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ABSTRACT Chronic bacterial infections are caused by pathogens that persist within
their hosts and avoid clearance by the immune system. Treatment and/or detection
of such pathogens is difficult, and the resulting pathologies are often deleterious or
fatal. There is an urgent need to develop protective vaccines and host-directed ther-
apies that synergize with antibiotics to prevent pathogen persistence and
infection-associated pathologies. However, many persistent pathogens, such as My-
cobacterium tuberculosis, actively target the very host pathways activated by vaccina-
tion. These immune evasion tactics blunt the effectiveness of immunization strate-
gies and are impeding progress to control these infections throughout the world.
Therefore, it is essential that M. tuberculosis immune evasion-related pathogen viru-
lence strategies are considered to maximize the effectiveness of potential new treat-
ments. In this review, we focus on how Mycobacterium tuberculosis infects antigen-
presenting cells and evades effective immune clearance by the adaptive response
through (i) manipulating antigen presentation, (ii) repressing T cell-activating co-
stimulatory molecules, and (iii) inducing ligands that drive T cell exhaustion. In this
context, we will examine the challenges that bacterial virulence strategies pose to
developing new vaccines. We will then discuss new approaches that will help dissect
M. tuberculosis immune evasion mechanisms and devise strategies to bypass them
to promote long-term protection and prevent disease progression.

KEYWORDS immune evasion, intracellular pathogens, Mycobacterium tuberculosis, T
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The adaptive immune response has evolved to detect and destroy invading bacterial
pathogens while simultaneously protecting the tissues of the host from damage (1).

During an acute infection, adaptive responses synergize with innate pathways to drive
bacterial clearance (2). A subset of pathogens, like Mycobacterium tuberculosis, cause
persistent infections by employing virulence mechanisms that evade immune detec-
tion and inhibit adaptive responses (3, 4). This results in M. tuberculosis infections
causing the most deaths by infectious disease each year (5). To prevent the ongoing
epidemic, it is essential to develop an effective vaccine that protects against lung
disease. A major challenge to M. tuberculosis vaccine development, however, is ac-
counting for bacterial immune evasion tactics. M. tuberculosis effectively modulates
adaptive responses from within the intracellular niche in antigen-presenting cells
(APCs) that prevent T cell responses from sterilizing the infection (3, 6). Current
vaccination methods activate the very processes that M. tuberculosis targets. Thus, it is
essential to understand how M. tuberculosis suppresses adaptive responses to develop
new approaches that bypass M. tuberculosis-mediated immune evasion. In this review,
we highlight a subset of mechanisms used by Mycobacterium spp. to inhibit T cell
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responses from within APCs and draw similarities with other persistent bacterial
pathogens. We will then discuss new approaches that might allow a full understanding
of the M. tuberculosis-mediated immune evasion that is needed to develop vaccines
that overcome pathogen virulence and protect against M. tuberculosis.

OVERVIEW OF M. TUBERCULOSIS IMMUNE CELL INTERACTIONS

M. tuberculosis is a facultative intracellular pathogen that resides inside APCs,
including a variety of macrophage and dendritic cell (DC) subsets (7, 8). Upon inhalation
of M. tuberculosis-containing aerosol droplets, M. tuberculosis efficiently targets alveolar
macrophages that line the alveoli (8). Ideally, the initial infection by M. tuberculosis
would stimulate inflammation in alveolar macrophages to activate protective adaptive
immune responses that quickly respond to the lung and eradicate the infection.
However, alveolar macrophages do not robustly detect or respond to M. tuberculosis
infection, which results in a blunted inflammatory response and delays adaptive
immune activation over 2 weeks (8–10). This delay is unlike other lung infections such
as those caused by influenza virus or respiratory syncytial virus (11). These viral
infections develop a robust pathogen-specific T cell response within 1 week, suggesting
that M. tuberculosis actively uses the alveolar macrophages to avoid rapid adaptive
immune activation and detection. Eventually, M. tuberculosis-infected alveolar macro-
phages migrate from the alveoli into the interstitial space through the direct activity of
the specialized type VII secretion system ESX-1 (8). In the interstitial space, inflammatory
macrophages and dendritic cell populations are infected by M. tuberculosis, triggering
robust inflammation that causes the onset of adaptive immunity. M. tuberculosis
antigens are trafficked to the draining lymph nodes by dendritic cells, where they
activate M. tuberculosis-specific T cells that are required to protect against disease
(12, 13).

For T cells to be activated during an M. tuberculosis infection, they must receive two
distinct signals in the lung draining lymph node (14). Signal one is dependent on the
antigen specificity of the T cell receptor (TCR) which detects pathogen-derived peptides
loaded into major histocompatibility complex class I or II (MHC-I or MHC-II, respectively)
(14). These peptide-MHC complexes are then presented on the surface of APCs to naive
T cells. The second signal, also known as costimulation, is delivered to the T cell through
the ligation of inflammation-induced molecules such as CD80, CD86, or CD40 on the
surface of the APC (15, 16). Binding of distinct costimulatory molecule by T cells can
skew their function, enhancing or inhibiting M. tuberculosis control (6, 17). In addition
to signals one and two, a third signal, driven by stimulatory cytokines, enhances the
activation of T cells, in particular, CD8� T cells (reviewed in reference 4). Following their
activation in the lymph node, T cells then traffic to the lung environment in search of
infected cells to eradicate (13). In the lungs, direct contact of both CD4� T cells and
CD8� T cells with cells harboring M. tuberculosis can partially control disease, yet they
are insufficient to sterilize the infection (4, 13, 18). The reasons T cells fail to fully control
M. tuberculosis infection are complex. M. tuberculosis actively prevents effective detec-
tion by T cells and drives T cell exhaustion that limits the protective potential of T cells
(3, 7). It is also possible that M. tuberculosis evolved to use T cell responses to help drive
transmission. Unlike viruses like influenza virus, which actively evade immunity by
mutating antigens to prevent detection, M. tuberculosis does not evolve rapidly, and T
cell antigens are known to be hyperconserved, with few mutations across lineages (19,
20). This means that the antigens activating the M. tuberculosis T cell responses are very
conserved across the human population. This has led some to hypothesize that M.
tuberculosis actively stimulates robust T cell responses to drive tissue damage and
subsequent transmission. Together, these data suggest that T cells are essential to
protect against M. tuberculosis infection, yet their role in disease progression needs to
be more carefully understood.

