Skip to main content
. Author manuscript; available in PMC: 2020 Jun 23.
Published in final edited form as: J Neural Eng. 2018 Dec 3;16(1):016007. doi: 10.1088/1741-2552/aaeb0c

Table 3.

Model parameters to estimate the bulk transverse endoneurial resistivity for a bundle of unmyelinated axons.

Parameter (variable name) Default value Test range References
Fascicle diameter (dfasc) 105 μm 80–300 μm (Kawagishi, 2008; Tweden, 2013)
Axon diameter (daxon) 1 μm 0.5–2 μm (Giordano, 2005; Guo, 1987; Helmers, 2012; Mei et al., 1980; Robinson, 1972; Waataja, 2011)
Axonal area fraction (AAF)a 0.435b 0.20–0.737c (Agostini, 1957; Altman and Plonsey, 1989)
Endoneurial resistivity (ρendo-micro) 0.65 Ω-m 0.5–2 Q-m (Altman and Plonsey, 1989; Geddes and Baker, 1967b)
Intracellular resistivity (ρa) 0.7 Ω-m 0.5–4 Q-m (McIntyre et al., 2002; McIntyre and Grill, 2000)
Specific membrane resistance (Rm) 0.2 Ω-m2 0.0025–0.4 Ω-m2 d (Barrett and Crill, 1974; Cole and Hodgkin, 1939)
a

Table 5 (Supplement C) shows calculations for estimating the axonal area fraction for a single fascicle based on cat posterior abdominal vagus nerve morphology.

b

Although we estimated an axonal area fraction of 0.45 from cat posterior abdominal vagus nerve histology slides (Table 5, Supplement C), we could only achieve AAF = 0.435 in the finite element model with the default parameters.

c

The lower bound of this range was chosen arbitrarily simply to test model sensitivity to this parameter. The upper bound is the maximum extent to which we could pack 2 μm axons into a 105 μm diameter fascicle.

d

The lower bound of this range represents the minimum membrane resistance for squid giant axon if all axons in the fascicle are active simultaneously.