach to infection screening, an impor-
tant question remains open: How much performance does the
multimodal system gain compared to the standard method of
thermography?

In this paper, we analyze the multimodal infection screening
system from a machine learning perspective. We compare the
performance of six different classification algorithms on the
task of classifying measurements of the new screening device
into the two classes healthy and potentially infected. Based on
the test results, we discuss the suitability of each algorithm for
application in the multimodal screening device.

For the first time, we also perform a direct comparison be-
tween the multimodal screening system and thermography. The
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Fig. 1. Schematic diagram of the multimodal infection screening system. The system acquires heart rate, respiration rate, and facial temperature readings and
feeds them into a classifier, which classifies the measurement as potentially infected or healthy.

results indicate that the multimodal system reduces the misclas-
sification rate by more than 50%. To gain additional insight, we
present an information theoretic view on the problem by com-
paring the mutual information scores between the class labels
and the different vital-sign readings. This analysis provides a
possible explanation for the difference in performance between
the multimodal screening system and thermography.

It is important to note that the idea behind any mass infec-
tion screening approach, including our system, is to screen for
symptoms of a potential infection and not to provide a medical
diagnosis. On the one hand, this means that although our sys-
tem is tested on patients diagnosed with seasonal influenza, it
will also pick up other diseases which cause similar symptoms,
i.e., elevated heat rate, respiration rate, and body temperature.
On the other hand, the system will not distinguish between dif-
ferent diseases.

The remainder of this paper is organized as follows: In Sec-
tion II, we provide an overview on the hardware of the mul-
timodal infection screening system, as well as on the dataset
used. In addition, we provide a short summary of each classi-
fication algorithm included in our test. The performance of the
multimodal screening system and the thermography reference
are reported in Section III. Section IV presents an information
theoretic analysis of the multimodal screening system. In Sec-
tion V, we discuss the results of our analysis, as well as the
limitations of this study. Finally, we close this paper with the
conclusion in Section VI.

II. METHODS AND MATERIAL

A. Data Acquisition

The technical details of the infection screening system are
provided in our previous papers [9], [10]. The system automat-
ically detects infected individuals within 15 s via a classifica-
tion method using measured multiple vital-signs (see Fig. 1).
Heart and respiration rates are determined using a noncontact
laser Doppler blood-flow meter and a 10 GHz respiration radar,

respectively. The facial temperature is measured via infrared
thermography. As shown in Fig. 1, the heart and respiration
rates and the facial temperature are measured simultaneously,
while the subject holds his/her left palm over the system. The
output signals of the laser Doppler blood-flow meter and the res-
piration radar are analyzed in real time. The heart and respiration
rates are calculated by fast Fourier transform.

B. Subjects

We tested the classification methods using the same clini-
cal data, which has been analyzed in our previous study using
LDA [6]. A total of 92 subjects were recruited, consisting of
57 inpatients (49 male and 8 female, 19–40 years) diagnosed
to have seasonal influenza using QuickVue Rapid SP Influ kits
(Quidel Corporation, USA). These inpatients were treated with
antiviral medications (i.e., oseltamivir or zanamivir), some of
the inpatients’ body temperature dropped to normal. The 35 nor-
mal control subjects (30 male and 5 female, 20–35 years) were
students at the Institute of Medical Radiology Technologists at
the Japan Self-Defense Force Central Hospital. These normal
control subjects had no symptoms of fever, headache, or sore
throat.

The study was reviewed and approved by the Ethics Commit-
tee of the Japan Self-Defense Force Central Hospital.

C. Classification Algorithms

The algorithms considered in this study are: LDA and
quadratic discriminant analysis (QDA), support vector machine
(SVM), k-nearest neighbors (kNN), logistic regression (LR),
and naive Bayes (NB) classifier.

In this section, we provide short introductions for each of
these methods and comment on their strength and weaknesses in
the context of the screening application. For all tested methods,
we used the implementation provided by MATLAB’s statistics
toolbox.