While T cells are required for protection against tuberculosis (TB), how T cells
mechanistically contribute to protection remains unclear. T cells can protect by con-
trolling antimicrobial resistance pathways which directly restrict bacterial growth or by
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regulating disease tolerance, the ability to withstand an infection and the subsequent
tissue damage (1, 21). Given that T cells are unable to provide sterilizing immunity
against M. tuberculosis, it is likely that many antimicrobial mechanisms activated by T
cells are ineffective against M. tuberculosis or are actively inhibited by the pathogen.
Evidence also suggests that dysregulated T cell responses, such as increased gamma
interferon (IFN-�) production or altered mitochondrial dynamics, can drive failed dis-
ease tolerance (22, 23). Together, these studies suggest that an important role of T cells
during M. tuberculosis infection is to promote disease tolerance against infection. Given
the modest protection provided by even the best new vaccine candidates, the question
of whether a T cell-mediated vaccine could activate antimicrobial resistance mecha-
nisms remains uncertain. Evidence from the nonhuman primate model suggests that an
ongoing M. tuberculosis infection can eliminate subsequent infections with new M.
tuberculosis strains, but the mechanisms of this protection and the harnessing of these
mechanisms for a vaccine remain unknown (24). However, a recent study examining
the protective response in nonhuman primates immunized with Mycobacterium bovis
BCG by the intravenous route suggests that this is a possibility (25). In this study, the
authors found sterilizing immunity that was driven by a unique CD4� T cell subpop-
ulation that must now be further investigated for their protective potential.

Many current vaccine strategies for M. tuberculosis are aimed at augmenting T cell
responses that are required to control M. tuberculosis. Most of these protective path-
ways were identified because hosts lacking single immune genes were more suscep-
tible to M. tuberculosis infection than are otherwise healthy hosts. However, in many
healthy individuals infected with fully virulent M. tuberculosis, these responses are
inadequate on their own (4, 7, 26). A possible reason that current approaches are not
yielding the progress hoped is that they do not account for M. tuberculosis immune
evasion tactics. M. tuberculosis has developed distinct mechanisms that delay, block,
and distract host immune mechanisms that might be the best equipped to eradicate
the disease. Without fully understanding how M. tuberculosis avoids normally effective
immune mechanisms, the challenge to overcome M. tuberculosis virulence strategies
and develop fully protective vaccines remains.

MECHANISMS OF M. TUBERCULOSIS IMMUNE EVASION
M. tuberculosis inhibits antigen processing and presentation to prevent T

cell-mediated clearance. The ability of T cells to recognize their cognate antigens
presented in MHC molecules is essential to activate T cell responses that detect and
destroy infected cells in the lung environment. However, M. tuberculosis infection
delays the activation of antigen-specific T cell responses, skews the antigen specificity
of T cells, and prevents the effective detection of infected cells (13, 27, 28) (Fig. 1). M.
tuberculosis-infected mice elicit a muted antigen-specific CD4� T cell response com-
pared to that with BCG-infected mice as a result of suboptimal M. tuberculosis antigen
presentation independent of antigen levels, suggesting that M. tuberculosis interferes
with optimal immune activation (29). Additionally, M. tuberculosis is able to evade direct
killing by T cells through metabolic functions such as de novo tryptophan synthesis that
bypasses the induction of indoleamine 2,3 dioxygenase (IDO) and tryptophan restric-
tion in host cells (30). Thus, M. tuberculosis effectively manipulates the activation and
effector functions of M. tuberculosis-specific CD4 and CD8� T cells by modulating
antigen processing and presentation in MHC molecules that contribute to pathogen
persistence in the lungs.

Inhibition of phagolysosome fusion and maturation. M. tuberculosis-specific T
cell responses are delayed in their activation, which allows uninhibited M. tuberculosis
growth over the first weeks of infection (8, 13, 26). This delay is due to several factors,
including M. tuberculosis-mediated inhibition of antigen processing and loading of
antigens into the MHC. For all APCs, fusion of the phagocytosed particles in a phago-
some with the lysosome is a general mechanism to kill the pathogen and provide
pathogen-derived peptides that are then loaded into MHC-II molecules (31, 32). M.
tuberculosis efficiently prevents lysosome fusion, growing instead in a modified phago-
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some compartment that is protected against bacterial degradation (33). This inhibition
results in inefficient MHC-II loading of M. tuberculosis-derived peptides and prevents
efficient CD4� T cell detection. One way that M. tuberculosis blocks lysosome fusion is
through the manipulation of the host endosomal sorting complex required for trans-
port (ESCRT) (34–36). ESCRT sorts ubiquitin-labeled surface receptors into intraluminal
vesicles of multivesicular bodies to be degraded in the lysosome and loaded into
MHC-II molecules (36). M. tuberculosis secretes EsxH and EsxG via the ESX-3 type VII
secretion system. These effectors then dimerize and inhibit phagosome maturation
through the interactions with the ESCRT pathway (34, 35). EsxG-EsxH-dependent ESCRT
inhibition limits the activation of M. tuberculosis-specific CD4� T cells in both macro-
phages and dendritic cells, suggesting that these virulence components are key to the
delay in T cell activation during infection. In the absence of EsxH, T cells are more
effectively activated and better control infection. In contrast, M. tuberculosis strains
overexpressing EsxG-EsxH further limit the activation of CD4� T cells. Therefore, EsxH

