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Boronic acids can serve as excellent building blocks for the synthesis of a wide range of 

natural products, pharmaceuticals, and materials.1 However, some of the potentially most 

useful boronic acids, including 2-heterocyclic,2–4 vinyl,5 and cyclopropyl6 derivatives, are 

inherently unstable, which can significantly limit their benchtop storage and/or efficient 

cross-coupling. Many important surrogates have been developed, including trifluoroborate 

salts,7–10 trialkoxy or trihydroxyborate salts,11,12 diethanolamine adducts,13 sterically bulky 

boronic esters,14 and boroxines.15 However, none of these can provide air-stable and highly 

effective substitutes for all three of these challenging boronic acid classes. We herein report 

that N-methyliminodiacetic acid (MIDA) boronates16,17 represent the first general solution 

to this problem by virtue of their uniform benchtop stability and remarkable capacity for in 

situ slow release of unstable boronic acids (Figure 1).

2-Heterocyclic, vinyl, and cyclopropyl boronic acids are known to decompose on the 

benchtop under air via protodeboronation, oxidation, and/or polymerization.2–6 In addition, 

these processes are thought to be accelerated in the presence of heat, base, and/or a Pd 

catalyst, causing the in situ decomposition of unstable boronic acids to compete with their 

cross-coupling.2 This latter challenge is exacerbated in couplings with slower-reacting 

halides, such as unactivated aryl chlorides.2 We hypothesized that both of these problems 

might be solved if we could achieve rate-controlled in situ hydrolysis of air-stable MIDA 

boronates, thereby promoting “slow release” of the corresponding unstable boronic acids 

from bench-stable building blocks.

The hydrolysis of MIDA boronates with aqueous NaOH is fast, typically requiring <10 min 

at 23 °C.17 In contrast, we discovered that K3PO4 in 5:1 dioxane/H2O at 60 °C promotes the 

continuous release of boronic acids over ∼3 h.18 Remarkably, aryl, heteroaryl, alkenyl, and 

alkyl MIDA boronates all behave similarly. Moreover, this release rate can be adjusted from 

24 h to 30 min by varying the temperature from 23 to 100 °C.18

Having verified this capacity for slow release, we systematically compared the benchtop 

stability and cross-coupling efficiency of freshly prepared boronic acids 1a–h18,19 and the 

corresponding MIDA boronates 2a–h18 (Table 1). The benchtop instability of 2-
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heterocyclic, vinyl, and cyclopropyl boronic acids has frequently been discussed anecdotally,
2–15 yet there is very little quantitative data available. As shown in Table 1, we determined 

that boronic acids 1a–h all decompose significantly on the benchtop under air over the 

course of just 15 days (entries 1–8).18 In fact, with 2-furan, 2-pyrrole, 2-indole, vinyl, and 

cyclopropyl boronic acids, very little of the original material remains after this time. 

Alternatively, all of the MIDA boronates 2a–h are indefinitely air-stable, with no 

decomposition detectable by 1H NMR even after g60 days on the benchtop under air.18

We next tested the cross-coupling efficiency of freshly prepared boronic acids 1a–h19 with 

aryl chloride 3a using Pd(OAc)2/SPhos2,20 as the catalyst and K3PO4 as the base. Only very 

low to moderate yields (14–68%) were observed for the 2-heterocyclic derivatives 1a–f 
(entries 1–6), consistent with our observations that boronic acid decomposition kinetically 

competes with cross-coupling.2,18 In stark contrast, all of the corresponding MIDA 

boronates 2a–f coupled under identical conditions with aryl chloride 3a in uniformly 

excellent yields (90–96%) using in each case only 1 equiv of MIDA boronate.21 In many 

cases, the improvement in yield using 2 versus 1 is striking [e.g., 92 vs 50% with 2-

benzofuran (entry 2), 94 vs 37% with 2-thiophene (entry 3), and 93 vs 14% with 2-indole 

