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Abstract

0.871 and 5-year AUC 0.813).

Background: HOXA family genes were crucial transcription factors involving cell proliferation and apoptosis. While
few studies have focused on HOXA10 in AML. We aimed to investigate the prognostic significance of HOXA10.

Methods: We downloaded datasets from GEO and BeatAML database, to compare HOXA expression level between
AML patients and controls. Kaplan-Meier curves were used to estimate the impact of HOXA10 expression on AML
survival. The differentially expressed genes, miRNAs, INcRNAs and methylated regions between HOXA10-high and
-low groups were obtained using R (version 3.6.0). Accordingly, the gene set enrichment analysis (GSEA) was
accomplished using MSigDB database. Moreover, the regulatory TFs/microRNAs/IncRNAs of HOXA10 were
identified. A LASSO-Cox model fitted OS to clinical and HOXA10-associated genetic variables by glmnet package.

Results: HOXA10 was overexpressed in AML patients than that in controls. The HOXA10-high group is significantly
associated with shorter OS and DFS. A total of 1219 DEGs, 131 DEmiRs, 282 DEIncRs were identified to be
associated with HOXA10. GSEA revealed that 12 suppressed and 3 activated pathways in HOXA10-high group.
Furthermore, the integrated regulatory network targeting HOXA10 was established. The LASSO-Cox model fitted OS
to AML-survival risk scores, which included age, race, molecular risk, expression of IKZF2/LINC00649/LINC00839/
FENDRR and has-miR-424-5p. The time dependent ROC indicated a satisfying AUC (1-year AUC 0.839, 3-year AUC

Conclusions: Our study identified HOXA10 overexpression as an adverse prognostic factor for AML. The LASSO-
COX regression analysis revealed novel prediction model of OS with superior diagnostic utility.
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Background

Acute myeloid leukemia (AML) accounts for 80% of acute
leukemia in adults. AML is characterized by unlimited
clonal proliferation and accumulation of myeloid progeni-
tors [1]. The 5-year survival for AML patients is no more
than 50%, which is less than 20% in elderly AML patients
[2]. To estimate risk and survival of AML patients, quite a
few prediction models have been developed. European
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LeukemiaNet (ELN) 2017 risk stratification is the most
commonly used risk model, which stratified AML patients
based on recurrent cytogenetics and molecular mutations
abnormalities [3]. A comprehensive evaluation of genetic
variables is crucial for risk stratification and will guide
treatment decisions. Other traditional prognostic factors
include age, WBC count, LDH level etc. [4]. Whereas the
biomarkers with prognostic value are still being explored
to improve the risk model for AML.

The genetic alterations of transcription factors (TFs)
occur frequently in AML, which exert important effects
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in pathogenetic process and associate with prognosis [5—
8]. HOXA (homeobox protein HOX cluster A) family
genes, encoding highly conserve TFs with DNA binding
homeobox binding motifs, play a crucial role in adult
hematopoiesis [9-11], while aberrant overexpression of
HOXA promotes oncogenesis [12]. The previous studies
indicated that genetic alterations in AML resulted in
HOXA overexpression, such as KMT2A rearrangement
[13], FLT-ITD [13], MLL gene abnormality [14-17].
HOXA9, HOXA7, HOXA11 were associated with ad-
verse prognosis in AML [18, 19]. Overexpression of
HOXA10 was reported to interrupt hematopoietic
process [20] and lead to myeloid leukemogenesis in mice
model [21, 22]. While the prognostic significance of
HOXA10 for AML has been rarely explored.

Nowadays, multidimensional information has been ac-
cumulated for AML other than gene mutations and karyo-
types, including gene expression, non-coding RNA profile,
gene methylation profile, copy number variation, etc. In
the present study, we explored regulatory genetic or epi-
genetic variables of HOXA10, such as methylation of
CpG, copy number variation (CNV), IncRNA, microRNA
and TF, which affect the gene expression. The interaction
of IncRNA and miRNA sponges form competing en-
dogenous RNA (ceRNA) network regulating gene expres-
sion and pathways. Then Lasso-Cox model was used to fit
AML survival to prediction model, including clinical fea-
tures and HOXA10-associated genetic/epigenetic vari-
ables. Our work offered evidence for using HOXA10 as a
prognostic marker for AML, and establishment of novel
risk model to predict AML survival.

