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ABSTRACT In high-income countries, the leading causes of death are noncommuni-
cable diseases (NCDs), such as obesity, cancer, and cardiovascular disease. An impor-
tant feature of most NCDs is inflammation-induced gut dysbiosis characterized by a
shift in the microbial community structure from obligate to facultative anaerobes
such as Proteobacteria. This microbial imbalance can contribute to disease pathogen-
esis by either a depletion in or the production of microbiota-derived metabolites.
However, little is known about the mechanism by which inflammation-mediated
changes in host physiology disrupt the microbial ecosystem in our large intestine
leading to disease. Recent work by our group suggests that during gut homeostasis,
epithelial hypoxia derived from peroxisome proliferator-activated receptor � (PPAR-
�)-dependent �-oxidation of microbiota-derived short-chain fatty acids limits oxygen
availability in the colon, thereby maintaining a balanced microbial community. Dur-
ing inflammation, disruption in gut anaerobiosis drives expansion of facultative an-
aerobic Enterobacteriaceae, regardless of their pathogenic potential. Therefore, our
research group is currently exploring the concept that dysbiosis-associated expan-
sion of Enterobacteriaceae can be viewed as a microbial signature of epithelial dys-
function and may play a greater role in different models of NCDs, including diet-
induced obesity, atherosclerosis, and inflammation-associated colorectal cancer.
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Infectious diseases, defined as those caused by microorganisms (e.g., bacteria, viruses,
fungi, or parasites), were the most common cause of death worldwide in the early

20th century. However, deaths from infectious diseases dramatically declined by the
end of the 20th century, resulting in large gains in life expectancy, which could be
attributed to significant improvements in sanitation, disease prevention by vaccination,
and antibiotic development and use as a first line of treatment for bacterial diseases (1).

Although the impact of infectious diseases has been reduced or eliminated in
developed countries, the mortality rate from other causes, namely, noncommunicable
diseases (NCDs), has increased significantly (2). NCDs are defined as noninfectious,
nontransmissible diseases that may be caused by genetics or behavioral factors and
generally have a slow progression and long duration (www.who.int/ncds/en). These
include cardiovascular diseases, cancer, chronic respiratory diseases, diabetes, and
neurodegenerative diseases such as Alzheimer’s disease, among others. The most
recent data from the World Health Organization (WHO) state that NCDs kill 41 million
people each year, which is equivalent to 71% of all deaths globally (www.who.int/ncds/
en). Therefore, NCDs are considered the leading causes of death and disability globally
and are estimated to cause a cumulative loss of $47 trillion between 2011 and 2030 (3).
In the United States, the top two NCDs, cardiovascular disease and cancer, account for
nearly 50% of all deaths. NCDs have long surpassed infectious diseases as the main
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cause of death in both male and female Americans (4) (Fig. 1A and B). As a result, NCDs
are identified as one of the major health challenges for the 21st century.

The risk factors associated with NCD development can be classified as modifiable
behavioral (MB) risk factors and metabolic (ME) risk factors (www.who.int/ncds/en). The
MB risk factors for NCDs are tobacco use, physical inactivity, unhealthy diet, and the
harmful use of alcohol. ME risk factors arise either from genetic conditions or from MB
risk factors and contribute to the four crucial metabolic changes that increase the risk
of NCDs: (i) raised blood pressure, (ii) overweight status/obesity, (iii) hyperglycemia, and
(iv) hyperlipidemia (2). Overweight status/obesity and elevated blood pressure are the
leading ME risk factors responsible for NCD-attributable deaths worldwide (2). Thus,
understanding the mechanisms by which major risk factors such as unhealthy diet and
obesity contribute to the development and progression of NCDs is key for establishing
effective preventive and treatment strategies to manage the 21st century NCD epi-
demic.

OBESITY IS A MAJOR RISK FACTOR FOR NONCOMMUNICABLE DISEASES

Obesity is a pressing public health problem worldwide, affecting more than 107.7
million children and 603.7 million adults around the globe (5). The incidence of obesity
and overweight status has significantly increased in the past decades, and if the rising
trends persist, global obesity prevalence is estimated to reach 18% in men and over
21% in women by 2025 (6). Strikingly, 20% of the world’s adult population is projected
to have obese status by 2030 (7). In the United States, the prevalence of obesity
surpasses the worldwide average, as the condition affects 39.8% of the adult popula-
tion and �20% of school-age children, with an additional 31.8% of the population
being considered overweight (www.cdc.gov/obesity/index.html). As a consequence,
overweight and obesity are estimated to be linked to nearly 1 in 5 deaths (18.2%)
among adults in the United States (8).

Obesity is a complex and multifactorial disease mainly attributed to genetic, behav-
ioral, social, economic, and environmental factors (9). When assessed as an indepen-
dent factor, the role of genetics in obesity pathogenesis is significantly less than that of
the environment (10). Instead, genetic predisposition seems to increase the risk of
weight gain if it interacts with other risk factors such as unhealthy diets and inactive
lifestyle (11, 12). Indeed, the current global obesity epidemic can be largely attributed
to significant changes in dietary habits, including increased consumption of “Western-
style” diets, which are energy dense and rich in saturated fats and sugars. The
establishment of diet-induced obesity (DIO) mouse models (13) using a high-fat (HF)
and caloric-dense diet has been extremely helpful in understanding the mechanisms
linking obesogenic dietary habits and the development of NCDs.

