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Abstract
Background Machine-learning methods such as the
Bayesian belief network, random forest, gradient boosting
machine, and decision trees have been used to develop
decision-support tools in other clinical settings. Opioid
abuse is a problem among civilians and military service
members, and it is difficult to anticipate which patients are
at risk for prolonged opioid use.
Questions/purposes (1) To build a cross-validated model
that predicts risk of prolonged opioid use after a specific

orthopaedic procedure (ACL reconstruction), (2) To de-
scribe the relationships between prognostic and outcome
variables, and (3) To determine the clinical utility of a pre-
dictive model using a decision curve analysis (as measured
by our predictive system’s ability to effectively identify
high-risk patients and allow for preventative measures to be
taken to ensure a successful procedure process).
Methods Weused theMilitaryAnalysis andReporting Tool
(M2) to search the Military Health System Data Repository
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for all patients undergoing arthroscopically assisted ACL
reconstruction (Current Procedure Terminology code 29888)
from January 2012 throughDecember 2015with aminimum
of 90 days postoperative follow-up. In total, 10,919 patients
met the inclusion criteria, most of whomwere young men on
active duty.We obtained complete opioid prescription filling
histories from the Military Health System Data Repository’s
pharmacy records. We extracted data including patient de-
mographics, military characteristics, and pharmacy data. A
total of 3.3% of the data was missing. To curate and impute
all missing variables, we used a random forest algorithm.We
shuffled and split the data into 80% training and 20% hold-
out sets, balanced by outcome variable (Outcome90Days).
Next, the training set was further split into training and val-
idation sets. Each model was built on the training data set,
tuned with the validation set as applicable, and finally tested
on the separate hold-out dataset. We chose four predictive
models to develop, at the end choosing the best-fit model for
implementation. Logistic regression, random forest,
Bayesian belief network, and gradient boosting machine
models were the four chosen models based on type of anal-
ysis (classification). Each were trained to estimate the like-
lihood of prolonged opioid use, defined as any opioid
prescription filled more than 90 days after anterior cruciate
reconstruction. After this, we tested the models on our
holdout set and performed an area under the curve analysis
concordance statistic, calculated the Brier score, and
performed a decision curve analysis for validation. Then, we
chose the method that produced the most suitable analysis
results and, consequently, predictive power across the three
calculations. Based on the calculations, the gradient boosting
machine model was selected for future implementation. We
systematically selected features and tuned the gradient
boosting machine to produce a working predictive model.
We performed area under the curve, Brier, and decision curve
analysis calculations for the final model to test its viability
and gain an understanding of whether it is possible to predict
prolonged opioid use.
Results Four predictive models were successfully de-
veloped using gradient boostingmachine, logistic regression,
Bayesian belief network, and random forest methods. After
applying the Boruta algorithm for feature selection based
on a 100-tree random forest algorithm, features were nar-
rowed to a final seven features. The most influential features
with a positive association with prolonged opioid use are
preoperative morphine equivalents (yes), particular phar-
macy ordering sites locations, shorter deployment time, and
younger age. Those observed to have a negative association
with prolonged opioid use are particular pharmacy ordering
sites locations, preoperative morphine equivalents (no),
longer deployment, race (American Indian or Alaskan na-
tive) and rank (junior enlisted).
On internal validation, the models showed accuracy for
predicting prolonged opioid use with AUC greater than our

benchmark cutoff 0.70; random forest were 0.76 (95%
confidence interval 0.73 to 0.79), 0.76 (95% CI 0.73 to
0.78), 0.73 (95%CI 0.71 to 0.76), and 0.72 (95%CI 0.69 to
0.75), respectively. Although the results from logistic re-
gression and gradient boostingmachines were very similar,
only one model can be used in implementation. Based on
our calculation of the Brier score, area under the curve, and
decision curve analysis, we chose the gradient boosting
machine as the final model. After selecting features and
tuning the chosen gradient boosting machine, we saw an
incremental improvement in our implementation model;
the final model is accurate, with a Brier score of 0.10 (95%
CI 0.09 to 0.11) and area under the curve of 0.77 (95% CI
0.75 to 0.80). It also shows the best clinical utility in a
decision curve analysis.
Conclusions These scores support our claim that it is pos-
sible to predict which patients are at risk of prolonged opioid
use, as seen by the appropriate range of hold-out analysis
calculations. Current opioid guidelines recommend pre-
operative identification of at-risk patients, but available tools
for this purpose are crude, largely focusing on identifying
the presence (but not relative contributions) of various risk
factors and screening for depression. The power of this
model is that it will permit the development of a true clinical
decision-support tool, which risk-stratifies individual
patients with a single numerical score that is easily un-
derstandable to both patient and surgeon. Probabilistic
models provide insight into how clinical factors are condi-
tionally related. Not onlywill this gradient boostingmachine
be used to help understand factors contributing to opiate
misuse after ACL reconstruction, but also it will allow or-
thopaedic surgeons to identify at-risk patients before surgery
and offer increased support andmonitoring to prevent opioid
abuse and dependency.
Level of Evidence Level III, therapeutic study.