Methods

Data source

We downloaded the microarray data of GSE15061 [23]
(202 AML and 69 controls, Affymetrix U133 Plus 2.0
Array), GSE30029 [24] (46 AML and 31 controls, Illumina
HumanHT-12 V3.0 beadchip), GSE114868 [25] (194 AML
and 20 controls, Affymetrix Transcriptome Array 2.0),
GSE13159 [26] (501 AML and 73 controls, Affymetrix
U133 Plus 2.0 Array) form GEO database (https://www.
ncbi.nlm.nih.gov/geo/). The RNA-seq data was obtained
from BeatAML database [27] (474 AML and 33 controls,
http,//www.vizome.org/aml). For micro-array data, ex-
pression level of a gene was calculated as the mean value
(M value) of all probe sets annotating to it. For RNA-seq
data from BeatAML database, the log2 transformed Reads
Per Kilobase Million (RPKM) data was utilized.

Comparison of HOXA10 expression level between AML
patients and controls

The 5 public micro-array/RNA-seq datasets were used
to compare HOXA10 expression level between AML pa-
tients and controls. GSE30029 dataset sampled from
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CD34+ bone marrow cells, while other datasets were ob-
tained from unsorted bone marrow cells. The micro-
array and RNAseq data were normalized before analysis
by R program (3.6.0). Then expression level of HOXA10
was compared between AML and controls, using un-
paired t-test.

Kaplan-Meier analysis of HOXA10 on AML survival

The RNAseq data (count) of 151 AML patients was
download for AML cohort from TCGA database
(https://portal.gdc.cancer.gov/). The median RPKM was
employed to divide the patients into HOXA10-high and
HOXA10-low groups. Kaplan-Meier plot and logrank
test were used to compare OS and DFS between 2
groups.

Genome-wide gene/miRNA/IncRNA expression profiles
associated with HOXA10

The differentially expressed genes/miRNAs/IncRNAs
(DEGs/DEmiRs/DEIncRs), between HOXA10-high and
-low groups, were identified by “DESeq2” package and R
(version 3.6.0). Then we accessed the HOXAI0-
associated cell signaling pathways using gene set enrich-
ment analysis (GSEA) based on MSigDB database
(http://software.broadinstitute.org/gsea/msigdb) [28-30].

Overrepresentation analysis of aberrantly expressed
genes associated with HOXA10

To demonstrate the implication of DEGs, the ClueGO
plugin of Cytoscape software (version 3.7.3) was employed
to perform functional enrichment analysis based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Reactome pathway databases. Gene ontology (GO) based
functional enrichment was conducted by the “topGO”
package (R 3.6.0, Bioconductor 3.10), and summarized by
the “REVIGO” package. The enriched GO/KEGG/REAC-
TOME terms or pathways were defined to be significant
with an adjusted p value < 0.05.

Establishment of upstream regulatory network

The upstream TFs/miRNAs/IncRNAs, targeting HOXA10
gene, were identified, based on TF/microRNA/IncRNA
target predicting algorithm and correlating analysis, using
Gene Transcription Regulation Database (GTRD, http://
gtrd.biouml.org/) [31], miRWalk 2.0 (http://zmf.umm.uni-
heidelberg.de/) [30, 32] and prediction module of IncBase
v2 [33] online tools. Then combined with the results of
genome-wide expression analysis, we identified the over-
lapped genes/miRNAs/IncRNAs, which were predicted to
target HOXA10 and differentially expressed.