Overweight status and obesity strongly correlate with the incidence of several
adverse comorbidities, including cardiovascular disease, cancer, and diabetes (14). The
link between DIO and NCDs is particularly compelling in cardiovascular disease (CVD),
the most common cause of death in the United States (Fig. 1A and B) (15). The majority

FIG 1 The major current causes of death in the United States are obesity associated noncommunicable diseases. In 2017,
the major causes of death in the United States in males (A) and females (B) are cardiovascular disease, followed by cancer
and chronic conditions. (Adapted from reference 15 with permission of the publisher.)
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of cardiac deaths (64%) are due to coronary heart disease secondary to atherosclerosis
(16). Obese individuals are at a significantly higher risk of developing CVD (www.cdc
.gov/obesity/index.html). Obesity and atherosclerosis share pathophysiological path-
ways, as both are chronic inflammatory conditions characterized by lipid storage
imbalance and activation of the immune system (17, 18). Therefore, the study of the
mechanisms linking DIO and CVD has a remarkable potential in aiding in the devel-
opment of novel treatment strategies.

Numerous cancers are associated with excess body weight, and the American
Cancer Society suggests that obesity is responsible for about 8% of all cancers in the
United States, as well as about 7% of all cancer-related deaths (19). Obese individuals
are at higher risk of developing colorectal cancer, breast cancer, and cancer of the
endometrium, esophagus, kidney, and pancreas (20). High-income countries, including
the United States, have reported a significant rise in the incidence of early-onset
colorectal cancer (21–23), a trend that could be partially attributed to the obesity
epidemic (23). Experimental studies using preclinical mouse models indicate that
obesity and Western-style high-fat diet (HFD) accelerate the multistage transition from
normal tissue to invasive malignancy and metastatic disease (24). Taken together, these
studies point to the urgency of establishing new prevention and treatment measure-
ments for the current obesity epidemic and obesity-associated cancers.

A new player in the development and progression of NCDs is the intestinal micro-
biota, also referred to as the “microbial organ” (25, 26). Recent data suggest that gut
microbes and their metabolites can affect disease progression through multiple mech-
anisms, including altering the immune response (reviewed in reference 27), changing
host-cell metabolic state (28), and even affecting response to immunotherapy (29).
Undeniably, the potential causative role of gut microbiota in obesity represents one of
the most extraordinary findings of the past decade. Therefore, the impact of changes
in the intestinal microbial community in the pathogenesis of obesity-related NCDs is an
extremely relevant and emerging field (30). However, we are only just beginning to
understand the mechanisms by which risk factors associated with NCDs promote
changes in the intestinal physiology and gut microbiota and how these changes may
contribute to NCD pathogenesis.

An important feature of most NCD is inflammation-induced disruption of the
intestinal microbiota (dysbiosis), characterized by a shift in the microbial community
structure from obligate to facultative anaerobes such as Enterobacteriaceae (31) (Fig. 2).
In this review, we will explore the potential mechanisms causing Enterobacteriaceae
expansion in the inflamed gut and during diet-induced obesity. Moreover, we will
discuss the role of facultative anaerobic bacteria intestinal bloom in the pathogenesis
of obesity-associated NCDs, namely, cardiovascular disease and colorectal cancer.

ROLE OF ENTEROBACTERIACEAE EXPANSION IN THE PATHOGENESIS OF
OBESITY-ASSOCIATED NCDs

The human large intestine is home to a large and complex bacterial ecosystem,
composed mostly of anaerobic organisms. This balanced microbial community (micro-
biota) performs multiple beneficial functions for the host such as immune education,
nutrition, and protection against invasion by enteric pathogens (32).

In the healthy large intestine, Enterobacteriaceae is a minor constituent of microbiota
(33). However, a wide range of human NCDs are associated with a severe disruption of
the balanced gut microbial ecosystem, often characterized by an expansion of facul-
tative anaerobic Enterobacteriaceae (31) (Fig. 2). Indeed, a disturbance of the intestinal
microbial community by antibiotic treatment results in a dysbiotic outgrowth of
facultative anaerobic Enterobacteriaceae in humans (34, 35) and murine models (36–38).
Intestinal inflammation triggered by genetic predisposition, chemicals, or infection with
enteric pathogens causes an uncontrolled luminal expansion of Enterobacteriaceae in
mouse models (39–43). An intestinal bloom of Enterobacteriaceae is also observed in
humans with severe intestinal inflammation, including patients with inflammatory
bowel disease (44–47), colorectal cancer (48, 49), or necrotizing enterocolitis (50), or
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during conditions of low-level intestinal inflammation, such as irritable bowel syndrome
(51, 52). Taken together, these studies suggest that Enterobacteriaceae expansion may
play an important role in the pathogenesis of NCDs (31).