Introduction

Opioid abuse is a problem among civilians and military
personnel. The United States Department of Defense
Military Health System and Veterans Health Administration
recognize that prescription opioid analgesics are the most
misused drug class in the United States and second only to
marijuana among illicit drugs of abuse [7]. In 2010, the
military recognized the need to mitigate opioid misuse as a
military health priority by recommending a more cautious
approach to prescribing opioids. It also focused attention on
researching the surveillance, detection, and management of
opioid misuse [3, 7, 11, 18, 31].

Currently, orthopaedic surgeons are the third-highest
prescribers of opioids among physicians, accounting for
7.7%of all opioid prescriptions in theUnited States [7, 8, 27,
29, 40]. Understanding the risk factors that lead to prolonged
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opioid use may help guide orthopaedic surgeons as they
consider how much, if any, opioids should be prescribed
perioperatively and postoperatively. In a retrospective study
from 2006 to 2014 in adults on TRICARE who underwent
lumbar interbody arthrodesis, discectomy, decompression,
or posterolateral arthrodesis, the duration of preoperative
opioid use appeared to be the most important factor asso-
ciated with continued opioid use for longer than 90 days
after surgery [32].

Statistical predictive modeling including Bayesian
classification has been used at our institution to develop
decision-support tools [15] and in studies on the spine to
predict opioid use [22]. We believe statistical predictive
modeling is well-suited to analyze variables inherent to the
predictors of prolonged opioid use because it codifies
highly complex relationships into clear graphic repre-
sentations that are easily understood. To our knowledge,
this approach has not been applied to patients for opioid use
after ACL reconstruction.

The purposes of this study were (1) To build a cross-
validated model that predicts the risk of prolonged opioid use
after a specific orthopaedic procedure (ACL reconstruction),
(2) To describe the relationships between prognostic and
outcome variables, and (3) To determine the clinical utility
of a predictive model using a decision curve analysis (as
measured by our predictive system’s ability to effectively
identify high-risk patients and allow for preventative meas-
ures to be taken to ensure a successful procedure process).

Patients and Methods

Guidelines

This retrospective analysis of longitudinally maintained
data in a prognostic classification study followed the
Transparent Reporting of aMultivariable PredictionModel
for Individual Prognosis or Diagnosis guidelines [12] and
the Guidelines for Developing and Reporting Statistical
predictive modeling Models in Biomedical Research [26].

Data

The Military Health System Data Repository contains
patient-level detail on all healthcare encounters for Military
Health System beneficiaries. After institutional review board
approval was obtained, we used the Military Analysis and
Reporting Tool (M2) to search the Military Health System
Data Repository for all patients undergoing ACL re-
construction from January 2012 through December 2015.
Patients were included if they had an encounter that was
assigned a Current Procedural Terminology code for
arthroscopically assisted ACL reconstruction (29888), were

active-duty military personnel at the time of surgery, and a
minimum of 90 days follow-up postoperatively (Fig. 1).

We obtained complete opioid prescription filling history
for the patients using pharmacy records through the same
system. We tracked preoperative opioid prescriptions (be-
fore 30 days preoperatively) and prolonged opioid pre-
scriptions (between 90 and 365 days postoperatively) for all
patients. Opioid prescriptions between 30 days pre-
operatively and 90 days postoperatively were considered
perioperative prescriptions for a surgical intervention.
Previous evidence has defined a chronic opioid user as a
patient who fills a prescription preoperatively at 30 to
120 days from surgery or new persistent opioid use, which
was defined as an opioid prescription fulfillment between 90
and 180 days after a surgical procedure [2, 6, 37].

We standardized cumulative dosing by converting all
opioid prescriptions to morphine equivalents using official
CDC opioid prescribing guidelines [13, 14].

Preoperative diagnoses of substance abuse disorders
were documented using ICD-9 codes for opioid associated
substance abuse (30400, 30401, 30402, 30403, 30460,
30461, 30462, 30463, 30470, 30471, 30472, 30473,
30490, 30491, 30492, 30550, 30551, 30552, 30553, 30590
30591 30592, and 30593). Patients were excluded if they
had incomplete opioid prescribing history.

Data extracted for analysis included patient de-
mographics (age, gender, and self-reported patient race),
military employment characteristics (rank, service, total
time deployed, and rank), and pharmacy data (quantity of
opioids prescribed at each time period in morphine
equivalents, number of refills, and the clinic from which
patients received prescriptions).