In the following, we denote measurements with xn , which is
a three-dimensional (3-D) vector containing the values for heart
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rate, respiration rate, and facial temperature. tn denotes ground
truth class labels, which can take on two values: −1 for healthy
and +1 for infected. The subject index n ranges from 1 to N ,
where N = 92 denotes the number of all subjects.

The symbol N (x|μ,Σ) is used to denote that the random
variable x is distributed according to a multivariate Gaussian
distribution with mean μ and covariance matrix Σ.

1) Discriminant Analysis: LDA is used in the original study
[6], albeit without performing cross validation. Therefore, we
included LDA in this paper and repeat the analysis with cross
validation. In addition, we also investigate if QDA leads to better
performance.

LDA and QDA assume that the class conditional distribution
of the measurements is Gaussian:

p(xn |tn = i) = N
(

xn |μi ,
∑

i

)
(1)

with i ∈ {−1, 1}. While LDA assumes both covariance matri-
ces to be equal (Σ1 = Σ−1), the covariances are allowed to be
different in QDA. Consequently, LDA’s decision boundary is
a hyperplane, while QDA has a quadratic decision boundary
[11]. Mean and covariances are learned from training data with
known labels, e.g., in maximum likelihood learning, the μi and
Σi are simply set to the empirical means and covariances of the
training data of the respective classes [11].

Once μi and Σi have been estimated, classifying a new mea-
surement x is based on the posterior class probability, which
can be obtained via Bayes rule

p(t = 1|x) =
p(x|t = 1)p(t = 1)∑

i=−1,1 p(x|t = i)p(t = i)

= 1 − p(t = −1|x). (2)

Here, p(t = i) denotes the prior probability of class i, which can
either be estimated from the fraction of training data with label
i, or set by hand, if, e.g., the class proportions of the training
data does not reflect the prevalence.

2) Support Vector Machine: The SVM falls into the category
of sparse kernel methods. Sparse means that only a small portion
of the training data contributes to the classification process,
while being a kernel method means that information from the
measurement enters only through a kernel function k(x,x′).
The kernel function is a function that depends on two input
variables and returns a scalar output.

More precisely, a new observation x is classified by evaluat-
ing the function

y(x) =
N∑

n=1

antnk(x,xn ) + b (3)

and making a decision based on the sign of y. The variables
an and b are parameters of the SVM, which are learned from
the training data xn by solving a quadratic programming (QP)
problem. The standard algorithm for solving the QP problem
arising in SVM is called sequential minimal optimization [12].

In the typical case, most of the an found after solving the QP
problem are equal to zero. This means that the corresponding

training sample xn does not contribute to the classification pro-
cess, giving rise to the sparseness of SVM. A detailed description
of SVM can be found in standard textbooks like [11].

The SVM has two hyperparameters, which have to be fixed
before optimization: the kernel width γ, which determines prop-
erties of the kernel function k, and the so-called box constraint
C, which controls the tradeoff between minimizing training er-
rors and limiting model complexity. We choose the values of
the C and γ by minimizing the leave-one-out (LOO) error via
grid search. This approach, however, is susceptible to overfitting
with respect to C and γ and we cannot cite the minimum LOO
error as the test performance of SVM.

Therefore, we evaluate the performance of SVM using a
nested cross-validation scheme: Using N − 1 samples, we cal-
culate the LOO error for each (C, γ)-pair on a 2-D grid and
chose the pair with the lowest LOO error. Then, we train the
SVM with the chosen parameters on all N − 1 samples and test
on the held out sample. This procedure is repeated N times,
each time with a different sample being held out.

3) K-Nearest Neighbors: kNN is considered to be a nonpara-
metric method and despite its simplicity, it often achieves good
performance in practice [11], [13]. One advantage is that kNN
does not require a training phase. Instead, a new measurement x
is assigned the label that holds the majority among the k train-
ing data samples which are closest to x. However, this means
that for classification, the entire training set has to be stored and
searched, which can be slow for large and high-dimensional
training sets.