FIG 1 M. tuberculosis inhibits effective antigen presentation. (A) Schematic of a normal response to
phagocytosed bacteria. Antigen-presenting cells phagocytose a pathogen. Fusion of the phagolysosome
causes degradation and production of pathogen-specific peptides. Pathogen-derived peptides then bind
to the MHC-II complex and are trafficked to the surface of the cell. There, T cells recognize the presented
antigen leading to increased immune cell recruitment, cytokine production, and antibody memory. (B)
A schematic of M. tuberculosis (Mtb)-mediated evasion of antigen presentation. The APC engulfs M.
tuberculosis, and the expression of PE_PGRS47 and EsxG-EsxH inhibits phagolysosome fusion by pre-
venting the degradation of M. tuberculosis antigens. Innate immune detection of lipoproteins results in
the activation of TLR2 by M. tuberculosis, which inhibits the induction of CIITA and MHC-II through
unknown mechanisms. Together, these M. tuberculosis-mediated alterations prevent the effective ex-
pression of MHC molecules and prevents effective clearance by M. tuberculosis-specific T cells.
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impairs phagolysosome fusion in an ESCRT-dependent manner, resulting in the sub-
optimal antigen processing and presentation of M. tuberculosis proteins that are
needed to activate CD4� T cells.

M. tuberculosis employs multiple effectors to modulate other host phagosomal
fusion pathways. Maturation of the phagosome depends on the recruitment and
dissociation of multiple membrane markers, including phosphatidylinositol-3-
phosphate (PI3P), the acidifying proton pumps V-ATPase and Hv1, and multiple Rab-
GTPases, each of which is disrupted by M. tuberculosis (37–42). The SecA2-dependent
secreted factors SapM and PknG inhibit both phagosome and autophagosome matu-
ration by inhibiting PI3P phosphorylation, Rab5 dissociation, and Rab7 recruitment (43).
Additionally, the secreted protein tyrosine phosphatase PtpA specifically binds and
inhibits V-ATPase trafficking to the phagosome (44). It is currently unknown how M.
tuberculosis inhibits Hv1 localization to the phagosome. Another recent study identified
that the M. tuberculosis protein PE_PGRS47 plays an important role in modulating
antigen presentation by inhibiting lysosome function (45). Rather than directly pre-
venting lysosome fusion with the phagosome, PE_PGRS47 manipulates the host au-
tophagy pathway. Autophagy is a highly conserved mechanism used by cells to remove
unnecessary, damaged components and plays a role in controlling intracellular patho-
gens (46). Fusion of autophagosomes with the lysosome allows foreign antigens to be
efficiently loaded and presented on MHC-II molecules (47). PE_PGRS47 limits MHC-II
antigen presentation by preventing effective autophagosome-lysosome fusion.
PE_PGRS47 deletion mutants show increased autophagic vesicles, in addition to
more acidified phagosomes and increased lysosome fusion (45). The inhibition of
autophagosome-lysosome fusion by PE_PGRS47 has functional consequences on the
activation of CD4� T cells. Infection of mice with PE_PGRS47-deficient strains resulted
in significantly more activated CD4� T cells due to the increase in M. tuberculosis
antigens loaded into MHC-II molecules. This directly shows that pathogen-mediated
inhibition of lysosome fusion is an effective immune evasion tactic to avoid rapid CD4�

T cell responses. While M. tuberculosis possesses numerous pathways to inhibit host
phagolysosome fusion/maturation, it also expresses at least one failsafe mechanism to
neutralize acidification that the bacteria do experience. A comparative lipidomics study
between M. tuberculosis and BCG identified an M. tuberculosis-exclusive robustly pro-
duced extracellular lipid, 1-tuberculosinyladenosine (1-TbAd), which was shown to
possess acid-neutralizing properties, result in protected growth at low pH, and induce
phagosomal swelling in infected human macrophages (48, 49).

When viewed through this lens, it is not surprising how prevalent the inhibition of
phagolysosome maturation and lysosome fusion is among successful pathogens. For
example, Chlamydia trachomatis, Salmonella enterica serovar Typhimurium, and Brucella
abortus all inhibit lysosome fusion by producing specific virulence factors (50–52). While
it remains to be directly tested for these pathogens, evading lysosome fusion might not
only protect bacterial viability but also hinder CD4� T cell activation, similar to what
occurs during M. tuberculosis infection. In addition, given the importance of lysosome
inhibition to virulence, several M. tuberculosis factors may contribute in parallel to
ensure success. It is essential to identify these redundant mechanisms in M. tuberculosis
to delineate strategies that overcome lysosome inhibition and drive a more rapid and
robust activation of protective CD4� T cells.