A total of 10,919 patients met the inclusion criteria. The
study population paralleled the Department of Defense
population of young, white men. The mean patient age was
29 years; 14% (1492 of 10,919) were women and 86%
(9427 of 10,919) were men. The population self-reported
race was diverse, with 44% (4815 of 10,919) of the group
being white patients, 14% (1569 of 10,919) black patients,
3% (295 of 10,919), Asian patients, 0.4% (40 of 10,919)
American Indian or Alaskan Native patients, and 4% (385
of 10,919) patients whose race was categorized as other or
unknown. Seventy-four patients (0.7%) had a preoperative
diagnosis of substance abuse. As expected, when per-
forming internal validation, the patient demographic fea-
tures in the validation set did not differ from those of
patients in the training set (Table 1). This was the same for
the categorical clinical features of patients (Table 2).

Missing Data

Data were missing in 3.3% of the records, in the variables
of race, marital status, and ordering site (Fig. 1). The
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Fig. 1 This figure illustrates the study workflow for development of a predictive
model. The first step is data pre-processing, which includes relabeling data, real-
locating data types, standardizing not applicable values, and imputing missing
data (missForest). The second step is splitting the data set into a training set for
model development and then a testing hold-out set that is used later for model
final testing. The third step is splitting the training set into training and validation
sets. These sets undergo cross validation before being used to develop the four
model types selected for this study (logistic regression, gradient boostingmachine,
random forest, and Bayesian belief network). The fourth step is model testing on
the hold-out set and performance measures. The fifth step is selection of the best
model based on performance measures and final adjustments with feature se-
lection and hyperparameter tuning, as applicable. The final step is model imple-
mentation; AUC = area under the curve; DCA = decision curve analysis; ROC =
receiver operating characteristic; NA = not applicable.
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missing data were imputed using the entire data set before
splitting into a balanced train and test set to ensure non-bias
of missing data. The missing data were imputed using the
random forest algorithm with 100 trees via the missForest
package in R© Version 3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria) [33]. After missing data were
imputed, race and marital status remained categorical, with
six and eight categories, respectively. Missing ordering
sites were imputed as a numeric variable to surpass cate-
gorical imputation limitations. By imputing as a numeric
variable, all 9999 available ordering site codes were con-
sidered. Before modeling, categorical variables were listed
as factors and numerical variables were listed as numeric.

Modeling Building

Using the training set, all models were designed to estimate
the likelihood of prolonged opioid use beyond 90 days
postoperatively. The Bayes factor accounts for prior evi-
dence for an alternative hypothesis, while traditional p
values do not. Therefore, we applied a Bayes theorem to
compare the training and testing sets [1]. Differences in
continuous variables were assessed using the Bayes factor
t-test andWelch’s t-test, comparingmeans (t-test) using the
BayesFactor library in R. Differences between categorical
variables were assessed using a Bayes factor contingency
table comparison (contingency TableBF in R) (Table 3).
For comparison, we used Pearson’s chi-square test and
Fisher’s exact test, as appropriate. Without a convincing
reason why a difference between groups should only be in
one direction, we chose a two-sided, unpaired t-test with
0.95 confidence level and otherwise default settings.

Feature Selection

We performed feature selection to determine which data
features were used to train the machine-learning models.
These techniques are unique and specific to each modeling
method, and we chose to report only the features associated
with the best modeling technique, gradient boosting ma-
chine. The feature selection process was unique to each
modelingmethod and is briefly described below. To develop
the Bayesian belief network, random forest, and logistic
regression models, we used commercially available statis-
tical software (JMP Pro Version 14.1.0, SAS Institute, Cary,
NC, USA). For the Bayesian belief network, all 10 variables
were considered candidates for inclusion in the model.
Using a stepwise process, we pruned unrelated and re-
dundant features from the preliminarymodels to produce the
final model in a manner previously described [15].
Similarly, the RF model was created by incorporating all 10
variables. For comparison, we developed a conventionalTa
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Table 2. Categorical variables in the training and validation sets

Feature
Training
subset

Testing
subset Overall

Comparison of
groups in
Pearson’s

test
Bayes
factor

Fisher’s
test

Military Health System
Data Repository for Military
Health System beneficiaries

(n = 8735)

Military Health System
Data Repository for

Military Health System
beneficiaries (n = 2184)