Role of Enterobacteriaceae expansion in the pathogenesis of cardiovascular
disease. Obesity is considered a key underlying risk factor for many NCDs, including
heart disease (53, 54). A Western-style HFD is thought to increase the risk for cardio-
vascular disease due to systemic hyperlipidemia characterized by increased circulating
levels of low-density lipoprotein (LDL) and cholesterol (55). Additionally, Western-style
HFD-mediated changes in intestinal microbiota composition have been linked to
cardiovascular disease (56, 57). For example, several studies have demonstrated the role
of HFD-induced elevated plasma lipopolysaccharide (LPS) levels, a major component of
the Gram-negative bacterial outer membrane, in promoting atherosclerosis (58–60).
Activation of Toll-like receptor 4 (TLR4) by the lipid A portion of LPS in endothelial cells
results in the recruitment of inflammatory monocytes. Once inside the subendothelial
space, the recruited inflammatory monocytes become activated macrophages, partially
via an LPS/TLR4-dependent mechanism, and help promote the development of the
atherosclerotic plaque (61).

Microbiota-derived metabolites may also contribute to the pathogenesis of cardio-
vascular disease. Recent studies have described the ability of members of the gut
microbiota to catabolize dietary choline into trimethylamine (TMA) and acetaldehyde
(62). TMA is absorbed in the intestine and oxidized in the liver to trimethylamine
N-oxide (TMAO), a metabolite that promotes atherosclerosis via the formation of foam
cells and atherogenic plaque (63, 64) through poorly identified mechanisms. Interest-
ingly, the cut operon containing the gene cluster responsible for choline utilization and
TMA production is commonly found in facultative anaerobic Enterobacteriaceae such as
Proteus mirabilis and Escherichia coli (62, 65, 66). Choline degradation is thought to
occur under anaerobic conditions in a bacterial microcompartment, a protein shell that
encloses enzymes and protects the bacterial cell from toxicity of aldehyde intermedi-
ates such as acetaldehyde in the case of choline metabolism (66). Strikingly, outgrowth

FIG 2 Noncommunicable diseases are linked to intestinal dysbiosis. In the healthy gut, the intestinal
microbiota is dominated by obligate anaerobic bacteria (teal). An important feature of most noncom-
municable diseases is inflammation-induced gut dysbiosis characterized by a shift in the microbial
community structure from obligate to facultative anerobic bacteria (red) such as Enterobacteriaceae.
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of facultative anaerobic Enterobacteriaceae is also described in obese individuals ex-
posed to HFDs (67–70), raising the possibility that HFD-mediated expansion of TMA-
producing Enterobacteriaceae may play a role in the pathogenesis of obesity-associated
cardiovascular disease.

Role of Enterobacteriaceae expansion in colorectal cancer pathogenesis. Colo-
rectal cancer is the third most common cancer and the second most common cause of
cancer-related death worldwide (71). A recent report from the American Cancer Society
states that the incidence of colorectal cancer has significantly increased in young adults
(23), especially those who consume HFDs. Strikingly, only about 20% of colorectal
cancer cases can be genetically attributed to familial history (72), suggesting that
environmental factors such as obesogenic HFDs may play an important role in pro-
moting tumorigenesis.

Overweight status and obesity may contribute to colorectal cancer pathogenesis
through multiple concurrent mechanisms, including (i) stimulation of low-level intes-
tinal inflammation; (ii) increased reactive oxygen species (ROS), which may play a role
in DNA damage and mutagenesis; and (iii) changes in levels of growth-promoting
factors such as insulin and insulin-like growth factor (IGF-1), which are secondary to
obesity-associated metabolic syndrome (24, 73). However, despite the advantages in
deciphering how obesity may contribute to cancer pathogenesis, the exact mecha-
nisms underlying HFD-induced colorectal cancer risk and recurrence remain unclear.

In addition to the mechanisms described above, HFD-induced intestinal dysbiosis
may be an important missing piece of the obesity-colorectal cancer puzzle. A wide
body of literature has suggested that the gut microbiota can enhance colorectal cancer
development through its impact on tumor-associated inflammation. Recognition of
microbial components (e.g., LPS and flagellin) by the innate and adaptive immune
system leads to production of proinflammatory cytokines and other inflammatory
products which exert the neoplastic effect (74–77).

The carcinogenic effects of commensal gut bacteria can also result from direct
effects of microbially derived products. Members of the Enterobacteriaceae family are
able to produce toxins with carcinogenic properties, including colibactin, a polyketide-
derived genotoxin which is able to cause intestinal epithelial cell double-strand breaks
(DSBs) and DNA alkylation, which leads to cell cycle arrest and activation of DNA repair
pathways, resulting in increased carcinogenesis (78–82). Indeed, members of the
Enterobacteriaceae family, in particular, E. coli (phylogroups B2 and D), Klebsiella spp.,
and P. mirabilis, are frequently detected and overrepresented in the microbiota of
colorectal cancer (CRC) patients (47–49). Benign polyps developing early in life of
patients with familial adenomatous polyposis are covered by patchy bacterial biofilms
containing colibactin-producing E. coli (83). Additionally, the expression of colibactin
biosynthesis genes is highly induced in biopsy specimens from human CRC patients
(84), suggesting a key role of the expansion of colibactin-producing Enterobacteriaceae
in tumor induction.