Inhibition of MHC surface expression. Once M. tuberculosis-specific T cells are
activated in the draining lymph node, they must then traffic to the lung and identify M.
tuberculosis-infected cells to control pathogen growth and contain disease (13). For
both CD4� and CD8� T cells, this is known to require direct contact with the MHC on
infected cells within the lung environment (4, 18). On resting macrophages, the surface
expression of MHC-II is moderate, which limits the ability of macrophages to stimulate
CD4� T cells directly (53). However, the addition of cytokines such as IFN-� results in the
robust upregulation of MHC-II by the class II transactivator (CIITA) (53, 54). Intracellular
pathogens have evolved mechanisms to directly inhibit the induction of CIITA and
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prevent MHC-II upregulation. Chlamydia trachomatis, for example, directly degrades the
transcription factors USF-1 and RFX-5 that are required for IFN-�-dependent upregu-
lation of MHC-II (55, 56). In contrast, M. tuberculosis infection does not appear to actively
target MHC-II upregulation but rather uses innate immune detection of M. tuberculosis
against the host. Several studies have found that mycobacterial lipoproteins and other
cell envelope components inhibit MHC-II upregulation by acting as Toll-like receptor 2
(TLR2) agonists (3, 57). The 19-kDa lipoprotein of M. tuberculosis limits MHC-I expression
and prevents IFN-�-induced HLA-DR (an MHC-II surface receptor), the Fc�R1 (a high-
affinity IgG receptor), and CIITA expression (58–60). M. tuberculosis also inhibits mac-
rophage responses to IFN-� by inducing cytokines like interleukin 6 (IL-6) which can
inhibit Th1 differentiation while inducing the suppressor of cytokine signaling (SOCS)
(61, 62). SOCS inhibits STAT1 phosphorylation, thus limiting antigen presentation.
These findings are similar to those observed during Brucella abortus infection, which
also induces IL-6 secretion to inhibit IFN-�-mediated induction of interferon regulatory
factor 1 (IRF-1) and CIITA (63). By stimulating innate responses that are hard wired into
APCs, M. tuberculosis effectively prevents the subsequent induction of MHC molecules
that would help T cell-mediated clearance. Data suggest that M. tuberculosis stimulates
TLR2, TLR4, and TLR9, yet how these innate receptors directly or indirectly prevent the
upregulation of surface MHC molecules remains to be fully understood (64). Addition-
ally, how to overcome the initial TLR activation following M. tuberculosis infection to
strongly upregulate MHC molecules is an outstanding question that must be addressed
in the future.

Inhibition of direct T cell detection. Even if infected APCs induced robust surface
expression of MHC molecules, the question remains of whether T cells are capable of
detecting M. tuberculosis-infected cells. Work from several groups suggests that M.
tuberculosis might use decoy antigens to drive dominant T cell responses against
proteins that are subsequently downregulated in M. tuberculosis as persistence begins
(27, 28, 65, 66). This allows M. tuberculosis to evade protective T cell responses by
eliminating the expression of the antigens for which the majority of T cells are specific.
This evasion strategy results in a T cell repertoire that is focused on nonprotective
antigens that do not improve disease outcome. Similarly, recent studies from the Behar
group suggest an inability of M. tuberculosis-specific CD8� cells to directly detect
infected macrophages, which may explain a limited role for CD8� cells in vivo (28). It
has been a conundrum as to why CD8� T cells do not play a more central role in the
protective response against M. tuberculosis. M. tuberculosis secretes antigens directly
into the cytosol, and CD8� T cells are well equipped to eliminate cells infected with
intracellular pathogens, yet the loss of CD8� T cells results in a minimal change in M.
tuberculosis disease progression (4). Interestingly, this mirrors findings for other intra-
cellular pathogens like Chlamydia trachomatis, where CD8� T cells play a minimal role
in protection but contribute greatly to the immunopathology that occurs during
chronic infections (67, 68).

In recent studies, M. tuberculosis-infected macrophages were detected by CD4� T
cells specific for ESAT-6 and Ag85b and restricted M. tuberculosis growth (28). Yet,
polyclonal CD4� T cells isolated from the infected lungs of mice did not effectively
detect infected macrophages (27). In contrast, CD8� T cells specific for the immuno-
dominant antigen TB10.4 could not detect M. tuberculosis in macrophages, while
polyclonal CD8� T cells could (27, 28). These findings raise the possibility that M.
tuberculosis carefully controls what antigens are available for presentation in infected
cells to dictate the T cell repertoire that is activated. Clearly, this virulence strategy
allows for the effective evasion of protective T cell responses, yet how M. tuberculosis
controls antigen availability and prevents effective detection by T cells on macrophages
remains unknown. In these reports, there were no obvious problems with antigen
processing or antigen presentation (32, 64). However, it was noted that infection with
BCG results in a greater capacity of T cells to recognize infected macrophages, sug-
gesting that the RD1 locus may play a role in masking infected macrophages. Any
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future vaccine must overcome the ability of M. tuberculosis to distract T cell responses
away from protective antigens to allow the detection of infected cells.

M. tuberculosis modulates costimulatory molecules to skew T cell effector
responses. In addition to antigen-specific activation that is mediated by peptide-MHC
complexes, effective T cell responses require efficient costimulation (16). Costimulation,
or signal 2, occurs through the ligation of a variety of molecules on APCs with their
cognate ligands on the surface of T cells (14, 16). While the interaction between CD28
on T cells and CD80/CD86 on APCs is most commonly studied, other molecules on
APCs, including CD40 and OX40L, also play an important role. How each costimulatory
molecule influences immune responses to distinct pathogens remains unclear, as
costimulatory molecules can augment the MHC-TCR signal and influence the subse-
quent effector response. The absence of any costimulatory signal in the presence of
antigen presentation results in T cell anergy, a state in which the T cell remains alive but
is largely unresponsive to further stimulus (69). Given the importance of costimulation
in shaping the subsequent host response, pathogens like M. tuberculosis directly
manipulate these molecules to the benefit of the pathogen (Fig. 2). While our under-
standing of the mechanisms employed by M. tuberculosis to target distinct costimula-
tory pathways remains lagging, there is significant evidence that targeting distinct
costimulation networks during immunization may improve M. tuberculosis infection
outcomes.