Distance between samples is often measured via Euclidean
distance, but more sophisticated measures like Mahalanobis dis-
tances can also be used. In addition, preprocessing steps like,
e.g., neighborhood components analysis (NCA) [14], which
learns a custom Mahalanobis distance from the training data,
can be applied to improve classification results. However, meth-
ods like NCA require a training phase.

Similar to SVM, there is a hyperparameter, the number of
neighbors k, which has to be optimized with cross validation. We
use the same kind of nested cross-validation procedure that was
employed in the SVM case to optimize k and avoid overfitting.

4) Logistic Regression: LR is a discriminative approach,
where the logistic sigmoid function σ(a) = (1 + exp(−a))−1

is applied to a linear function of the measurement. The output
is interpreted as posterior class probability

p(t = 1|x) = σ(wT x)

= 1 − p(t = −1|x). (4)

The vector w contains parameters, which can be learned from
the training data using standard optimization methods [11].

The advantage of LR is that the size of w, which corresponds
to the number of parameters of LR, grows linearly with the in-
put dimensionality. In contrast, the number of parameters in the
LDA and QDA methods grows quadratic with the input dimen-
sionality [11]. This leads to increased training and classification
speed for LR.



1028 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 63, NO. 5, MAY 2016

TABLE I
CLASSIFICATION RESULTS AND AVERAGE RUNNING TIME

Method Error rate Sensitivity Specificity Average training time Average classification time Area under curve
[%] [%] [%] [ms] [ms] [1]

QDA 9.8 93 85.7 34.9 3.9 0.95
QDA* 10.9 89.5 88.6 – – –
LDA 10.9 91.2 85.7 30.7 3.4 0.95
LDA* 13 86 88.6 – – –
SVM 9.8 93 85.7 15.4 0.7 0.9
kNN 10.9 93 82.9 – 6 0.93
LR 12 89.5 85.7 24.5 1.3 0.95
NB 14.1 89.5 80 7.3 1.4 0.95

thermography 0.79
thr1 (32.6 ◦C) 25 87.7 54.3 – – –
thr2 (33.1 ◦C) 29.4 61.4 85.7 – – –

5) NB Classification: In NB class, conditional distributions
for the inputs are assumed to be independent:

p(x|t) = p(x[1]|t)p(x[2]|t)p(x[3]|t). (5)

When learning the conditional distributions from data, the 1-D
conditional distributions p(x[j]|t) can be learned for each di-
mension separately. This greatly simplifies the training process.

Applying Bayes law yields the posterior distribution [11]

p(t = i|x) =
1
Z

p(x[1]|t)p(x[2]|t)p(x[3]|t)p(t = i) (6)

where i ∈ {−1, 1}, p(t = i) is the prior class probability and
the unknown constant Z can be obtained via normalization.

Although the independence assumption is rarely satisfied,
NB performs surprisingly well in practice and is often applied
to high-dimensional datasets with many features, where it holds
an advantage due to the simplified training process. However,
since our data has only three dimensions, we do not expect
NB to outperform the other methods. We have included NB in
this study mainly as a reference to compare the other methods
against.

D. Reference Thermography

Since the multivital-signs screening system contains tempera-
ture as one of its modalities, it is possible to obtain thermography
data by simply discarding the other modalities.

Thermography-based classification relies on simple thresh-
olding instead of sophisticated classification algorithms. A tem-
perature above the threshold is classified as infected and a
temperature below the threshold is classified as healthy. Thus,
the performance of thermography will depend on the choice of
the temperature threshold.

In order to illustrate the performance of thermography, we cal-
culated the receiver operating characteristic (ROC) curve [15],
which plots the true positive rate against the false positive rate
for a range of different thresholds. In addition, we calculated
the area under the ROC curve (AUC), which acts as a summary
statistic for the performance of the classifier [16].

As a reference, we also provided the ROC curve for QDA and
kNN classification, as well as AUC values for all classification
methods tested with the multimodal infection screening system.

This approach favors the thermography only system, as cross
validation is only performed for the multimodal classification.
Also, it should be noted that for multimodal classifiers, the
decision threshold is only one of several parameters. This means
that for multimodal classifier, especially those with nonlinear
decision surface like SVM or kNN, the ROC accounts for only
one part of the variability of the system.