RESPIRATION AS A STRATEGY FOR ENTEROBACTERIACEAE EXPANSION IN THE
GUT

A major goal of every organism in the intestinal microbial community is to ensure
long-term survival in the gut lumen and to thrive in a nutritionally competitive
environment. Therefore, members of the microbiota have evolved a wide range of
metabolic pathways, with each microbe employing a different “winning strategy”
for nutrient acquisition and utilization (85). Considering the strong evidence of
inflammation-associated dysbiosis, one would assume that inflammation may cause a
significant change in the metabolic landscape of the gut, leading to accumulation of a
novel set of nutrients for which the microbes that inhabit the intestinal lumen will need
to compete. Although several studies have started to explore this concept in the context of
both infectious and noninfectious inflammatory diseases (Table 1), we are still only begin-
ning to understand the microbial metabolic adaption during inflammation-induced gut
dysbiosis.
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Carbon sources are key for microorganisms to build biomass and thrive in an
environment. A strong body of literature suggests that intestinal inflammation causes
changes in both host physiology and microbiota composition, which, in turn, generates
a unique set of carbon sources that can be used by Enterobacteriaceae to outgrow the
resident microbiota (Table 1). During inflammation, intestinal epithelial damage is a
source of ethanolamine (86) and lactate (87) for the enteric pathogen Salmonella
enterica serovar Typhimurium. In addition, an influx of inflammatory cells in response
to antibiotic treatment can lead to an increased abundance of sugar oxidation prod-
ucts, such as glucarate or galactarate, and utilization of these carbon sources drives a
postantibiotic expansion of E. coli and S. Typhimurium (88).

Metabolites generated by the microbiota also contribute to dysbiotic Enterobacte-
riaceae expansion. Bacteroidia, an abundant member of the intestinal microbial com-
munity, is able to break down complex carbohydrates and release monosaccharides like
rhamnose and fucose (89). Such monosaccharides can be further fermented into
1,2-propanediol (89), which, in turn, is used by S. Typhimurium to grow during
inflammation (90). Pathogenic Enterobacteriaceae can expand in the gut by taking
advantage of additional products from Bacteroidia glycan metabolism, such as the
poorly fermentable dicarboxylic acid succinate (91).

Recent work by Kitamoto et al. shows that intestinal inflammation alters the amino
acid availability in the gut lumen (92). As a consequence, pathogenic Enterobacteri-
aceae, such as adherent invasive E. coli and Citrobacter rodentium, adapt to gut
inflammation by reprogramming their metabolism toward amino acid catabolism (92).
This work suggests that amino acids derived from diet, the host, or the intestinal
microbiota may be a key resource for Enterobacteriaceae survival during intestinal
dysbiosis. Future work in further exploring the mechanisms by which pathogenic and
commensal bacteria may take advantage of this inflammation-dependent amino acid
availability to gain a growth advantage in the inflamed gut will be of great interest.

At first glance, it is not obvious why an increased availability of carbon sources
specifically favors the growth of Enterobacteriaceae over Clostridia or Bacteroidia during
gut dysbiosis. It is important to remember that Enterobacteriaceae are facultative
anaerobes that can utilize oxygen (O2) better than obligate anaerobes Clostridia or
Bacteroidia (93). Therefore, elevated availability of oxygen can potentially increase the
abundance of facultative anaerobic Enterobacteriaceae within the gut-associated mi-
crobial community and, at the same time, inhibit growth of highly oxygen-sensitive
commensals, also known as “the oxygen hypothesis” (94). Recent work has confirmed
that pathogenic and commensal Enterobacteriaceae use oxygen to bloom in the gut
during infectious and noninfectious colitis (38, 87, 95–97). This body of work provides
experimental evidence that Enterobacteriaceae takes advantage of the ability to per-
form aerobic respiration to outcompete the commensal microbiota in the inflamed gut
because respiration generates more energy from the catabolism of carbon sources than
fermentation (98).

A groundbreaking work by Winter et al. was the first to reveal that gut inflammation
leads to the generation of alternative electron acceptors, which promote anaerobic
respiration of Enterobacteriaceae (99). In this study, the authors showed ROS generated
by the host inflammatory response oxidized thiosulfate (S2O3

2–) into tetrathionate
(S4O6

2–), which, in turn, could be used by S. Typhimurium to expand during colitis.
Additional work solidified the concept that Enterobacteriaceae expands within the

TABLE 1 Nutrient sources available to Enterobacteriaceae during intestinal dysbiosis

Nutrient Source Electron acceptor Species Reference(s)

Ethanolamine Host Tetrathionate S. Typhimurium 86
Lactate Host Oxygen S. Typhimurium 87
Glucarate/galactarate Microbiota Oxygen and tetrathionate S. Typhimurium, commensal E. coli 88
1,2-propanediol Microbiota Oxygen, nitrate, tetrathionate S. Typhimurium 90
Succinate Microbiota Oxygen, nitrate, tetrathionate S. Typhimurium 91
L-Serine Diet Not determined Adherent-invasive E. coli, C. rodentium 92, 102
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microbiota when electron acceptors for anaerobic respiration become available (Table
1). An elevated mucosal synthesis of inducible nitric oxide synthase (iNOS) triggered
during pathogen or chemically-induced colitis in mice leads to the production of nitric
oxide (NO), which reacts to form nitrate (NO3

�) in the gut lumen, thereby driving an
uncontrolled expansion of commensal E. coli or pathogenic S. Typhimurium by nitrate
respiration (43, 100).