FIG 2 M. tuberculosis uses multiple effectors to manipulate costimulatory molecule activity and CD4� T
cell polarization. (A) Schematic of the general response of costimulatory molecules in APCs during
infection with an intracellular pathogen. APCs induce CD80/86:CD28 and/or CD40:CD40L binding,
resulting in the proliferation of CD4� T cells and Th-1/Th-17 polarizing cytokine secretion from the APC.
(B) Schematic of M. tuberculosis-mediated evasion of costimulatory. Infection of APCs with M. tuberculosis
results in inhibition of costimulatory molecule expression. ManLAM from M. tuberculosis interacts with
TLR2 to induce IL-10 secretion, repressing Th1 polarization. TDM inhibits the induction of CD80/86 and
CD40, while Hip1 and Ac4SGL block robust activation of CD40. These virulence traits change the overall
cytokine response and prevent the protective capacity of M. tuberculosis-specific T cells from eradicating
the infection.
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A central aspect of costimulatory molecules is that their expression is increased on
the surface of APCs following the activation of pathogen-associated molecular patterns
and the subsequent cytokine response (15, 16). This regulation pattern ensures that T
cell activation only occurs in the correct inflammatory context. Both type I and type II
interferons as well as tumor necrosis factor alpha (TNF-�) feed back into APCs to drive
the expression of CD40, OX40L, CD80, and CD86 to maximal levels (15, 70, 71). Thus, M.
tuberculosis is well positioned to manipulate the induction of costimulatory molecules
by carefully controlling the inflammatory response it induces during infection. Recent
evidence suggests that while each costimulation marker plays an important role in
driving a protective response against M. tuberculosis, these pathways are not fully
functional during virulent M. tuberculosis infection (6).

Costimulation between CD80/CD86 and CD28 helps activate the Th1 effector re-
sponses during M. tuberculosis infection (72). Loss of CD28 results in muted Th1
induction and uncontrolled M. tuberculosis growth (72). In addition, the loss of CD40
results in severe susceptibility to M. tuberculosis infection due to the altered effector
profile of CD4� T cells, while the loss of OX40L prevents the efficient induction of Th1
vaccine responses against M. bovis BCG (73, 74). Therefore, each distinct costimulatory
molecule may help influence the overall host responses against M. tuberculosis. This is
similar to other persistent pathogens like Chlamydia trachomatis, where a combination
of costimulatory molecules appears to be required for effective protective immunity
(75, 76). This highlights a supportive role for all costimulatory molecules during
persistent infections that must be better understood.

Because costimulatory molecules play a critical role in determining the effector T cell
response during M. tuberculosis infection, these pathways are actively manipulated
during infection. Several reports suggest that during the chronic phase of M. tubercu-
losis infection, CD80, CD86, and CD40 are all downregulated in the lung, limiting the
capacity of responding T cells to find infected cells and escape anergy (77). One
mechanism driving the inhibition of costimulatory molecules is the presence of the
surface lipid trehalose 6,6=-dimycolate (TDM) (78). Distinct macrophage populations,
including alveolar and peritoneal macrophages, that were infected with wild-type M.
tuberculosis did not express high levels of CD40, CD80, or CD86, while strains that were
delipidated for TDM strongly induced the expression of these molecules. This broad
inhibition is similar to the effect of VacA from Helicobacter pylori, which induces the
dendritic cell transcription factor E2F1 to suppress activation (79, 80). It remains to be
known if TDM directly induces E2F1 in a similar manner and should be pursued in the
future. In addition to TDM, the mycobacterial cell wall component mannosylated
lipoarabinomannan (ManLAM) binds TLR2, resulting in increased IL-10 production
which prevents the robust differentiation of Th1 cells (81). Altogether, the inflammatory
makeup of M. tuberculosis surface lipids directly impacts the magnitude of costimula-
tory molecule induction, thereby skewing T cells away from protective effector re-
sponses.

How M. tuberculosis modulates the makeup of surface lipids to impact costimulatory
signals remains unclear. One possible mechanism is mediated by the serine hydrolase
Hip1. Hip1 was identified in a genome-wide transposon screen and subsequently found
to be required for M. tuberculosis to persist long term in animals (82, 83). Later studies
found that Hip1 is important for GroEL hydrolysis and that Hip1 inhibits the inflam-
matory response to M. tuberculosis (84–86). The loss of Hip1 results in the increased
expression of costimulatory molecules, in particular, CD40, on infected APCs (17, 85). In
addition, the loss of Hip1 increases the production of proinflammatory cytokines that
drive both Th1 and Th17 responses against M. tuberculosis infection. This observation
has important implications, as wild-type M. tuberculosis infections do not effectively
activate Th17 responses, even though a balanced Th1/Th17 response provides im-
proved overall protection against M. tuberculosis. To test this hypothesis directly,
Rengarajan and colleagues examined how the presence or absence of Hip1 changes
CD40 expression on M. tuberculosis-infected APCs to skew the effector T cell response
(17). Their results clearly show that CD40 is required to activate a subset of CD4� T cells
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to produce IL-17. Infecting cells with a Hip1 mutant or treating wild-type M.
tuberculosis-infected dendritic cells with purified CD40L-trimer overcame Hip1-
mediated CD40 repression and induced a more balanced Th1/Th17 CD4� T cell
response. This balanced effector response of CD4� T cells improved the capacity of the
host to restrict M. tuberculosis growth and prevent disease. These important studies not
only show that M. tuberculosis modifies detection by the innate immune system to
avoid robust costimulation but also provide a foundation for the premise that over-
coming pathogen-mediated immune evasion is critical to develop therapies that
effectively protect against M. tuberculosis.

Beyond Hip1, the mycobacterial secreted factor CFP-10 and the Ac4SGL prevent the
maximal expression of costimulatory molecules on APCs (87, 88). When cells express
CFP-10, they are unable to induce CD80 expression following exogenous stimuli. How
this inhibition occurs remains unknown (87). Similar to Hip1, Ac4SGL inhibits CD40
surface expression but through a distinct mechanism that suppresses NF-�B activation
(88). Thus, M. tuberculosis uses multiple mechanisms to prevent the efficient induction
of costimulatory molecules on infected APCs. The consequences of these changes to
costimulatory molecules remain to be investigated carefully in vivo. In the future, it will
be important to identify the mechanisms M. tuberculosis employs to block costimula-
tory molecule expression and investigate the regulation of each costimulatory molecule
to overcome pathogen-mediated inhibition and improve the overall balance of the
host response against M. tuberculosis.