III. CLASSIFICATION PERFORMANCE

Table I provides an overview of the classification results.
The upper half of the table presents the performance mea-
sures of the multimodal classifiers, which were obtained us-
ing LOO cross validation or, in the case of SVM and kNN,
nested cross validation. The results marked with LDA* and
QDA* were obtained by choosing uniform prior class probabili-
ties: p(t = 1) = p(t = −1) = 0.5, instead of learning the prior
from the training data. This is done to test the robustness against
misspecification of prior probabilities.

Average training time denotes the time needed on average
to train the classifiers on N − 1 = 91 samples during the LOO
scheme. Average classification time denotes the time needed on
average to classify the one held out sample. Computation was
performed on a 3 GHz Intel Xeon workstation. Note that there
is no average training time for kNN, since kNN does not require
a training phase.

The average time needed for hyperparameter optimization
was 32.5 s for kNN and 113 s for SVM. However, these times
strongly depend on the size of the grid searched during opti-
mization and are not meaningful by themselves.

The lower half of Table I, consisting of the last three lines, re-
ports the performance of the thermography reference for two ex-
emplary temperature thresholds. thr1 was selected such that the
thermography-based classification would achieve a sensitivity
comparable to that of the multimodal classifiers. However, this
will lead to a significantly lower specificity for thermography-
based classification. On the other hand, thr2 was selected such
that the specificity score of the thermography-based classifica-
tion would match that of the multimodal classifiers. Now, we
observe that the sensitivity of the thermography-based classifi-
cation drops below the level of the multimodal classifiers. Note
that the temperature thresholds in Table I seem very low because
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Fig. 2. ROC plots for the thermography only classification, as well as QDA
and kNN. The two exemplary facial temperature thresholds listed in Table I are
indicated by thr1 and thr2 .

TABLE II
MEAN VALUE OF SELECTED PARAMETERS OF THE MULTIMODAL CLASSIFIERS

QDA LDA SVM

μH, c = 66.2 μH, c = 66.2 C = 0.064
σHH, c = 9.8 σHH = 10.9 γ = 5.78
μH, i = 90.2 μH, i = 90.2
σHH, i = 11.5

NB kNN LR

μH, c = 66.2 k = 4.5 w 0 = 53.15
σH, c = 9.8 w 1 = −0.22
μH, i = 90.2 w 2 = −0.5
σH, i = 11.5 w 3 = −0.86

our device is measuring the facial temperature, which is a few
degrees lower than the body core temperature [9].

The last column in Table I reports AUC values for all clas-
sification methods, where the AUC values for the multimodal
classifiers were obtained with LOO cross validation.

In addition, Fig. 2 shows the ROC curves for the thermogra-
phy only classification, as well as QDA and kNN. QDA and kNN
were selected as representatives, since plotting ROC curves for
all multimodal classifiers would have cluttered the image. Ad-
ditionally, Fig. 2 also shows the position of thr1 and thr2 within
the thermography ROC curve. The lowest error rate achieved by
thermography, using any of the thresholds, is 25%.

Since the performance estimates for the multimodal classi-
fiers were obtained using cross validation, there is no unique set
of parameters. Instead, we report the mean values for selected
parameters for each of the classifiers in Table II. Note, however,
that this serves only to provide the reader with a rough idea
about the range of the parameters.

In order to supplement the information theoretic analysis
presented in Section IV, we have conducted an additional ex-
periment to assess the relative importance of the modalities.
We selected one vital-sign, which was then removed from the
data. The remaining bimodal input vectors were classified using
QDA. This procedure was repeated for each of the vital-sings

TABLE III
PERFORMANCE OF BIMODAL CLASSIFICATION

QDA HR + RR HR + FT RR + FT

Error rate [%] 9.8 10.9 22.8
Sensitivity [%] 93 91.2 79
Specificity [%] 85.7 85.7 74.3

and the results are summarized in Table III. The increase in er-
ror rate provides an indicator for the importance of the left out
modality.