The impact of the respiration-dependent bloom of Enterobacteriaceae in disease
pathogenesis has been assessed in mouse models of inflammatory bowel disease and
colitis-associated colorectal cancer (CAC). Notably, the use of tungstate to selectively
inhibit microbial respiratory pathways, operational only during episodes of inflamma-
tion, significantly blunted dysbiotic expansion of colitis and CAC-associated E. coli and
ameliorated signs of disease (101, 102).

Collectively, these studies give rise to the possibility that respiration plays an
important role in Enterobacteriaceae intestinal expansion that contributes to the patho-
genesis of diet-induced obesity and associated NCDs. Additionally, selectively blocking
microbial metabolic pathways that are only active during disease may be an unex-
plored and very attractive treatment strategy for NCDs.

COLONOCYTE METABOLISM AS A KEY DRIVER OF DYSBIOSIS-ASSOCIATED
ENTEROBACTERIACEAE BLOOM

An important benefit of the obligate anaerobic microbes that inhabit our large
bowel is their ability to digest complex dietary carbohydrates (fiber) into fermentation
products that are absorbed by the host (103), contributing to host nutrition (104),
immune development (105–108), and niche protection against enteric pathogens (38,
95). In contrast, facultative anaerobic bacteria, such as Enterobacteriaceae, do not
provide such benefits and may be capable of affecting host nutrition by metabolizing
fermentation products to carbon dioxide when oxygen is present (90, 91, 109), as
discussed above. Thus, it is very likely that the host has developed strategies to help
maintain a diverse intestinal microbial community dominated by obligate anaerobic
bacteria that provide benefit by generating fermentation products from fiber, a strat-
egy also known as “microbiota-nourishing immunity” (25, 110).

Recent studies propose that colonic epithelial cells (colonocytes) play a central role
in shaping a beneficial microbiota (38, 95) and promoting microbiota-nourishing
immunity (Fig. 3). Colonocyte maturation and differentiation require peroxisome
proliferator-activated receptor � (PPAR-�) (111), a nuclear receptor highly expressed in
differentiated colonic epithelial cells of mice and humans (112). PPAR-� activates
mitochondrial �-oxidation of long-chain and short-chain fatty acids, resulting in O2

consumption through oxidative phosphorylation of fatty acids (113–115). As a conse-
quence, mature colonocytes must consume high levels of O2 to maintain their oxidative
metabolic state, resulting in an O2 partial pressure of less than 7.6 mm Hg (�1%
oxygen), a condition known as physiologic epithelial hypoxia (116). Therefore, the
highly oxidative metabolism of mature colonocytes limits the amount of O2 diffusing
from the mucosal surface, which helps to maintain an anaerobic environment in the
lumen of the large bowel (Fig. 3) (38, 93). Through this mechanism, the colonic
epithelium ensures a dominance of beneficial anaerobic microorganisms, thereby
maintaining gut homeostasis (93).

The considerations described above suggest that an imbalance in the intestinal
microbiota could be caused by an underlying defect in epithelial metabolic func-
tions that maintain homeostasis in the colon (25). The initial studies into mecha-
nisms of gut homeostasis disruption used antibiotic models of microbiota disruption (117),
which alters epithelial metabolism via the depletion of the microbial-derived short-chain
fatty acids butyrate, propionate, and acetate (38). Butyrate activates PPAR-� signaling
in human epithelial cells (118) to drive the metabolism of surface colonocytes toward
mitochondrial �-oxidation of fatty acids (113–115), which is important for maintaining
physiologic hypoxia (38). Additionally, short-chain fatty acids inhibit intestinal inflam-
mation by maintaining the regulatory T cell pool in mucosa via the activation of
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G-coupled receptors (105–108). As a result, antibiotic treatment increases the inflam-
matory tone of the colonic mucosa (119) by downregulating epithelial PPAR-� signaling
(38) and decreasing the number of regulatory T cells in the colonic mucosa (105–108).
The resulting upregulation of inflammatory signals shifts the metabolism of differen-
tiated colonocytes toward anaerobic glycolysis, a metabolism characterized by low
oxygen consumption, high glucose consumption, and high lactate release (38, 87),
leading to loss of epithelial hypoxia (117). An important consequence of elevated
epithelial oxygenation is an increase in the amount of O2 emanating from the mucosal
surface, providing a key resource for an expansion of facultative anaerobic bacteria by
aerobic respiration (Fig. 3A) (38, 120). Importantly, PPAR-� can inhibit transcription of
proinflammatory genes, including the iNOS gene (Nos2) (121). Thus, downregulation of
PPAR-� signaling in epithelial cells also results in the elevated synthesis of iNOS, which
generates NO to form nitrate (NO3

�) in the gut lumen, thereby promoting Enterobac-
teriaceae expansion via anaerobic nitrate respiration (38).

Insights into the role of the intestinal epithelium in maintaining gut homeostasis
have also come from infectious colitis models (96, 122). C. rodentium (family Entero-
bacteriaceae), a mouse enteric pathogen, uses its virulence factors to intimately attach
to the colonic surface, creating a favorable niche for competition with the gut micro-
biota (39, 123). Interestingly, epithelial injury caused by C. rodentium virulence factors
induces excessive epithelial repair responses, leading to colonic crypt hyperplasia and
accumulation of undifferentiated transit-amplifying cells at the mucosal surface (122),
which rely on glycolysis for energy production (124). The resulting loss of differentiated
colonic epithelial cells increases the amount of O2 emanating from the mucosal surface
and drives growth of C. rodentium through aerobic respiration (96).