Military Health System
Data Repository for

Military Health System
beneficiaries (n = 10,919)

p value
overall-training
versus testing

Bayes factor
training vs
testing

p value
training

vs
testing

Number % Number % Number %

Sex

Male 7591 87 1836 84 9427 86 0.001 8.85 0.001

Female 1144 13 348 16 1492 14

Beneficiary region

Alaska 197 2.3 63 2.9 260 2.3 0.46 3.83

North 2404 28 632 29 3036 28
aOCONUS 2046 23 507 23 2553 23

South 3170 36 760 35 3930 36

West 13 0.2 4 0.2 17 0.2

Unknown 468 5.4 112 5.1 580 5.3
aOE 437 5.0 106 4.9 543 5.0

Race

White 4655 53 1152 53 4815 44 0.64 3.71

Asian or Pacific Islander 446 5.1 98 4.5 295 2.7

Black 1500 17 402 18 1569 14

American Indian or
Alaskan Native

70 0.8 16 0.7 40 0.4

Other 1589 18 403 18 1548 14

Unknown 475 5.4 113 5.2 385 3.5

Missing 0 0.00 0 0 2267 21

Special operations code

Yes 129 1.5 33 1.5 162 1.5 0.99 0.009 0.92

No 8606 99 2151 98 10747 98

Rank group

Cadet 306 3.5 78 3.6 384 3.5 0.79 3.36

Enlisted, junior (E1-E4) 3623 41 871 40 4494 41

Enlisted, senior (E5-E9) 3740 43 943 43 4683 43

Officer, junior (O1-O3) 609 7.0 167 7.7 776 7.1
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Table 2. continued

Feature
Training
subset

Testing
subset Overall

Comparison of
groups in
Pearson’s

test
Bayes
factor

Fisher’s
test

Officer, senior
(O4-O9, 10, 11)

365 4.2 99 4.5 464 4.3

Warrant officer (W1-W5) 83 1.0 23 1.1 106 1.0

All others 9 0.1 3 0.1 12 0.1

Marital status

Single, never married 3326 38 816 37 3107 28 0.54 4.76 0.54

Married 4580 52 1162 53 4549 42

Divorced 317 3.6 84 3.9 359 3.3

Annulled 1 0.0 0 0 1 0.0

Interlocutory 1 0.0 0 0 1 0.0

Widowed 1 0.0 0 0 1 0.0

Legally separated 66 0.8 8 0.4 73 0.7

Unknown 443 5.1 114 5.2 330 3.0

Missing 0 0.0 0 0 2498 23

Morphine administration
for 30 days

Yes 2317 27 607 28 2924 27 0.24 0.07 0.23

No 6418 73 1577 72 7995 73

Wounded Warrior

Yes 2571 29 626 29 3197 29 0.50 0.04 0.49

No 6164 71 1558 71 7722 71
bSites (code)

0 through 999 8032 92 2014 92 10031 92 0.80 0.00 0.80

1000 through 1999 341 3.9 81 3.7 422 3.9

2000 through 2999 0 0.0 0 0 0 0.0

3000 through 3999 1 0.0 0 0 1 0.0

4000 through 4999 0 0.0 0 0 0 0.0

5000 through 5999 9 0.1 5 0.2 14 0.1

6000 through 6999 121 1.4 28 1.3 149 1.4

7000 through 7999 205 2.4 49 2.2 254 2.3

8000 through 8999 26 0.3 7 0.3 33 0.3
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logistic regression model by incorporating features demon-
strating potential significance in a univariate analysis (age,
gender, marital status, geographic region, race, total days
deployed, rank, combat wounded, ordering site, pre-
operative morphine equivalents [yes or no], and prolonged
postoperative morphine equivalents defined as opioid use at
longer than 90 days after ACL reconstruction [yes or no]).

The gradient boosting machine algorithm was created
using the GBM package in R. After applying the Boruta
algorithm for feature selection based on a 100 tree random
forest algorithm, features were narrowed to a final seven
features. Then, the Boruta package in R automated the
feature selection process for the gradient boostingmachine.
Based on the random forest (RF) classification algorithm,
Boruta systematically eliminates irrelevant variables by
comparing their calculated importance and randomly cal-
culated importance. To estimate each first-degree asso-
ciate’s relative importance, we ranked each variable
according to its influence in reducing the loss of function
[16]. Finally, we characterized the magnitude and direction
of each feature’s positive or negative association with the
outcome of interest using the local interpretable model-
agnostic explanations (LIME) package in R. [30].

Model Selection

We chose gradient boosting machine because it had the best
area under the curve score. Gradient boosting is a decision-
tree machine-learning technique that builds an ensemble of
shallow and weak trees or learners in succession (rather at
than at once as in RF statistical predictive modeling) so each
tree learns and improves from the previous tree. Gradient
boosting machine train models in a gradual, additive, and
sequential manner that strengthens the final product [16].
This means that a gradient boosting machine is a predictor
built on the strength of previous, smaller predictors.Although
the results from logistic regression and gradient boosting
machines were very similar, only one model can be used in
implementation. Based on the model’s accuracy and the
features of gradient boosting machine, this modeling tech-
nique was determined to be the best method for the dataset.