IV. INFORMATION THEORETIC ANALYSIS

A. Mutual Information

In information theory, the concept of entropy is used to mea-
sure the information content of a random variable [17]. For a
(discrete) random variable x with distribution p(x), it is defined
as

H(x) = −
∑

x

p(x) log p(x) (7)

where
∑

x denotes summation over all possible values of x.
Closely related is the concept of mutual information, which

measures the information content that one random variable x
conveys about another random variable y and vice versa. If
p(x, y) is the joint distribution of the two variables and p(x) and
p(y) denote the marginal distribution of x and y, respectively,
the mutual information can be expressed as

I(x, y) = −
∑

x

∑
y

p(x, y) log
p(x)p(y)
p(x, y)

. (8)

Furthermore, we have 0 ≤ I(x, y) ≤ min
(
H(x),H(y)

)
, with

I(x, y) = 0 if and only if x and y are independent [11], [17].
The unit of entropy and mutual information is “bit” when

calculated using the logarithm to the base of two and “nat”
when calculated using the natural logarithm. Both units differ
by a factor of ln 2 .

When performing a classification task, one would like to
use inputs which convey as much information about the class
labels as possible. Therefore, we used the data from our study
to estimate the mutual information between class labels and the
vital-signs acquired by the screening system.

The entropy of the class label estimated from our dataset is
0.96 bit, which is an upper bound on the mutual information.
The entropy is lower than 1 because the number of patients and
controls are not exactly balanced.

The marginal and joint probability distributions used to calcu-
late the mutual information score are estimated via histograms,
where the numerical values of each modality are quantized into
a certain number of steps, also called bins. This method has the
advantage of being simple and independent of any assumptions
about the parametric form of the data’s distribution [11].

On the other hand, the number of bins will affect the esti-
mated distribution and, thus, also the mutual information score.
The problem is that a very small number of bins will yield
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TABLE IV
MUTUAL INFORMATION BETWEEN CLASS LABELS AND VITAL-SIGNS

# bins heart rate resp. rate facial temp. all modalities
[bit] [bit] [bit] [bit]

24 0.58 0.34 0.39 –
32 0.63 0.32 0.44 –
40 0.67 0.36 0.45 –
8 (23 ) 0.3 0.11 0.09 0.45
27 (33 ) 0.47 0.13 0.14 0.61
64 (43 ) 0.44 0.14 0.19 0.7

histograms which are too coarse to reflect the details of the dis-
tribution; while for very large number of bins, the number of
samples is not enough to fill the bins, leading to noisy estimates
of the distribution [11]. When using histograms, the aim should
be to choose the number of quantization steps from an inter-
mediate range [11], i.e., high enough to retain the details of the
underlying distribution, but not much higher than the number of
samples.

Taking the aforementioned points into account, we have cal-
culated the mutual information score for several different num-
bers of bins chosen from an intermediate range. This allows us
to check whether the conclusions drawn in Section V depend on
the quantization.

Table IV contains two sets of mutual information estimates.
In the first three rows, we report the mutual information between
the class labels and each of the modalities, for three different
numbers of bins. The lower half of Table IV contains estimates of
the mutual information between the class label and the complete
input vector containing all three modalities.

For the latter estimates, the input space has been quantized
into a n×n×n grid, where n = 2, 3, 4. As a reference, we have
also provided the mutual information between the labels and
the single modality using the n-step quantization. However, it
should be noted that both the 8-bin and 64-bin quantization are
not well suited for our dataset, since 8 bins corresponds to a
very coarse binary quantization of each input dimension and 64
bins exceeds the number of both controls (35) and patients (57)
in our dataset.

B. Mutual Information Versus Statistical Testing

As an alternative to the mutual information score, one could
use statistical testing to assess if the vital-signs distribution of
the patient group differs significantly from that of the healthy
controls. For example, Welch’s t-test can be used to test if the
mean heart rate of patients is significantly higher than the mean
heart rate of the control subjects, assuming both distributions
are Gaussian. The output of a t-test is a so called p-value. If the
p-value is smaller than a preselected threshold (typically 0.05),
then the null hypothesis that the mean of both groups are equal
can be rejected [18].