Establishment of prediction model for AML survival
In order to improve the prognostic model, a comprehen-
sive survival analysis was performed, which integrated
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clinical features, HOXA10 expression, methylation, CNV
and upstream TFs/microRNAs/IncRNAs expression.
RNA-seq data (counts, IlluminaHiSeq), miRNAseq data
(RPM value, illuminaGA), beta value of methylation
(HumanMethylation450), and gene-level copy number
data (GISTIC 2 method) regarding HOXA10 were
downloaded from the TCGA database (https://portal.
gdc.cancer.gov/). Since AML-M3 patients have a distinct
prognostic profile in comparison with other subtypes,
we excluded such patients. The traditional prognostic
factors were brought into analysis, including age, gender,
race, risk stratification of cytogenetics, risk stratification
of molecular mutations and WBC count. The molecular
mutations and cytogenetic risk stratification were based
on ELN2017 recommendations [3], which classified
AML patients into good/intermediate/poor groups based
on molecular mutations and cytogenetics. Finally, we
screened and included113 AML patients with all above-
mentioned information. The OS and included factors
were fitted to least absolute shrinkage and selection op-
erator (LASSO) -Cox model, resulting in prediction
model for AML survival.

Statistical analysis

We established a LASSO-Cox regression model [34],
using glmnet package and R program (3.6.0). LASSO
method for variable selection penalizes the data fitting
criteria, which gets rid of less informative predicting var-
iables to reduce complexity and maker models more in-
terpretable. For each of the LASSO-screened variables,
the final coefficients were the average estimates of the
coefficients obtained from cross-validation development.
To evaluate the diagnostic utility of prediction model,
time dependent receiver operating characteristic (ROC)
curve was used and 1-year/3-year/5year area under
curve (AUC) were calculated. Wilcoxon rank-sum was
employed for comparisons of continuous variables be-
tween subgroups. Chi-square tests were used to test the
association of categorical variables.

Results

Overexpression of HOXA10 in AML

The higher expression level of HOXA10 was revealed in
AML patients than that in control group, in unsorted and
CD34+ bone marrow cells (Fig. 1a-e). HOXA10 expres-
sion signature was similar across different cell subpopula-
tions of AML. Furthermore, results from GSE13159
implicated that the HOXA10 expression was higher in
AML than that in other myeloid neoplasms (MDS/CML)
and lymphoid malignancies (T-ALL/B-ALL), which indi-
cated that HOXA10 overexpression may be AML-specific
signature.
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High expression of HOXA10 is associated with adverse
prognosis

The clinical characteristics of HOXA10-high and -low
groups were shown in Table 1. The proportion of AML-
M3 is higher in HOXA10-low group than that in
HOXA10-high group (p <0.0001). HOXA10-high AML
patients were associated more advanced ELN2017 risk
stratification (p < 0.0001).

The Kaplan-Meier plots indicated that the AML sur-
vival of HOXA10-high group was significantly shorter
than that of HOXA10-low group (Fig. 2a&b). Median
OS of HOXA10-high and -low groups are 12.105 vs
24.210 months respectively, and logrank p value is
0.0302. The median DFS of HOXA10-high and low are
11.809 vs 28.389 months respectively, and logrank p
value is 0.0207. The results indicated that HOXA10
overexpression is an adverse prognostic factor for AML
patients.

Genome-wide gene/miRNA/IncRNA profiles associated
with HOXA10 expression

1219 DEGs, 131 DEmiRs and 282 DEIncRs were identi-
fied by comparing HOXA10-high and HOXA10-low
AML groups from TCGA (Fig. 3a). The heatmap for top
DEGs was shown in Fig. 3b, in which the top differen-
tially expressed genes, filtered by adjusted p value, were
revealed between HOXA10-high and low groups. Wnt
Family Member 7B (WNT7B), Neuregulin 4 (NRG4)
and HOXA11 were the top DEG, which were overex-
pressed in HOXA10-high groups in comparison with
that in HOXA10-low group. Other HOX family genes,
like HOXA2/HOXA3/HOXA4/HOXA5/HOXA®6/
HOXA7/HOXB6/HOXB8/HOXB9, were upregulated
correlating to HOXA10 expression. The distinct expres-
sion signature between 2 groups may help us to investi-
gate and uncover potential biomarkers.