(entry 6)]. In addition, vinyl MIDA boronate (2g) was significantly more effective than 

freshly prepared 1g (entry 7).5c,8

Consistent with our hypothesis that these increases in yield are attributable to in situ slow 

release of the corresponding boronic acids, no significant differences in yields were 

observed for 1a (64%) vs 2a (59%) under fast-release conditions, i.e., using aqueous NaOH 

as base.18 Moreover, the high yield observed for 2a under slow-release conditions was 

replicated via syringe-pump-mediated addition of freshly prepared 1a over the course of 3 h.
18 It is noteworthy that cyclopropyl boronic acid (1h) prepared immediately prior to the 

reaction can be as effective as MIDA boronate 2h (entry 8), suggesting that benchtop 

decomposition of 1h may be in large part responsible for the challenges frequently 

encountered with this boronic acid.6a

Encouraged by these results, we explored the scope of this slow-release method and found 

that even some of the most challenging aryl and heteroaryl chlorides can be efficiently 

coupled with MIDA boronates 2a–h (Table 2). For example, the highly deactivated 

(electron-rich and sterically hindered) compound 2,4-dimethoxychlorobenzene (3b) 

represents an exceptionally difficult cross-coupling partner for unstable 2-heterocyclic 

boronic acids. Nonetheless, just 1.2 equiv of the corresponding MIDA boronates promoted 

this coupling in generally excellent to outstanding yields (entries 1, 5, 9, 12, and 14). 

Because of the great importance of polyheterocyclic scaffolds in pharmaceuticals, similar 

cross-couplings with inexpensive and readily available heteroaryl chlorides would also be 

highly valuable. We explored this possibility with 3d–i and found that the 2-heterocyclic 

MIDA boronates are highly effective in such couplings (entries 3, 4, 6–8, 10, 11, 13, and 

15). Even electronically deactivated heteroaryl chlorides such as 3f–h were coupled to 2b in 

good to excellent yields (entries 6–8).

Vinylation of aryl and heteroaryl halides can provide styrene-like building blocks for a wide 

range of small molecules and materials.5c Thus, the development of a highly effective, 
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nontoxic, environmentally friendly, and air-stable vinyl metal species has long been an 

important goal.5c Remarkably, vinyl MIDA boronate 2g embodies all of these favorable 

properties and efficiently coupled even with the highly deactivated aryl chloride 3c (entry 

16) as well as a variety of heteroaryl chlorides (entries 17–19). Finally, 2h coupled with 

highly deactivated aryl chlorides 3c and 3b (entries 20–21).

As a final example, the 2-pyridyl subunit appears with remarkable frequency in biologically 

active small molecules. However, the corresponding boronic acid is notoriously unstable4,22 

and difficult to cross-couple,4,7,11a,23 particularly with aryl chlorides.11a Currently available 

surrogates either are not air-stable11a,b,12 or cannot be isolated in chemically pure form.13

In contrast, 2-pyridyl MIDA boronate (2i) is isolable as a chemically pure and air-stable 

solid (X-ray structure shown in Table 3, 1H NMR spectra showed no decomposition after 60 

days on the benchtop under air). Consistent with a relatively lower rate of transmetalation 

for 2-pyridylboranes,11a conditions like those used in Tables 1 and 2 were not generally 

effective for couplings with 2i. However, driven by the hypothesis that in-situ-generated 2-

pyridyl boronic esters would be more stable than their boronic acid counterparts, we 

explored a variety of alcohol-containing solvent mixtures and found that DMF/IPA was 

advantageous. Moreover, it has been demonstrated that the addition of CuI13,11b or CuCl14c 

can promote cross-couplings with other 2-pyridylboranes. We therefore surveyed a series of 

copper salts and found that the inexpensive and nontoxic Cu(OAc)2 was especially 

beneficial. As shown in Table 3, under these modified slow-release conditions, air-stable 2-

pyridyl MIDA boronate (2i) can be cross-coupled with a variety of aryl and heteroaryl 

chlorides (entries 1–5). The capacity to effectively cross-couple two different 2-substituted 

heterocycles is a notable advantage of this methodology (Table 3, entries 3–5; also see Table 

2, entries 4 and 11).