The t-test is a well-established method for testing for statis-
tical significance. However, in our case, the aim is to assess
which of the vital-signs is most suited for the classification task
at hand. A low p-value signifies strong statistical evidence that

the mean vital-signs readings of both groups are unequal, but
it does not tell us directly how big the difference is, or if one
modality is better suited for classification than the other.

For this reason, we prefer to compare the modalities on the
basis of the mutual information scores, which offer a more
intuitive interpretation and a direct answer to our question.

V. DISCUSSION

A. Multimodal Screening Versus Thermography

The results in Table I show that classification based solely on
thermography suffers more heavily from the tradeoff between
sensitivity and specificity than any of the multimodal classifiers.
When adjusting the threshold to match the sensitivity scores
of the multimodal classifiers (thr1), the specificity score drops
below the level of the multimodal classifiers. Conversely, when
adjusting the threshold to match specificity scores (thr2), the
sensitivity score drops.

The lowest error rate for thermography achieved with any
threshold is 25%. However, unlike in the cases of the multimodal
classifiers, the error rates reported for thermography are not
cross validated. All multimodal classifiers, with the exception
of NB, achieve cross-validated error rates, which are more than
50% lower than the minimum error rate of thermography. This
shows that acquiring additional vital-signs beside temperature
can significantly improve screening performance.

Training of the classifiers can be performed in advance and
the time required for the classification process itself is negli-
gible. Therefore, the only disadvantage of the multimodal ap-
proach lies in the increased cost and complexity of the hardware,
compared to thermography only systems. However, with the de-
creasing cost of electronic components, this aspect will become
less and less relevant. Also, the cost of the screening system
itself has to be weighed against the cost saved due to the in-
creased level of accuracy (e.g., less follow up examinations by
quarantine personnel, less undetected infections, etc.).

B. Comparing the Classification Algorithms

Based on the classification speed, SVM is the fastest algo-
rithm, due to being a sparse method, i.e., using only part of the
training data. It also achieved the best performance. However, it
has two free hyperparameters, which require a computationally
expensive optimization procedure. More problematic than the
complexity of hyperparameter optimization, which can be done
offline, is the potential for overfitting associated with optimiza-
tion. Thus, SVM is an appealing method, which requires careful
training to avoid overfitting [11].

QDA achieved good test results, but its performance depends
on the prior probability, which is difficult to estimate. In reality,
prior probabilities will be application dependent, e.g., at airport
quarantines or in schools, the number of infected individuals is
low and a reasonable choice for the prior would be the prevalence
rate of infectious diseases in the general public. However, if the
scanner is used in a hospital, a uniform prior might be more
suitable.
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Although LDA performed only slightly worse than QDA, the
results show that LDA’s performance is more sensitive to the
choice of prior probabilities. Considering the increased accuracy
of QDA and the fact that QDA is only slightly slower than LDA,
QDA should be favored over LDA.

kNN performed surprisingly well, despite its simplicity. In
fact, kNN achieved a sensitivity score, which is equal to the
sensitivity of SVM and QDA. Applying more sophisticated pre-
processing might further improve the performance. However,
it is the slowest classifier, which could be problematic when
making the transition to embedded hardware, combined with a
much larger training dataset.

Since training and hyperparameter optimization can be per-
formed in advance on workstations, the most important time to
consider is the average classification time. Although, in practice,
the classifier will be running on a slow embedded system, the
classification times in our experiments were several magnitudes
below the time needed for data acquisition, which is in the range
of 10 s [9], [10]. Thus, the classification time can be considered
as negligible for practical purposes. The only exception to this
could be kNN because kNN’s classification time grows linearly
with the size of the training set, which might be significant larger
in the actual application than in our study.