Model Hyperparameter Tuning

One benefit of gradient boosting machine is that the model
will continue improving to minimize error. However, this
may result in an overemphasis on data outliers and model
overfitting. It is important to understand the hyperparameters
available to tune a gradient boosting machine to prevent
overfitting. These parameters indicate that the gradient
boostingmachine is variable. Thesemay be categorized into
the following categories [16, 38]: (1) Tree structure: theTa
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number of iterations or trees and complexity of trees (n.trees
and interaction.depth, respectively, in the GBM package in
R© Version 3.5.1); (2) Learning rate: the time it takes for the
algorithm to adapt (shrinkage in the GBM package); (3)
Number of observations: the minimum number of training
set samples in a node to commence splitting (n.minobsinnode
in theGBMpackage); and (4) Subsampling rate (bag.fraction
in the GBM package). With each iteration, the number of
trees and the depth of each tree or degree of feature inter-
actions in the mode are assessed. Shrinkage is the technique
of improving the model’s accuracy by decreasing the learn-
ing rate or building the model in very small steps. However,
with a decreased learning rate, more iterations are required to
build the gradient boosting machine. Therefore, we chose to
tune the iteration parameter. We monitored the relationship
of the error score in the train and validation sets with iter-
ations of the gradient boostingmachine. The chosen iteration
was that which corresponds to the lowest error score in the
validation subset. We set the gradient boosting machine to
perform 2500 iterations and set the final model to the ideal
number of iterations within the 2500 (Fig. 2). Finally, sto-
chastic gradient boostingwas used to ensure the training set’s
datapoints were selected randomly.

Model tuning helps improve performance and prevent
overfitting by stopping stop the machine-learning technique
before themodel loses its function. However, it may become
time-consuming to find the best combination of hyper-
parameters. To aid this process, we used a hyperparameter
grid, in which the computer systematically runs through
various inputted options to choose the best combination of
parameters. We chose parameters based on a grid search
system including a range of values for each hyperparameter
and then selected tuning parameters that produce the lowest

validation error of all combinations in the hypergrid (Fig. 2).
To ensure or verify that we did not overfit the data, a binary
loss function (Bernoulli deviance) was determinedwith each
iteration during model development and tuning. The
hyperparameters corresponding to the best iteration and
minimal validation loss of the gradient boosting machine
were interaction depth 7, shrinkage 0.01, n.minobsinnode 5,
and bag.fraction 0.8 (Table 4).

Performance Assessment

We evaluated model performance separately based on
measures of calibration (calibration plot), discrimination
(area under the receiver operating characteristic curve), and
overall model performance (Brier score) [34, 35]. A cali-
bration plot helps determine the agreement between the
model predicted outcomes and those observed in the data
set. We determined the model’s accuracy by estimating the
area under the receiver operating characteristic curve. This

Fig. 2 This is a minimum validation of the loss of function
curve in which the y-axis represents the Bernoulli error and the
x-axis represents the number of iterations for the gradient
boosting machine. The green line represents the training
dataset and the red line represents the validation set. GBM =
gradient boosting machine.

Table 3. Bayes factor contingency table

p value Interpretation

> 0.05 Not significant; accept H0

# 0.05 Significant; reject H0

Bayes factor Interpretation

> 100 Extreme evidence of Ha

30 - 100 Very strong evidence of Ha

10 - 30 Strong evidence of Ha

3 - 10 Moderate evidence of Ha

1 - 3 Anecdotal evidence of Ha

1 No evidence

1/3 - 1 Anecdotal evidence of H0

0 - 1/3 Moderate evidence of H0

0 - 0 Strong evidence of H0

0 - 0 Very strong evidence of H0

< 0 Extreme evidence of H0

H0 = null hypothesis; Ha = alternative hypothesis.

Table 4. Hypergrid parameters

Grid search for parameters
Parameter Values searched Selected

Shrinkage 0.001, 0.01, 0.1 0.01

Interaction depth 1, 3, 5, 7 7

N.minobsinnode 1, 5, 10, 15 5

Bag.fraction 0.7, 0.8, 0.9 0.8
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score ranges from 0.50 to 1.0, where 1.0 represents the highest
discriminatory ability and 0.50 represents the lowest discrimi-
natory ability. For overall performance, a Brier score of 0 indi-
cates perfect model prediction, while a score of 1 indicates the
worst model prediction [5]. Then, we evaluated whether each
model was suitable for clinical use by performing a decision
curve analysis [35, 39]. In the decision curve analysis, each
model demonstrated clinical usefulness in predicting whether a
patientwas at risk of prolongedopioid use. In brief, the x-axis of

the decision curve represented a threshold probability, which
was the point atwhich themedical providerwould be indecisive
about whether a patient would continue using opioids beyond
90 days postoperatively. Before assessing the decision curve, a
physician must determine his or her clinical threshold for as-
suming whether or not a patient will have prolonged opioid use
postoperatively. This is called clinical equipoise. Decision
curves do not tell the provider how to treat a patient, but they
help the provider decide when to use a clinical support tool.