In summary, several highly advantageous features collectively make MIDA boronates an 

outstanding platform for the preparation and utilization of organoboranes in organic 

synthesis.17 These include reversibly attenuated reactivity toward anhydrous cross-coupling 

conditions, compatibility with a wide range of synthetic reagents, air stability, solubility in 

many common organic solvents, monomeric constitution, and compatibility with silica gel 

chromatography.17 We now report that MIDA boronates also possess the highly enabling 

capacity for in situ slow release of the corresponding unstable boronic acids. This 

remarkably general solution has transformed a wide range of unstable boronic acids into air-

stable and highly effective cross-coupling partners, many of which are now commercially 

available.24
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Figure 1. 
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Table 1.

Benchtop Stability and Cross-Coupling Efficiency of Boronic Acids and the Corresponding MIDA Boronates

entry R

% remaining after benchtop storage 

under air
a

4

% isolation yield from cross-

coupling
c

1 (15 days) 2 (60 days) 1 2

1 7 >95
b 68 94

2 88 >95 50 92

3 80 >95 37 94

4 80 >95
b 45 96

5 <5 >95 61 90

6 <5 >95 14 93
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entry R

% remaining after benchtop storage 

under air
a

4

% isolation yield from cross-

coupling
c

1 (15 days) 2 (60 days) 1 2

7
d 5 >95

b 79 98

8
d 31 >95 95 96

a
Freshly prepared boronic acids 1 and MIDA boronates 2 were stored as solids on the benchtop under air for 15 and 60 days, respectively.18

b
Stored for 107 days.

c
Reaction conditions: 1.0 equiv of 3a (1 mmol), 1.0 equiv of 1 (freshly prepared, >95% pure) or 2, 5 mol % Pd(OAc)2, 10 mol % SPhos, 7.5 equiv 

of K3PO4, 0.07 M in 5:1 dioxane/H2O, 60 °C, 6 h.

d
Cross-couplings were run at 100 °C.
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Table 2.

Slow-Release Cross-Coupling of Air-Stable 2-Heterocyclic, Vinyl, and Cyclopropyl MIDA Boronates with 

Aryl and Heteroaryl Chlorides
a

entry 2 3 4 % isolated yield

1 99

2 2a 97

3 2a 99

4 2a 91

5 3b 94

6 2b 94

7
b 2b 85
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entry 2 3 4 % isolated yield

8
b 2b 85

9 3b 98

10 2c 3d 99

11 2c 97

12
c 3b 81

13
c 2e 3d 98

14 3b 97

15 2f 3d 93
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entry 2 3 4 % isolated yield

16
d,e 3c 91

17
d,e 2g 3i 87

18
d,e 2g 3g 76

19
d,e 2g 3d 96

20
b,d,f 3c 79

21
d 2h 3b 97

a
General reaction conditions: 1 equiv of aryl halide (1 mmol), 1.2 equiv of MIDA boronate, 5 mol % Pd(OAc)2, 10 mol % SPhos, 7.5 equiv of 

K3PO4, 0.07 M in 5:1 dioxane/H2O, 60 °C, 6 h.

b
Using 1.5 equiv of MIDA boronate.

c
Using 0.5 mmol of aryl halide, 0.6 mmol of MIDA boronate (1.2 equiv)

d
At 100 °C.

e
Reaction time 2 h.

f
Reaction time 24 h.
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Table 3.

Slow-Release Cross-Coupling of Air-Stable 2-Pyridyl MIDA Boronate 2i with Aryl and Heteroaryl Chlorides
a

entry 3 4 % isolation yield

1 72

2 60

3 79

4 52

5 74

a
Reaction conditions: 1.0 equiv of aryl halide 3 (1 mmol), 1.5 equiv of MIDA boronate 2i, 1.5 mol % Pd2(dba)3, 6 mol % XPhos, 50 mol % 

Cu(OAc)2, 5 equiv of K2CO3, 0.1 M in 4:1 DMF/IPA, 100 °C, 4 h.
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