With three modalities per observation, the dimension of our
dataset is low for typical machine learning applications. This
also explains why simpler methods like NB and LR have no
decisive advantage in speed over more complex methods like,
e.g., LDA, which outperform them.

C. Mutual Information and Bimodal Classification

The result in Table IV indicates that the exact value of the
mutual information depends on the number of bins. Neverthe-
less, we can observe a clear ordering of the modalities. Although
body temperature is generally considered to be a good predictor
of fever, the values in Table IV show that, for our dataset, the
by far most informative single modality is heart rate, indepen-
dent of the number of quantization steps. Facial temperature is
only the second most informative modality, closely followed by
respiration rate.

Comparing the values in the second half of Table IV re-
veal that the mutual information between label and temperature
is smaller than the average mutual information per dimension
when using all three modalities (e.g., 0.14 bit versus 0.2 bit
for 27 bins). This observation also holds for all quantizations,
and it explains the significant advantage in performance of the
multivital-signs system compared to thermography.

A possible reason for this observation could be the fact that
the patients in our study received treatment with antiviral medi-
cation. Thus, the use of fever reducing medication may lead to a
reduction of the discriminative power of thermography. This is
a scenario one might also encounter in mass screening applica-
tions and it has already been recognized as a potential shortcom-
ing of thermography-based infection screening [2]. Multimodal
screening might be a way to address this problem.

These findings are also supported by the results of the bimodal
classification experiment given in Table III, which show that

the exclusion of heart rate doubles the error rate. On the other
hand, the exclusion of respiration rate or facial temperature did
not affect the classification performance very much. Especially,
the information conveyed by the respiration rate seems to be
redundant.

A possible explanation is the difficulty of measuring respira-
tion rate when the observation periods are very short. Given that
the observation period is 15 s long [9], [10], it will most likely
only contain two or three respiration cycles. Thus, respiration
rate might be the noisiest modality among the three vital-sings
acquired by the system.

D. Limitations of the Current Study

Our dataset contains a total of 92 subjects, which can be con-
sidered big for a medical study. However, it is small compared
to typical datasets from the field of machine learning. This is a
limiting factor to the accuracy of our tests.

In addition, the group of control subjects mainly consist of
students, i.e., young male individuals. This introduces a cer-
tain bias to the measurements from the control group and also
limits the variability of the dataset. A more realistic and, thus,
more heterogeneous dataset would include patients suffering
from noninfectious diseases in the control group, e.g., heart or
respiratory diseases which could affect heart rate or respiratory
rate.

The shortcomings of the current dataset mean that the absolute
values of the performance measures reported here might be too
optimistic. However, the main focus of this paper is the com-
parison of the performance of multimodal screening relative to
thermography, as well as the comparison among the different
classification algorithms which can be used with the multimodal
system. In this context, the limitations of the dataset applies to
all methods. In addition, our cross-validation scheme favors the
results for thermography.

In order to address these limitations, we are planning to extend
the current study to include a larger and more realistic dataset.
We will try to recruit volunteers suffering from noninfectious
diseases which affect heart or respiration rate, in order to test the
robustness of the multimodal screening system. In addition, we
are planning further tests of the multimodal system in different
clinical settings.

VI. CONCLUSION

In this paper, we compared a multimodal infection screening
system to screening via thermography, which is the current stan-
dard. We also compared different classification algorithms for
use with the multimodal system. To our best knowledge, this is
the first time when such an extensive comparison based on one
common dataset has been presented. In addition, an information
theoretic analysis has been carried out, which explained some
of the observed results.

In this study, acquiring heart and respiration rate in addition to
facial temperature allowed us to reduce the misclassification rate
by more than 50%. In addition, the mutual information scores
and the bimodal classification results indicate that the multi-
ple vital-signs approach to infection screening could present a
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solution to the problem of identifying infected individuals who
received treatment with antipyretics.

The comparison between the classification algorithms re-
vealed that SVM and QDA are the two most promising classifi-
cation methods for a multimodal screening device for infection
screening. kNN can be considered as an alternative. Future stud-
ies with larger and more realistic subject population should focus
on these three methods.
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