DIO causes low-grade intestinal inflammation characterized by loss of differentiated
epithelial cells and induction of endoplasmic reticulum stress response in colonocytes
(125). Systemic hyperglycemia contributes to obesity-associated impairment in intes-
tinal epithelium barrier functions (126). Additionally, consumption of an obesogenic
HFD and increased saturated fatty acids may directly affect intestinal epithelial oxida-
tive capacity, impairing mitochondrial bioenergetics by inducing hydrogen peroxide

FIG 3 Intestinal epithelial dysfunction contributes to dysbiosis associated expansion of Enterobacteriaceae. (A and B, left panels) During gut homeostasis,
�-oxidation of microbiota-derived butyrate causes epithelial hypoxia, which supports an anaerobic environment in the lumen of the large intestine. As a
consequence, the lack of luminal oxygen drives a dominance of beneficial obligate anaerobic bacteria (green) in the gut microbiota. (A and B, right panels)
During gut dysbiosis, colonocytes decrease their oxidative capacity, either due to antibiotic mediated decrease in butyrate-dependent PPAR-� signaling (A) or
due to HFD-induced mitochondrial dysfunction. The resulting epithelial dysfunction disrupts anaerobiosis in the lumen and increases the availability of
alternative electron acceptors, driving an expansion of facultative anaerobic Enterobacteriaceae by aerobic and anaerobic respiration. SCFAs, short-chain fatty
acids.
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production in the mitochondria (127, 128). Importantly, recent studies suggest that
mitochondria-derived ROS may play a role in reducing gut microbiota diversity (129)
through unknown mechanisms. Collectively, these findings raise the possibility that the
Enterobacteriaceae expansion seen in obesity-driven NCDs may be a result of HFD-
induced deterioration of the intestinal epithelial ability to maintain anaerobiosis-driven
gut homeostasis (Fig. 3B).

Taken together, the studies described above suggest that an imbalance in the
microbial community could be caused by an underlying defect in epithelial immune
functions that maintain homeostasis in the colon (25, 130). This concept is partic-
ularly important when understanding the mechanisms by which Enterobacteriaceae
may expand in the gut lumen in a wide range of human diseases (Fig. 2). We now
know that the population of facultative anaerobic bacteria blooms in the intestinal
lumen during dysbiosis due to a disruption of epithelial physiologic hypoxia, which,
in turn, increases the amount of oxygen emanating from the colonic epithelium
(131). Additionally, changes in colonic epithelium physiology lead to increased
levels of electron acceptors that can be used by Enterobacteriaceae for anaerobic
respiration (38). Therefore, the colonic expansion of facultative anaerobic bacteria
associated with many human NCDs might be caused by a common underlying
driver: colonocyte dysfunction.

CONCLUSIONS

Recent research has demonstrated that the gut microbiota, the largest microbial
community inhabiting our body, plays a key role in the pathogenesis of a variety of
NCDs, especially those associated with obesity. A hallmark of most NCDs is
inflammation-induced gut dysbiosis characterized by a shift in the microbial commu-
nity structure from obligate to facultative anaerobes such as Enterobacteriaceae, which
may contribute to NCD pathogenesis. However, little is known about how environ-
mental and metabolic factors contribute to obesity-associated dysbiosis. Therefore,
further studies on this topic should be of great interest.

The picture emerging from recent studies is that the colonic intestinal epithelium
plays a key role in modulating gut microbiota composition, and changes in colonocyte
metabolism may be a common driver of disease-associated dysbiosis in the large
bowel. Additional work is needed to investigate if changes in the intestinal expansion
of Enterobacteriaceae observed in individuals consuming a Western-style HFD (67, 69)
are driven by an underlying defect in colonic epithelial metabolic function. Neverthe-
less, the view that colonocyte metabolism plays a key role in balancing the gut
microbiota may provide a novel target for therapies to modulate the colonization by
members of the microbiota (e.g., colibactin-producing E. coli and TMA-producing
Enterobacteriaceae) that increase the risk for obesity-associated NCDs.
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manová J. 2017. Activation of autophagy and PPAR� protect colon
cancer cells against apoptosis induced by interactive effects of butyrate
and DHA in a cell type-dependent manner: the role of cell differenti-
ation. J Nutr Biochem 39:145–155. https://doi.org/10.1016/j.jnutbio
.2016.09.006.

112. Lefebvre M, Paulweber B, Fajas L, Woods J, McCrary C, Colombel JF,
Najib J, Fruchart JC, Datz C, Vidal H, Desreumaux P, Auwerx J. 1999.
Peroxisome proliferator-activated receptor gamma is induced during
differentiation of colon epithelium cells. J Endocrinol 162:331–340.
https://doi.org/10.1677/joe.0.1620331.

113. Duszka K, Oresic M, Le May C, König J, Wahli W. 2017. PPAR� modulates
long chain fatty acid processing in the intestinal epithelium. Int J Mol
Sci 18:2559. https://doi.org/10.3390/ijms18122559.

114. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK,
Bultman SJ. 2011. The microbiome and butyrate regulate energy me-
tabolism and autophagy in the mammalian colon. Cell Metab 13:
517–526. https://doi.org/10.1016/j.cmet.2011.02.018.