Table 5. The accuracy of the predictive model

Metric
Bayesian belief

network
Gradient boosting

machine Random forest
Logistic

regression
Gradient boosting
machine (final)

AUC 95% CI 0.73 0.71 to 0.76 0.76 0.73 to 0.79 0.72 0.69 to 0.75 0.76 0.73 to 0.78 0.77

0.74 to 0.80

Brier score 95% CI 0.10 0.09 to 0.11 0.10 0.09 to 0.11 0.10 0.09 to 0.11 0.10 0.09 to 0.11 0.10

0.09 to 0.11

AUC = area under the receiver-operating characteristic curve.

Fig. 3 Calibration curves of the validation dataset show agreement between the observed
outcomes and those predicted by the (A) gradient boosting machine, (B) logistic re-
gression, (C) Bayesian belief network, and (D) random forest. The shaded region depicts the
95% CI of the predictions. Perfect calibration to the training data should overlie the 45°
dotted line. Each model is reasonably well-calibrated to the internal training data; GBM =
gradient boosting machine; LR = logistic regression; BBN = Bayesian belief network; RF =
random forest.

1612 Anderson et al. Clinical Orthopaedics and Related Research®

Copyright © 2020 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.



Results

Build a Cross-validated Model That Predicts Risk of
Prolonged Opioid Use After a Specific
Orthopaedic Procedure

All four modeling algorithms had discriminative perfor-
mance and were appropriately calibrated to the dataset
(Fig. 3). The models demonstrated that statistical predictive
modeling could be used to estimate the likelihood of pro-
longed opioid use at longer than 90 days after ACL re-
construction. The gradient boostingmachine had the highest
area under the curve by a small margin (0.76 [95%CI 0.73 to
0.79]), followed by logistic regression (0.76 [95%CI 0.73 to
0.78]), Bayesian belief network (0.73 [95% CI 0.71 to
0.76]), and random forest (0.72 [95% CI 0.69 to 0.75])
(Table 5). We chose to use the gradient boosting machine
because it had the best area under the curve score, given that
other measures were generally comparable with logistic re-
gression. After selecting the gradient boosting machine as
the final model to be used in implementation, selecting
features, and hypertuning, we found that the Brier score was

0.10 (95% CI 0.09 to 0.11) and the area under the curve was
0.77 (95% CI 0.75 to 0.80) (Fig. 4 ).

Describe the Relationships Between Prognostic and
Outcome Variables

The gradient boosting machine had seven features associ-
ated with our outcome of interest: opioid prescriptions after
ACL reconstruction. In relative order of importance, they
were the total number of ordering sites (33), total pre-
operative morphine equivalents (21), total days deployed
(15), age (10), geographic region (6), race (5), and rank (3)
(Fig. 5). These measures indicate the relative importance of
each variable in the model. For example, ordering site has
the strongest influence on the model. It is the most important
feature and accounts for 33% of the reduction to the loss
function for the gradient boosting machine [28]. Important
feature levels that support the outcome of interest in the
positive direction are preoperative morphine equivalents
(yes), particular pharmacy ordering sites locations, shorter
deployment time, and younger age. Top feature levels that

Fig. 4 A receiver operating characteristic curve analysis was used to calculate the area under
the curve as a measure of the gradient boosting machine model’s accuracy, with an area
under the curve cutoff of greater than 0.70 determined a priori. AUC = area under the curve;
GBM = gradient booting machine.
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show negative directionality are particular pharmacy or-
dering sites locations, preoperative morphine equivalents
(no), longer deployment, race (American Indian or Alaskan
native) and rank (junior enlisted) (Fig. 6).

Determine the Clinical Utility of a Predictive Model
Using a Decision Curve Analysis

After demonstrating model accuracy, we performed a de-
cision curve analysis and determined that the gradient
boosting machine is clinically useful to help a provider
determine if a patient was at risk for prolonged opioid use.
The decision curve analysis shows that it is better for the
provider to use the model rather than to assume a patient
will have prolonged opioid use postoperatively. The net
benefit was better at all threshold probabilities (x-axis) if
the model was used, rather than assuming the patient would
or would not have prolonged opioid use postoperatively
(Fig. 7). This means the gradient boosting machine model
was the most suitable for clinical application (Fig. 7).