The results of GSEA indicated 12 suppressed cell
pathways and 3 activated pathways were significantly
correlated with HOXA10 expression (Fig. 3¢ & Supple-
mentary Table 1). The suppressed pathways in
HOXA10-overexpressed patients included PI3K-Akt sig-
naling, hematopoietic cell lineage, cCAMP signaling, etc.
while the activated pathways included ribosome, oxida-
tive phosphorylation, lysosome, etc.

Overrepresentation analysis for DEGs

GO analysis revealed that DEGs were significantly
enriched in the following biological processes (BP): cell-
cell signaling, cell communication, etc. Cell component
(CC) analysis revealed that DEGs were predominantly lo-
cated in the plasma membrane region, extracellular
matrix, etc. Molecular mutations function (MF) analysis
demonstrated that DEGs were enriched in signaling recep-
tor activity, extracellular matrix structural constituent, etc.
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(See figure on previous page.)

Fig. 1 Comparison of expression level in AML patients and controls using data derived from GSE15061(a), GSE30029(b), GSE114868(c),
GSE13159(d) and BeatAML(e). The expression level of HOXA10 was represented by log2 transformed normalized mean (M) value or RPKM value.
Underlying difference of HOXA10 expression was revealed between AML and healthy control group by all datasets (a-e), and the difference
between AML and other myeloid malignancy (MDS, CML) was uncovered by GSE13159 (Fig. d). The conclusion was robust no matter the

expression data was derived from unsorted bone marrow or CD34+ cells

For KEGG pathway analysis, DEGs were significantly
enriched in the following pathways: PI3K-Akt signaling
pathway, Ras signaling pathway, etc. In Reactome analysis,
the DEGs were enriched in signaling by PDGF, signaling
by ROBO receptor, etc. The detail ORA (overrepresenta-
tion analysis) results are listed in Supplementary Table 2,
and top enriched pathways are shown in Fig. 3d.

Genome-wide methylation profile associated with
HOXA10 expression

A total of 76 DMRs within exonic regions were uncovered.
The detail DMRs within exonic regions were listed in Sup-
plementary Table 3. The methylation level of HOXA10 was
significantly negatively correlated with HOXA expression.
Among the methylated CpG sites of HOXA10, cg21172377
is significantly differentially methylated along with HOXA10
expression. And the AML patients with hypermethylated
cg21172377 have significantly shorter OS, according to sur-
vival analysis using MethSurv [35] (https://biit.cs.ut.ee/
methsurv/). Therefore, beta value of ¢g21172377 was used

to represent the methylation level of HOXA10 in the fol-
lowing analysis.

Regulatory network of HOXA10

The upstream ceRNA network and TFs regulating
HOXA10 were shown in Fig. 4. The HOXA10 related
TFs/miRNAs/IncRNAs included BCL6B, NR2F2, KLF1,
ZSCAN4, IKZF2, LINCO00649, LINCO00839, LINCO00707,
HOXA11-AS, FENDRR, miR-424-5p, miR-130a-3p, miR-
497-5p and miR-195-5p, all of which are predicted by
miRWalk 2.0 and IncBase v2 online tools and differentially
expressed between HOXA10-high and -low group.

Identification of key prognostic markers

LASSO regression analysis identified the OS fitted predict-
ive model, including age, race, molecular risk, expression
level of IKZF2/LINC00649/LINC00839/FENDRR/has-miR-
424-5p. The developing model process identified AML-
survival risk scores (ARS) to calculate each patient using
variables weighted by coefficients (Table 2). The cut-off

Table 1 The comparison of clinical and genetic features between HOXA10-high and HOXA10-low groups