115. Roediger W. 1980. Role of anaerobic bacteria in the metabolic welfare
of the colonic mucosa in man. Gut 21:793–798. https://doi.org/10.1136/
gut.21.9.793.

116. Furuta GT, Turner JR, Taylor CT, Hershberg RM, Comerford K, Narravula
S, Podolsky DK, Colgan SP. 2001. Hypoxia-inducible factor 1-dependent
induction of intestinal trefoil factor protects barrier function during
hypoxia. J Exp Med 193:1027–1034. https://doi.org/10.1084/jem.193.9
.1027.

117. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson
KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel
C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP. 2015. Crosstalk
between microbiota-derived short-chain fatty acids and intestinal ep-
ithelial HIF augments tissue barrier function. Cell Host Microbe 17:
662– 671. https://doi.org/10.1016/j.chom.2015.03.005.

118. Alex S, Lange K, Amolo T, Grinstead JS, Haakonsson AK, Szalowska E,
Koppen A, Mudde K, Haenen D, Al-Lahham S, Roelofsen H, Houtman R,
van der Burg B, Mandrup S, Bonvin AMJJ, Kalkhoven E, Müller M,
Hooiveld GJ, Kersten S. 2013. Short-chain fatty acids stimulate
angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by

activating peroxisome proliferator-activated receptor �. Mol Cell Biol
33:1303–1316. https://doi.org/10.1128/MCB.00858-12.

119. Spees AM, Wangdi T, Lopez CA, Kingsbury DD, Xavier MN, Winter SE,
Tsolis RM, Bäumler AJ. 2013. Streptomycin-induced inflammation en-
hances Escherichia coli gut colonization through nitrate respiration.
mBio 4:e00430-13. https://doi.org/10.1128/mBio.00430-13.

120. Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM,
Durand HK, Jiang S, Midani FS, Nimmagadda SN, O’Connell TM, Wright
JP, Deshusses MA, David LA. 2018. Antibiotic-induced changes in the
microbiota disrupt redox dynamics in the gut. Elife 7:e35987. https://
doi.org/10.7554/eLife.35987.

121. Li M, Pascual G, Glass CK. 2000. Peroxisome proliferator-activated re-
ceptor gamma-dependent repression of the inducible nitric oxide syn-
thase gene. Mol Cell Biol 20:4699 – 4707. https://doi.org/10.1128/mcb
.20.13.4699-4707.2000.

122. Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay
BB, Frankel G. 2014. Citrobacter rodentium: infection, inflammation and
the microbiota. Nat Rev Microbiol 12:612– 623. https://doi.org/10.1038/
nrmicro3315.

123. Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL, Martens EC,
Núñez G. 2012. Regulated virulence controls the ability of a pathogen
to compete with the gut microbiota. Science 336:1325–1329. https://
doi.org/10.1126/science.1222195.

124. Fan Y-Y, Davidson LA, Callaway ES, Wright GA, Safe S, Chapkin RS. 2015.
A bioassay to measure energy metabolism in mouse colonic crypts,
organoids, and sorted stem cells. Am J Physiol Gastrointest Liver
Physiol 309:G1–G9. https://doi.org/10.1152/ajpgi.00052.2015.

125. Gulhane M, Murray L, Lourie R, Tong H, Sheng YH, Wang R, Kang A,
Schreiber V, Wong KY, Magor G, Denman S, Begun J, Florin TH, Perkins
A, Cuív P, McGuckin MA, Hasnain SZ. 2016. High fat diets induce colonic
epithelial cell stress and inflammation that is reversed by IL-22. Sci Rep
6:28990. https://doi.org/10.1038/srep28990.

126. Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, Braverman
S, Tengeler AC, Barak O, Elazar M, Ben-Zeev R, Lehavi-Regev D, Katz MN,
Pevsner-Fischer M, Gertler A, Halpern Z, Harmelin A, Aamar S, Serradas
P, Grosfeld A, Shapiro H, Geiger B, Elinav E. 2018. Hyperglycemia drives
intestinal barrier dysfunction and risk for enteric infection. Science
359:1376 –1383. https://doi.org/10.1126/science.aar3318.

127. Kakimoto PA, Tamaki FK, Cardoso AR, Marana SR, Kowaltowski AJ. 2015.
H2O2 release from the very long chain acyl-CoA dehydrogenase. Redox
Biol 4:375–380. https://doi.org/10.1016/j.redox.2015.02.003.

128. Cardoso AR, Kakimoto PA, Kowaltowski AJ. 2013. Diet-sensitive sources
of reactive oxygen species in liver mitochondria: role of very long chain
acyl-CoA dehydrogenases. PLoS One 8:e77088. https://doi.org/10.1371/
journal.pone.0077088.

129. Yardeni T, Tanes CE, Bittinger K, Mattei LM, Schaefer PM, Singh LN, Wu
GD, Murdock DG, Wallace DC. 2019. Host mitochondria influence gut
microbiome diversity: a role for ROS. Sci Signal 12:eaaw3159. https://
doi.org/10.1126/scisignal.aaw3159.

130. Litvak Y, Byndloss MX, Baumler AJ. 2018. Colonocyte metabolism
shapes the gut microbiota. Science 362:eaat9076. https://doi.org/10
.1126/science.aat9076.