M. tuberculosis induces inhibitory ligands that repress T cell function. While the
primary immune response in most individuals adequately contains M. tuberculosis
infection, the lack of sterilizing immunity presents a challenge (1, 4). As effector T cells
respond to persistent antigen stimulation, they begin to upregulate inhibitory recep-
tors, such as PD1, Tim3, and CTLA4 (3, 4, 22, 89, 90). These receptors prevent overex-
uberant inflammation and induce a phenotypic state known as exhaustion (16). While
exhaustion is important to ensure that inflammatory damage does not occur, M.
tuberculosis likely uses exhaustion to its advantage to prevent effective clearance. As T
cells become exhausted, they show dysfunction in their ability to activate upon antigen
stimulation, produce cytokines, and directly kill infected cells (16). Several studies have
shown that PD1 and Tim3 are upregulated on M. tuberculosis-specific T cells as infection
progresses to the chronic phase (22, 89). The induction of these inhibitory molecules
reduces the production of proliferative cytokines like IL-2 and effector cytokines such
as IFN-� and TNF. A recent study by Jayaraman and colleagues showed that TB-specific
T cells coexpress PD1 and Tim3 and that the removal of Tim3 activity improves T cell
function and M. tuberculosis control (89). However, in other studies, genetic deletion of
the inhibitory receptor PD1 resulted in the pathological production of IFN-� that
resulted in exacerbated TB disease and early lethality (22, 91). Together, these studies
suggest that modulating inhibitory receptors may have pleotropic effects on the host
response that must be understood more fully.

To date, most studies examining T cell exhaustion have focused on the expression
of the inhibitory molecules on the T cells themselves but not on the ligands present on
the M. tuberculosis-infected APCs. It is possible that M. tuberculosis actively exploits the
induction of these ligands during infection to promote T cell dysfunction and prevent
effective clearance. This prediction is not without support, as other chronic bacterial
infections are known to target these pathways. For example, during genital infections
with Chlamydia trachomatis, pathogen-specific CD8� T cells are incapable of contrib-
uting to the protective response. The inhibition of CD8� T cell function was found to
be a direct result of C. trachomatis actively inducing the PD1 ligand PDL1 on infected
cells (92). Reversing this virulence tactic resulted in more effective bacterial control and
T cell function. In addition, Salmonella enterica serovar Typhimurium and Helicobacter
pylori also manipulate PD-L1 levels to suppress T cell responses and drive persistent
infections (93, 94). In agreement with studies on other pathogens, M. tuberculosis-
infected APCs express significantly more inhibitory ligands that may drive T cell
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dysfunction (95). However, it has yet to be examined whether M. tuberculosis is actively
inducing these pathways or if PD-L1 induction is simply a by-product of persistent
inflammation. Clearly, the role of T cell exhaustion is important in the balance between
control and susceptibility to M. tuberculosis, yet much more study is needed to
understand how inhibitory ligands are modulated during infection in the APC and
which inhibitory molecules on T cells can be targeted without exacerbating disease.

NEW APPROACHES TO UNRAVEL M. TUBERCULOSIS-MEDIATED T CELL EVASION

As discussed above, M. tuberculosis evades immune clearance by carefully engaging
the infected APCs to prevent elimination by T cells. Even though these immune evasion
mechanisms are becoming clearer, several key questions remain. These include defin-
ing how distinct cell populations in the infected lung drive unique aspects of immune
evasion during M. tuberculosis infection, identifying all M. tuberculosis genes that
modulate immune detection and developing approaches that bypass M. tuberculosis
virulence traits to more effectively activate protective T cell responses. In the second
part of this review, we evaluate and discuss new tools and approaches that should be
applied to address these outstanding questions in M. tuberculosis-mediated immune
evasion.

Expanding ex vivo approaches to reflect cell diversity in the lung environment.
Within the infected lung, M. tuberculosis encounters a variety of cell types, including
alveolar macrophages, interstitial macrophages, dendritic cells, and neutrophils (8). To
understand how M. tuberculosis impedes T cell responses, it is essential to understand
how each distinct host cell population interacts with M. tuberculosis and enables
immune evasion. To date, however, most studies examining the mechanisms of M.
tuberculosis pathogenesis employ ex vivo models that use primary bone marrow-
derived macrophages (BMDMs), peritoneal macrophages, or immortalized cell lines
such as RAW or Thp1 cells (7). While these approaches are certainly useful, recent
studies suggest that an important aspect of M. tuberculosis disease is the progression
of cellular interactions that occur in the complex lung environment (8–10). How M.
tuberculosis infection of each cellular population plays into the overall immune evasion
remains unknown. As described above, alveolar macrophages are the initial niche for M.
tuberculosis following inhalation, and these cells are inherently different than BMDMs.
Not only is the innate response distinct between alveolar macrophages and BMDMs,
but elegant work by Russell and colleagues also showed that the metabolic differences
between macrophage populations in the lungs drive disease progression (10). While
interstitial macrophages use glycolysis for energy, alveolar macrophages rely on fatty
acid oxidization, which results in a permissive nutrient pool for M. tuberculosis growth.
It is likely that the permissive alveolar macrophage niche sequesters M. tuberculosis
away from dendritic cells that are more capable of triggering the upregulation of key
surface MHC and costimulatory molecules needed for rapid T cell activation (8). Yet, this
has remained difficult to test due to a lack of ex vivo models that recapitulate the
functions of alveolar macrophages. Effectively examining how M. tuberculosis manipu-
lates distinct APC populations to evade T cell responses requires ex vivo systems that
model distinct cell populations from the lung and/or methods to identify and isolate
infected cells directly from the infected lung environment.