HOXA10-low group (n=72) HOXA10-high group (n=73) p value
Age (year) 52.08+17.592 56.63 +14.730 0.094
Gender 0.739
Female 31 34
Male 41 39
Race 0.717
White 50 53
Other races 22 20
Mutation count 943 +£5.897 9.63+5.116 0.826
FAB subtype <0.0001
M3 15 0
non-M3 57 73
Risk stratification of cytogenetics <0.0001
Good 29 1
Intermediate 26 55
Poor 16 15
Risk stratification of molecular mutation <0.0001
Good 30 1
Intermediate 25 50
Poor 16 20
WBC 28693 +45.009 40.800 + 36.862 0.078
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analysis to reveal the prediction model

HOXA10

Fig. 4 The regulatory network of HOXA10 expression consisting related TFs, INcRNAs, microRNAs, which were then inputted as variables in LASSO
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value was calculated by “cutoffROC” package (Fig. 5d),
which is 1.315. Time dependent ROC was performed using
survivalROC package, and the 1-year/3-year/5-year AUC
are 0.808/0.839/0.786 respectively, implicating the diagnos-
tic utility is satisfying.

By the cut-off ARS value, the AML cohort was classi-
fied as high-risk and low-risk groups. The ARS distribu-
tion plot, survival-events plot and risk-to-variable
heatmap were shown in Fig. 5a&b&c. Then we used
Kaplan-Meier plot to analysis the survival difference be-
tween ARS-high risk and low risk group (Fig. 6, logrank
p <0.0001, HR = 27.66). The median OS of ARS-low pa-
tients is 28.373 months and that of ARS high patients is
only 3.987 months. The performance of ARS model is

Table 2 The variables and coefficients of ARS model

Variable Coefficients
age 1.56E-02
race 5.58E-02
risk_molecular 495E-01
IKZF2 —6.49E-02
linc00649 —1.71E-05
[inc00839 9.02E-05
FENDRR —1.33E-05
has-miR-424-5p 3.32E-04

encouraging, but further prospective studies are needed
to evaluate the predictive value of this model.

Discussion

HOXA family genes are well known as the crucial tran-
scription factors in pathogenesis and development of
AML. HOXA10 belongs to the HOXA gene superfamily,
dysregulation of which has been observed in several solid
tumors [36—38]. HOXA10 plays a role in myeloid differ-
entiation, leukemogenesis and chemoresistance in AML
[39-41]. In the present study, we investigated the prog-
nostic significance of HOXA10 in AML, which has been
rarely described and reported previously. The results of
expression analysis demonstrated that AML patients
have aberrant HOXA10 expression in comparison with
controls. High HOXA10 expression level is significantly
associated with worse OS and DFS of AML, based on
Kaplan-Meier curve and logrank test. Therefore,
HOXA10 may serve as a prognostic marker for AML
patients.

To explore the underlying enriched pathways of DEG,
the ORA was performed. In the GO part of our ORA,
we uncovered that the biological processes of DEG were
enriched in cell-cell signaling and cell communication,
and the cell components were enriched in plasma cell
membrane and extracellular matrix. Correspondingly,
the molecular functions were enriched in signaling
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receptor activity and extracellular matrix structural con-
stituent. To explore the detail cell-cell signaling pathway
that the DEGs were involved, the following KEGG and
Reactome analysis revealed that the DEGs were enriched
in PI3K-Akt signaling, Ras signaling pathway, signaling
by PDGF and signaling by ROBO receptor, etc. In
addition to activating mutation of NRAS/KRAS in 15—
25% AML, the mutations of RAS-regulating genes (NF1
and PTPN11) and RAS-signaling receptor (FLT3 and
KIT) are also harbored in AML frequently [42-46].
Hyperactive mutations of NF1 and PTPN11 gene are as-
sociated with inferior survival in pediatric and elderly
AML [47, 48]. FLT3-ITD mutation is also well-known as
a biomarker for worse prognosis in non-APL AML pa-
tients [49, 50]. Although NRAS and KRAS genes was
not significantly differentially expressed, RAS signaling
genes, including PTPN11, FLT3 and KIT, were upregu-
lated significantly in HOXA10-high AML patients. The
dysregulation of RAS signaling pathway may lead to un-
favorable impact on clinical outcome of HOXA10-high
group. PDGF signaling plays a proto-oncogenic role in