Discussion

Perioperative and postoperative care is an important oppor-
tunity to address the best practices in opioid prescribing.
Although opioids may treat acute postoperative pain, short-
term opioid use confers an increased risk of long-term use.
Prolonged opioid use after elective ACL reconstruction

increases the risk of dependence, abuse, lifelong use, and
overdose [4, 9, 11, 17, 27, 36]. Therefore, transitioning
patients at risk of prolonged use toward opioid alternatives for
pain beyond the immediate perioperative period may reduce
opioid abuse. As such, there is considerable interest in iden-
tifying which patients are at risk so we can prevent this
problem. With this in mind, we developed four models
designed to estimate the likelihood of prolonged opioid use
by patients who underwent elective ACL surgery. All four
models demonstrated acceptable calibration and discrimina-
tory ability; however, the gradient boosting machine was for
implementation based on performance measures. Through
the gradient boosting machine feature selection process, we
found seven features that drive the model’s outcome of in-
terest, the most influential being number of pharmacy or-
dering sites and the preoperative morphine equivalents. We
chose to use gradient boostingmachine because it had the best
area under the curve score, given other measures were gen-
erally comparable with logistic regression. After selecting
gradient boosting machine as the final model, we found it to
be clinically applicable based on the decision curve analysis.
The next step the model lifecycle is external validation of the
model in other patient populations (based on disease pathol-
ogies and patient demographics), which we hope will be
followed by incorporation into a web-based application
available for clinical use.

Limitations

When evaluating the results of this study, its limitations
must be considered. The training and validation data were
gathered from a large military data repository. The pop-
ulation studied is from one healthcare system with a rela-
tively narrow age range and all on active-duty patients.
Active-duty personnel are predominantly men, thus our
data set there has a large gender imbalance. However, the
incidence of ACL injury is 3.5 times more common in
women than men [41]. Therefore, further external valida-
tion sets are imperative to ensure these findings apply to
women undergoing ACL reconstruction. Additionally,
race in this study was self-reported. Kaplan and Bennett
[20] as well as Clinical Orthopaedics and Related
Research® proposed guidelines [25] to follow when
addressing the topic of ethnicity and race in publications in
response to the Uniform Requirements for Manuscripts
Submitted to Biomedical Journals. We recognize that the
limitations of self-reported race in that it can evolve over
time and racial categories commonly used in research are
broad and overlapping, making it difficult for an individual
to fit perfectly into one of the categories. To avoid under-
mining conclusions drawn from our research study, we
collected other data on variables such as military rank,
beneficiary status, beneficiary region, and special operator

Fig. 5 This figure shows features of relative influence for the
gradient boosting machine after the Boruta package in R©
Version 3.5.1 eliminated irrelevant variables by comparing
their calculated importance and randomly calculated impor-
tance. GBM = gradient boosting machine.
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status to better understand socioeconomic statues and po-
tential health care disparities [25].

Furthermore, other statistical techniques may be used to
generate prognostic models. As with all statistical modeling
methods, overfitting may occur due to modeling noise or
variability that is unique to the training data. We sought to

mitigate this effect by creating a unique holdout set onwhich
to validate the models. However, external validation in an
independent patient population is necessary before recom-
mendingwidespread clinical use.Whenmodeling a gradient
boosting machine, subsequent predictors learn from mis-
takes made by previous predictors. With each addition of

Fig. 6 This figure illustrates the directionality (to support or contradict the outcome of
interest) of each level of the model features, ranked by average weight of feature level
across all cases. Blue horizontal bars (positive feature weight) are associated with feature
subcategories that confirm or support the outcome of interest (opioids after 90 days). Red
horizontal bars (negative feature weight) are associated with feature subcategories that
contradict or refute the outcome of interest (opioids after 90 days). Rank = Cadet/mid-
shipman, Junior enlisted (E1-E4), Junior officer (O1-O3), Senior enlisted (E5-E9), Senior officer
(O4-O11), Warrant officer (W1-W5) Region = Western US, Southern US, Northern US, Alaska,
Other, Unknown, Outside US Race = African American, Asian or Pacific Islander, White, Other,
Unknown. aSite groups includes pharmacies in the following locations (Site group 1 =
Alabama, Alaska, Arkansas, Arizona, Colorado, Georgia, District of Columbia, California,
Delaware, Kansas, Idaho, Connecticut, Hawaii, Kentucky, Illinois, Florida; Site group 2 = Alaska,
California, District of Columbia, Illinois, Louisiana, Massachusetts, Maryland, Maine, Michigan,
Missouri, Mississippi, Montana, North Carolina, North Dakota, Nebraska, NewHampshire, New
Jersey, New Mexico, Nevada, New York, Ohio, Oklahoma, Pennsylvania, Rhode Island, South
Carolina, South Dakota, Tennessee, Texas, Utah, Virginia, Washington, Wyoming; Site group
3= Alaska, Alabama, Arkansas, Arizona, California, District of Columbia, Florida, Hawaii, Illinois,
Louisiana, Massachusetts, Maryland, Maine, Missouri, North Carolina, New York, Ohio, Texas,
Virginia, Washington, Wyoming, and pharmacies located in 134 countries)
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new decision trees to the model, it becomes more complex,
and there is more variance. However, this complexity does
not come without a price. The risk of overfitting data to the
model while attempting to lower the model’s prediction
error must be balanced. Overfitting was controlled with
model hyperparameter tuning by monitoring the loss of
function or when the test set’s accuracy no longer mirrored
that of the training set. These techniques helped tune the
model to limit overfitting and improve accuracy.