One reason for the reliance on BMDMs is the ease with which millions of cells can
be isolated and manipulated without using large numbers of animals. In contrast,
studying alveolar macrophages remains a challenge. These cells must be isolated
directly from the bronchoalveolar lavage (BAL) fluid in the lungs, and from each mouse,
only 105 cells can be isolated (96, 97). These low numbers and the time involved in
isolation limit the scale and reproducibility of primary alveolar macrophage studies.
Recently, Fejer et al. discovered an approach to differentiate fetal liver cells, the origin
of alveolar macrophages, into alveolar macrophage-like cells called Max Planck Institute
(MPI) cells that can be propagated ex vivo for over 100 generations (97). MPI cells have
similar morphology and express similar surface markers to alveolar macrophages,
differentiating them from bone marrow-derived macrophages. The innate response in
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these cells was remarkably similar to alveolar macrophages isolated from BAL fluid.
Following lipopolysaccharide (LPS) treatment or treatment with heat-killed M. tubercu-
losis, MPI cells showed a muted IL-10 response and a strong activation of IL-1a that
mirrored that of alveolar macrophages but not BMDMs. In a more recent study, Woo et
al. showed that MPI cells can phagocytose live M. tuberculosis cells, support M. tuber-
culosis replication, and activate innate responses, including cytokine production, au-
tophagy, and lipid accumulation (98). Together, these studies suggest that MPI cells
may be a useful model for the alveolar macrophages that play a critical role in M.
tuberculosis pathogenesis and immune evasion. In the future, it will be important to
understand how M. tuberculosis can target MPI cells and alveolar macrophages to alter
their antigen presentation and costimulatory capacity during infection.

It is also important to consider how infected cells directly from the lung environ-
ment are manipulated by M. tuberculosis. Examining distinct cell types in vivo requires
tools that allow the identification and isolation of all M. tuberculosis-infected cell
populations. One successful approach is leveraging bacterial reporters that allow the
sensitive detection of M. tuberculosis-infected cells while preserving virulence. These
reporters range from standard fluorescent strains expressing bright and stable fluores-
cent proteins to metabolic reporters that discriminate between live and dead bacteria
or indicate the activation of particular M. tuberculosis transcriptional responses (8–10,
99). By coupling these sensitive reporters to cell-sorting or whole-tissue-imaging ap-
proaches, it is now possible to directly examine how distinct cellular populations are
manipulated by M. tuberculosis infection and how this impacts protective T cell re-
sponses.

Identifying new mechanisms used by M. tuberculosis to manipulate T cell
responses. M. tuberculosis contains several genes that drive immune evasion mecha-
nisms during infection. However, no global approaches have been employed to
systematically define the repertoire of M. tuberculosis immune evasion genes. With
proteomic and global genetic approaches now readily available, the time is ripe for
those in this field to investigate how individual or groups of M. tuberculosis genes
contribute to the evasion of T cell responses.

Global genetic approaches in M. tuberculosis were developed over 15 years ago with
the seminal papers using transposon hybridization (TRASH) (100). TRASH uses a pooled
library of transposon mutants made with the Mariner transposon. These global trans-
poson experiments determine how the relative representation of each mutant changes
between two distinct conditions. Recent advances in deep-sequencing technology
(now termed transposon sequencing [Tn-seq]) have accelerated the speed and sensi-
tivity of Tn-seq experiments, yet few studies have focused on immune-related pheno-
types (101). Most published studies use M. tuberculosis genetic screens to focus on the
pathogen itself by characterizing phenotypes such as physiology, growth, and survival
(102–104). However, these bacterial genetic approaches have the power to disentangle
exactly how M. tuberculosis inhibits APCs from effectively communicating with T cells.
For example, while Hip1 is known to inhibit CD40 induction in APCs, it is likely that
other M. tuberculosis genes also contribute to CD40 inhibition (17). By infecting an APC
population with a transposon mutant library and isolating host cells that can or cannot
induce robust CD40 expression, it is now possible to identify M. tuberculosis mutants
that directly impact this important immune cell function. The applications of this
approach regarding our understanding of M. tuberculosis factors that drive persistence
are endless.

Of course, transposon approaches have their limitations. By definition, transposon
libraries cannot assess the role of essential genes, reducing the percentage of the
genome probed by a significant margin (102). To address this, recent developments in
protein depletion and CRISPR interference (CRISPRi) approaches now allow the inves-
tigation into these essential genes (105–107). The recent tour de force study that
created a library of barcoded hypomorphic alleles for essential genes throughout the
M. tuberculosis genome will be an outstanding tool for immunologists to use in the
future to probe even deeper into the M. tuberculosis genome to understand the evasion
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of the adaptive immune response (107). Additionally, robust yeast two-hybrid screens
have proven effective at uncovering unexpected interactions between M. tuberculosis
proteins and host networks that influence the ability of APCs to signal to T cells. The
interaction between EsxH and the ESCRT system described above was originally found
in a yeast two-hybrid screen and suggests that this approach is useful to delineate
specific interactions between M. tuberculosis and the host (34). The recent creation of
an M. tuberculosis-host protein-protein interaction network to identify M. tuberculosis
immune evasion and suppression strategies, such as the LpqN-CBL interaction, is a
promising step forward in characterizing the M. tuberculosis-host interface (108).

Altogether, the genetic toolbox to understand how M. tuberculosis directly contrib-
utes to immune evasion is now well developed and will inform our understanding of
how to overcome M. tuberculosis virulence in the future.