diverse cancer cells. Imatinib turned out to block PDGF
receptor at low dose, exerting a pharmacological effect
for BCR-ABL positive CML and FIP1L1-PDGFRA mu-
tated eosinophilic leukemia patients [51, 52], suggesting
PDGF signaling as an activated effector in hematological
malignancies. Golos A et al. reported increased ROBO1/
2 in AML patients in comparison with normal control,
and high ROBO3 expression is associated with cytogen-
etic high risk and poor prognosis [53]. However, the ab-
errantly expression pattern of signaling pathway by
PDGF/ROBO has not been fully elucidated in AML,
which were rarely studied in the prognosis of AML. The
enriched pathways obtained by ORA help us to identify
expression signature in HOXA10-high group, screen
useful biomarkers and provided novel insights into mo-
lecular investigation on AML.

Differential expression analysis and GSEA revealed
that PISK-Akt signaling pathway was suppressed associ-
ated with HOXA10 overexpression. PI3K-Akt signaling
pathway is frequently activated in AML, constitutive ac-
tivation of PI3K and Akt were found in 50% de novo
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Kaplan-Meier curve for ARS
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Fig. 6 The Kaplan-Meier plot comparing the overall survival of ARS-high and ARS-low groups. Notably, the survival of ARS-high group is far
more inferior

AML patients [54, 55]. The PISK-Akt signaling controls
leukemic blast cells proliferation and clonogenicity [56, 57].
AML patients with constitutive PI3K-Akt activation have
better OS and relapse-free survival [58]. The unfavorable
survival profile in HOXA10-high group may attributed to
aberrant downregulation of PI3K-Akt signaling.

The results of GSEA demonstrated that ribosome, oxi-
dative phosphorylation, and lysosome pathways were acti-
vated in HOXA10-high group. Ribosome pathway is a
vital cellular process, and the rate-limiting step of which is
the initiation of translation in ribosomes. One of major
control factors in the ribosome activity, is EIF2 (eukaryotic
initiation factor 2), which is regulated by phosphorylation
of a subunit (EIF2a) under diverse stress. Four kinds of
EIF2a kinases (EIF2AK1/2/3/4) can affect the activity of
EIF2a by phosphorylation of Ser51 [59, 60]. Notably, the
expression EIFAK2 and EIFK3 were significantly increased
in HOXA10-high group by our results. EIF2AK2 (also
named as double-strand RNA-dependent kinase, PKR) re-
sponses to various types of stress, including DNA damage,
mitochondrial stress, viral infection, growth factor
deprivation, cytokines, Toll-like receptor activation and
cytotoxic drugs [61-65]. Also EIF2AK2 is the only EIF2a
kinase exists in both the cytoplasm and nucleolus, while
other 3 kinases present only in the cytoplasm [66]. Cheng
X et al. reported that high expression of EIF2AK2 was as-
sociated with worse prognosis in AML, and it reduced
DNA damage response by inhibiting ataxia-telangiectasia