Additionally, the National Institute of Drug Abuse
Consortium to Study Opioid Risks and Trends trials [24]
defined long-term opioid use as an opioid use episode lasting
longer than 90 days with a 120-day supply of opioids, or
greater than 10 opioid prescriptions dispensed within 1 year
[9, 10, 24]. The Consortium to Study Opioid Risks and
Trends definition is not specific to perioperative patient care,
when opioid prescriptions are usually prescribed, and likely
underestimates the number of patients using opioids in-
termittently for prolonged periods. Our definition is similar
to that of other recent studies using large population-based
samples of patients undergoing surgical procedures [7, 19].

Developing a Machine-learning Model for Prolonged
Opioid Use After ACL Surgery

We successfully developed and demonstrated clinical
usefulness of a model that accurately predicts our outcome
of interest, prolonged opioid use after ACL reconstruction.
The development demonstrated that the factors that predict
the outcome of interest, opioid prescriptions after ACL
reconstruction, appeared to be driven by the ordering site
(33), total preoperative morphine equivalents (21), total
days deployed (15), age (10), beneficiary (geographic) re-
gion (6), race (5), and rank (3). The relative influence
numbers listed indicate the percent relative influence of
each variable to the outcome variable. Ordering site, for
example, accounts for 33% of the observed effect, in-
dicating that it accounts for 33% of the reduction to the loss
function for the gradient boosting machine. These repre-
sent global relative influences on the model. However, it is
easier for a clinician to trust and implement a predictive
algorithm if he or she understands the reasons for the
prediction. Hence, the local explanations of these features

Fig. 7 This graph shows the decision curve analysis (dashed line) of the finalized gradient
boosting machine model after features were selected and hypertuned. The model should
be used rather than assuming all patients (continuous line) or no patients (thick continuous
line) will continue to use opioids for longer than 90 days postoperatively.

1616 Anderson et al. Clinical Orthopaedics and Related Research®

Copyright © 2020 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.



are important because they allow clinicians to interpret
characteristics on a case by case level and trust model
predictions are correct.

Other studies have developed machine learning models
for prediction of the outcome of prolonged opioid use in
orthopaedic patient populations with similar performance
accuracy of area under the curve approximately 0.80 [21,
22, 23]. However, most prior studies looked at arthroplasty
patient populations. In arthroplasty patients, Karhade et al.
[23] found the factors that predicted prolonged post-
operative opioid prescriptions after THA were age, dura-
tion of opioid exposure, preoperative hemoglobin, and
preoperative medications.

We believe our study is the first to use predictive mod-
eling to identify patients at risk for prolonged opioid use
after arthroscopic surgery. Identifying those at risk of pro-
longed opioid abuse is important to stratify the patient’s risk
before surgical intervention and to educate patients about
controlling postoperative pain before opioids are prescribed.
We believe the gradient boosting machine could be used to
help understand factors leading to a higher likelihood of
opioid misuse and possible opioid use disorders after ACL
reconstruction. The decision curve analysis does not give an
estimation of the likelihood of prolonged opioid use; this is
done by the gradient boosting machine. Rather, the decision
curve analysis helps determine whether the gradient boost-
ingmachine should be used clinically. The gradient boosting
machine has clinical utility and can therefore be useful to
orthopaedic surgeons to identify at-risk patients before sur-
gery and offer increased support and monitoring to prevent
opioid abuse and dependency. We plan to implement this
model in the future for clinical use across the Department of
Defense, along with a suite of tools.

Conclusions

By identifying patients at risk for opioid addiction in both
civilian and active-duty populations, there is potential to
transform treatment recommendations and improve shared
decision-making for patients undergoing routine ortho-
paedic procedures. The power of this model is that it will
permit the development of a true clinical decision-support
tool, which can risk-stratify individual patients with a
single numerical score that is easily understandable to both
patient and surgeon. A probabilistic model provides insight
into how clinical factors are conditionally related. The next
step is for the model to undergo external validation to see if
it could be broadly applied to other patient populations
outside the military healthcare system. Future direction
includes potential external validation of this model onmore
specific demographic subsets, such as gender or race,
which could provide detail as to how the model performs
on different populations.
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