Employing host genetic approaches to bypass M. tuberculosis-mediated im-
mune evasion. In addition to understanding how M. tuberculosis drives immune
evasion, it is important to clarify how host pathways that are targeted by M. tuberculosis
become ineffective and devise strategies to overcome M. tuberculosis-mediated eva-
sion. This requires the capability to modify host cells and define what host pathways are
necessary and sufficient for immune evasion during M. tuberculosis infection. Much like
bacterial genetics, global approaches to modify the host or integrate diversity into host
models have exploded over the last decade (109). The application of CRISPR-Cas9
technologies to modulate gene expression in host cells is an exciting future area of
research for the field of immune evasion. These approaches can be categorized into
loss of function or gain of function. Loss-of-function CRISPR systems generally rely on
catalytically active Cas9, or other editing enzymes, that result in double-strand breaks
when targeted to the genome by a sequence-specific single guide RNA (sgRNA) (110,
111). By pooling thousands of sgRNAs, knockout libraries targeting all coding genes can
be assembled and probed for immunological phenotypes during M. tuberculosis infec-
tion that are easily deconvoluted through deep sequencing using similar approaches to
Tn-seq (112). The loss-of-function CRISPR approach will be essential to pin down the
underlying host pathways that are targeted in APCs by M. tuberculosis to drive distinct
immune evasion mechanisms observed during infection. Since many of the changes
induced by M. tuberculosis alter the surface expression of MHC molecules and costimu-
latory molecules, it is straightforward to isolate distinct populations with differential
expression of each immune molecule on the cell surface. By comparing the distribution
of sgRNAs in a genome-wide library between wild-type M. tuberculosis and an M.
tuberculosis deletion or overexpression mutant in immune evasion genes such as EsxH,
the host immune pathways that result in reduced MHC-II function can be directly
identified.

The loss-of-function CRISPR approaches will be key to understanding how M.
tuberculosis evasion mechanisms target the APC to prevent effective T cell detection.
However, they are less likely to identify host mechanisms that overcome M. tuberculosis-
mediated inhibition and result in improved T cell detection. In contrast, gain-of-
function genetic approaches that induce the expression of target host genes have the
potential to identify critical host pathways that can overcome M. tuberculosis evasion
tactics. Gain-of-function approaches using CRISPR allow the targeted induction of host
genes driven by a catalytically dead Cas9 linked to transcriptional activators (113). Two
such systems, the synergistic activator mediator (SAM) and the Calabrese system,
robustly induce genes in an sgRNA-dependent manner independently of their normal
expression patterns (110, 113). The ability to fine-tune gene expression broadly at a
genome-wide level opens many experimental opportunities with regard to M.
tuberculosis-mediated immune inhibition. As discussed above, CD8� T cells are unable
to detect M. tuberculosis-infected macrophages, resulting in their inability to carry out
their effector functions effectively. By infecting a genome-wide gain-of-function library
of APCs with M. tuberculosis, it might be possible to identify host pathways that allow
the effective detection of M. tuberculosis by CD8� T cells. These pathways, if effectively
targeted, would be capable of overcoming the immune evasion tactics employed by M.
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tuberculosis and could then be tested for improved disease control in vivo. We strongly
believe gain-of-function genetic approaches will be key assets to identify new host
targets that are capable of overcoming M. tuberculosis virulence.

Beyond experimental genetic variation induced with CRISPR, another compelling
method to investigate M. tuberculosis immune evasion is leveraging the inherent
diversity within the mouse population. Resources such as the Collaborative Cross (CC)
and Diversity Outbred (DO) collections introduce genetic variability into the mouse
populations that can then be examined directly during M. tuberculosis infection (re-
viewed in reference 114). By modeling the genetic diversity seen in a human popula-
tion, insights into how M. tuberculosis evades immune detection and clearance in
distinct environments can now be understood. These mouse resources are the product
of eight founder parental strains that were intercrossed sequentially to introduce
genomic loci from all eight founders in each derived mouse strain (115). A subset of
these diverse strains was then interbred to homozygosity resulting in the CC panel of
recombinant inbred mice. The CC panel models more diversity that is reflective of the
human population with the advantage of recombinant lines that can be tested repeat-
edly and examined for the effectiveness of interventions. The CC panel has already
been used to model the variability of BCG vaccination responses in mice, suggesting
that the host genetic background plays a significant role in the efficacy of vaccine
responses (116). It is not difficult to imagine that a subset of immune evasion strategies
employed by M. tuberculosis may only be observable in hosts with a particular genetic
background. This would be critical to understand if we are to develop immunizations
that are broadly protective in a range of human hosts. The DO collection is similar to
the CC panel, except each mouse is an outbred offspring of the intercrossed parental
strains (117). While this allows modeling of more genetic variation, it comes with the
caveat that each mouse is genetically unique, making follow-up studies challenging.
Even so, the DO collection is already being used effectively to understand traits that
drive M. tuberculosis disease progression in the mouse model (118, 119). We envision
these resources as being central to fully delineating how M. tuberculosis can evade
distinct aspects of the host response and in testing new approaches to overcome M.
tuberculosis virulence in a diverse host population.

OUTLOOK

Our knowledge of M. tuberculosis-driven immune evasion has expanded rapidly over
the last decade. Distinct mechanisms that M. tuberculosis employs to avoid robust
activation and detection by the adaptive immune response are now being explored in
great detail. These studies have uncovered a range of important immune pathways that
are manipulated by M. tuberculosis to avoid robust T cell responses by impeding their
activation and effector function. Even with this progress, there are still many unknowns
of how M. tuberculosis evades protective host responses. In the next decade, the
challenge will be to use these findings to devise immunization approaches that activate
protective responses even in the face of M. tuberculosis evasion tactics. There are
already promising new vaccine candidates in the pipeline that show encouraging
results (3). However, preliminary evidence suggests that taking M. tuberculosis virulence
traits into account may improve disease outcomes and should be considered as new
vaccine formulations move through clinical trials. Some approaches described here
may be useful to develop strategies that bypass immune evasion. Overall, it will be
critical to ensure that new vaccines broadly protect the population while overcoming
M. tuberculosis immune evasion to result in the most effective protective response.
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