131. Rivera-Chávez F, Lopez CA, Bäumler AJ. 2017. Oxygen as a driver of gut
dysbiosis. Free Radic Biol Med 105:93–101. https://doi.org/10.1016/j
.freeradbiomed.2016.09.022.

Minireview Infection and Immunity

July 2020 Volume 88 Issue 7 e00939-19 iai.asm.org 13

https://doi.org/10.1038/nature12721
https://doi.org/10.1038/nature12721
https://doi.org/10.1126/science.1241165
https://doi.org/10.1016/j.chom.2018.01.004
https://doi.org/10.1093/ibd/izz004
https://doi.org/10.1016/j.jnutbio.2016.09.006
https://doi.org/10.1016/j.jnutbio.2016.09.006
https://doi.org/10.1677/joe.0.1620331
https://doi.org/10.3390/ijms18122559
https://doi.org/10.1016/j.cmet.2011.02.018
https://doi.org/10.1136/gut.21.9.793
https://doi.org/10.1136/gut.21.9.793
https://doi.org/10.1084/jem.193.9.1027
https://doi.org/10.1084/jem.193.9.1027
https://doi.org/10.1016/j.chom.2015.03.005
https://doi.org/10.1128/MCB.00858-12
https://doi.org/10.1128/mBio.00430-13
https://doi.org/10.7554/eLife.35987
https://doi.org/10.7554/eLife.35987
https://doi.org/10.1128/mcb.20.13.4699-4707.2000
https://doi.org/10.1128/mcb.20.13.4699-4707.2000
https://doi.org/10.1038/nrmicro3315
https://doi.org/10.1038/nrmicro3315
https://doi.org/10.1126/science.1222195
https://doi.org/10.1126/science.1222195
https://doi.org/10.1152/ajpgi.00052.2015
https://doi.org/10.1038/srep28990
https://doi.org/10.1126/science.aar3318
https://doi.org/10.1016/j.redox.2015.02.003
https://doi.org/10.1371/journal.pone.0077088
https://doi.org/10.1371/journal.pone.0077088
https://doi.org/10.1126/scisignal.aaw3159
https://doi.org/10.1126/scisignal.aaw3159
https://doi.org/10.1126/science.aat9076
https://doi.org/10.1126/science.aat9076
https://doi.org/10.1016/j.freeradbiomed.2016.09.022
https://doi.org/10.1016/j.freeradbiomed.2016.09.022
https://iai.asm.org


Catherine D. Shelton earned a bachelor of
science degree in biochemistry in 2016 from
Western Washington University. During her
undergraduate studies, she investigated the
inhibition of prokaryotic translation factors
in the lab of Dr. Clint Spiegel. After gradua-
tion, she joined the Tuberculosis Discovery
Program at the Infectious Disease Research
Institute in Seattle, where she assisted in the
identification of potential therapeutics. Cath-
erine began her graduate studies in 2018 in
the Interdisciplinary Graduate Program at Vanderbilt University. In 2019,
she joined the lab of Dr. Mariana Byndloss and the Microbe-Host
Interactions program. Under Dr. Byndloss, Catherine is studying how
perturbations to the gut microbiota alter intestinal epithelial function
and promote obesity.

Mariana X. Byndloss, D.V.M., Ph.D., earned
her D.V.M. and M.Sc. in veterinary pathology
from Universidade Federal de Minas Gerais
(UFMG) in Brazil. Her doctoral work per-
formed at UFMG and University of California,
Davis (UC Davis) was awarded the Brazilian
National Prize for best Ph.D. thesis in veter-
inary medicine. She performed her postdoc-
toral training in Andreas Bäumler’s labora-
tory at UC Davis, studying the link between
endoplasmic reticulum (ER) stress and innate
immunity as well as the interactions between the host and intestinal
microbiota during dysbiosis. Currently, she is an assistant professor in
the Pathology, Immunology, and Microbiology Department at Vander-
bilt University Medical Center. Dr. Byndloss has extensive experience in
studying the host-microbe interactions in gastrointestinal diseases and
has authored and coauthored over 60 scientific publications. Dr.
Byndloss is particularly interested in how inflammation-mediated
changes in gut epithelial metabolism lead to gut dysbiosis and in-
creased risk of noncommunicable diseases, namely, inflammatory
bowel disease, obesity, cardiovascular disease, and colon cancer.

Minireview Infection and Immunity

July 2020 Volume 88 Issue 7 e00939-19 iai.asm.org 14

https://iai.asm.org

	OBESITY IS A MAJOR RISK FACTOR FOR NONCOMMUNICABLE DISEASES
	ROLE OF ENTEROBACTERIACEAE EXPANSION IN THE PATHOGENESIS OF OBESITY-ASSOCIATED NCDs
	Role of Enterobacteriaceae expansion in the pathogenesis of cardiovascular disease. 
	Role of Enterobacteriaceae expansion in colorectal cancer pathogenesis. 

	RESPIRATION AS A STRATEGY FOR ENTEROBACTERIACEAE EXPANSION IN THE GUT
	COLONOCYTE METABOLISM AS A KEY DRIVER OF DYSBIOSIS-ASSOCIATED ENTEROBACTERIACEAE BLOOM
	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