mutated (ATM) activation, leading to accretion of
leukemia in mice model [67]. EIF2AK3 (also named as
PKR-like endoplasmic reticulum kinase, PERK) is reported
to promoted leukemia progress by stimulating the dissem-
ination of leukemia cells in vivo [68]. So, the increased
EIF2AK2/3 expression and activated ribosome pathway
contributed to the worse outcomes in HOXA10-high pa-
tients. The maintenance of leukemia stem cells depends
on BCL2 mediated oxidative respiration, instead of gly-
colysis as in normal hematopoietic cells [69]. The metfor-
min, targeting oxidative phosphorylation (OXPHOS),
induces apoptosis of human leukemia cells in an AMPK-
independent way [70]. Cytarabine resistant leukemia cells
are characterized by activated OXPHOS, with the high
level of reactive oxygen species. Additionally, the resist-
ance can be reversed by agents inducing low OXPHOS
status [71]. The activation of OXPHOS in HOXA10-high
patients may promoted leukemia cell maintenance and
chemo-resistance, leading to inferior survival. The bio-
logical function of lysosome pathway in AML has not
been fully elucidated. While considering lysosome path-
way involves in autophagy, which plays a role in leukemic
transformation of normal hematopoietic stem cells and
chemotherapy response [72], it may be still valuable to ex-
plore in this area. The Kaplan-Meier curves confirmed
that HOXA10 expression is associated with AML survival,
while it didn’t predict OS or DEFS significantly in multivari-
able Cox hazards analysis including other clinical and
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genetic variables (data not shown), suggesting HOXA10 is
not an independent prognostic factor. Since copy number
variation (CNV), mutations (not reported in TCGA data-
base), CpG methylation status and upstream TFs/micro-
RNA/IncRNA are the most common gene expression
regulators, we investigated whether these factors were as-
sociated with HOXA10 expression and established Lasso-
Cox model fitting OS to reveal novel prognostic markers.
And finally, Lasso-Cox analysis included clinical features,
CNV of HOXA10, methylation and expression status of
HOXA10, HOXA10 associated TFs/DEmiRs/DEIncRs.
Due to the obvious correlation and dependency between
each variable, the traditional multivariable Cox analysis is
of limited utility, where the Lasso-Cox methods showed
its superiority. A few prediction models for AML overall
survival have been reported (Table 3), including Huang R
et al. [73], Mihyang Ha et al. [74], Clinseq-G model [75],
ELN2017 recommendation [75], Zejuan Li et al. [75]. The
AUC equals to the probability, which a diagnostic classi-
fier will rank a randomly chosen positive instance higher
than a negative one, and the highest AUC is established as
best practice [76]. Our prediction model has superior
AUC than above models, possibly attributing to integrated
multidimensional information integrated.

In the ARS model, novel markers are included. IKZF2
is recently found to drive leukemia stem cell renewal
and inhibit myeloid differentiation, by regulating
HOXA9 and CEBP [77]. The aberrant variation of IKZF2
was also reported in ovarian cancer cell lines [78], adult
T cell leukemia [79] and gastric cancer [80], suggesting
IKZF2 as a potential oncogenes. The relation of AML
and LINC00649 has not been explored. While notably,
the relation of HOXA family genes and LINC00649 is
very close. Based on Gepia 2.0 (http://gepia2.cancer-pku.
cn/), using AML RNAseq dataset of TCGA and Pearson
method, LINC00649 is negatively correlated with
HOXAL1 (p =0.015), HOXA2 (p =0.0056), HOXA3 (p =
0.0045), HOXA4 (p=0.011), HOXA5 (p=0.0019),
HOXA6 (p=0.0078), HOXA7 (p=0.00089), HOXA9
(p=0.002) and HOXA10 (p = 0.0022) significantly. Intri-
guingly, expression level of all above HOXA genes are
significantly associated with AML survival [8], which in-
dicated that LINCO00649 targeted genes may exert

Table 3 Diagnostic utility of prognostic models for AML by
time-dependent ROC

1-year AUC 3-year AUC 5-year AUC
Huang R et al.(75) 0.666 0.713 0.707
Mihyang Ha et al.(76) - - 0613
Clinseg-G model(77) - 0.73 -
ELN2017 - 0.65 -
Zejuan Li et al.(77) - 0.7 -
ARS model 0.808 0.839 0.786
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pathogenetic effect in AML. The investigation of
LINC00839, FENDRR and has-miR-424-5p in AML has
not been conducted.

The limitation of this model is also obvious, which is
lacking prospective large-scale studies for validation.
And further experiment is needed to validate the inter-
action of TFs/microRNAs/IncRNAs with HOXA10.

Conclusions

We identified the overexpression of HOXA10 as an ad-
verse prognostic factor of AML OS and DFS. The novel
multidimensional prediction model was established with
satisfying diagnostic utility. These results need further
clinical and experimental validation.
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