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Abstract

Motivated by recent work involving the analysis of biomedical imaging data, we present a novel 

procedure for constructing simultaneous confidence corridors for the mean of imaging data. We 

propose to use flexible bivariate splines over triangulations to handle an irregular domain of the 

images that is common in brain imaging studies and in other biomedical imaging applications. The 

proposed spline estimators of the mean functions are shown to be consistent and asymptotically 

normal under some regularity conditions. We also provide a computationally efficient estimator of 

the covariance function and derive its uniform consistency. The procedure is also extended to the 

two-sample case in which we focus on comparing the mean functions from two populations of 

imaging data. Through Monte Carlo simulation studies, we examine the finite sample performance 

of the proposed method. Finally, the proposed method is applied to analyze brain positron 

emission tomography data in two different studies. One data set used in preparation of this article 

was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
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1 | INTRODUCTION

In recent years, as digital technology advanced significantly, valuable imaging data of body 

structures and organs can be easily collected during routine clinical practice. This new 

paradigm presents new opportunities to innovate in both research and clinical settings. 

Medical imaging technology has revolutionized health care over the past three decades, 

allowing doctors to find or detect tumors and other abnormalities and evaluate the 
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effectiveness of treatment. Functional data analysis (FDA) provides modern analytical tools 

for imaging data, which can be viewed as realizations of random functions. Let Ω be a two-

dimensional bounded domain, and z = (z1, z2) be a point in Ω. The model we consider is

Y i(z) = μ(z) + ηi(z) + σ(z)εi(z), i = 1, …, n, z ∈ Ω, (1)

which is one instance of the general function-on-scalar regression model. In model (1), Yi 

(z) denotes the imaging measurement at location z ∈ Ω; ηi (z) is a stochastic process indexed 

by z, which characterizes subject-level image variations; and σ (z) is a positive deterministic 

function. We assume that ηi (z) and εi (z) are mutually independent, ηi (z) are i.i.d. copies of 

a L2 stochastic process η(z) with mean zero and covariance function Gη(z, z′), εi (z) are i.i.d. 

instances of a stochastic process of ε(z) with mean zero, and covariance function Cov{ε(z), 

ε(z′)} = I (z = z′).

For biomedical imaging data, the objects (eg, tumor tissues, brain regions, etc) appearing in 

the images are typically irregularly shaped. Many smoothing methods in the literature, such 

as tensor product smoothing, kernel smoothing, and wavelet smoothing, suffer from the 

problem of “leakage” across the complex domains, that is, poor estimation over difficult 

regions as a result of smoothing inappropriately across boundaries of features.

In this article, we endeavor to address these challenges by applying bivariate splines over 

triangulations (Lai and Wang, 2013) to preserve important features (shape, smoothness) of 

imaging data. Spline functions defined this way offer more flexibility and varying amounts 

of smoothness, allowing us to better approximate the mean functions. We study the 

asymptotic properties of the spline estimators of μ(z) by using bivariate penalized splines 

(BPS) defined on triangulations and show that our estimator is consistent and asymptotically 

normal.

In addition, when analyzing biomedical imaging data, such as brain images, typical 

questions lie in estimating the mean function, μ(z), together with quantifying the estimation 

uncertainty and making comparisons between populations. However, making a statistically 

rigorous inference for imaging data is challenging, and one of the main obstacles is the 

complicated spatial correlation structure. The prevailing analytic technique, termed the 

“mass univariate” approach, involves regarding each pixel/voxel as a unit, and for each unit, 

making a traditional univariate statistical inference, such as a simple t test. The obvious 

multiple comparisons issue can be dealt with in many ways; popular approaches include the 

Bonferroni correction, the random field theory (Worsley et al., 2004; Adler and Taylor, 

2007; Siegmund et al., 2011), and the cluster threshold-based approach (Forman et al., 
1995).

However, many of the multiple testing methods are ad hoc methods, which involve setting 

the threshold by eye, based on the practitioner’s experience and knowledge. Our simulation 

study in Supporting Information Appendix A also demonstrates that those ad hoc methods 

heavily depend on the choice of the threshold. In this article, we propose an alternative 

approach that treats the imaging data as an instance of functional data, regarded as being 

continuously defined but observed on a regular grid. If we consider the imaging data as 
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being functional, attention naturally turns from considering each pixel/voxel as the basic 

analytical unit toward analyzing the entire image simultaneous, for instance, calculating 

simultaneous confidence corridors (SCCs; also called “simultaneous confidence bands” or 

“uniform confidence band/region”). As pointed out in Choi and Reimherr (2018) and Degras 

(2017), conventional multiple comparison methods are less useful in the functional data 

setup because the infinite cardinality of the domain would lead to unbounded confidence 

regions.

In statistics, SCCs are vital and fundamental tools for inference on the global behavior of 

functions (Degras, 2017). However, they have received relatively little attention in the 

literature of FDA. Moreover, existing SCC work for FDA has concentrated on the one-

dimensional case. For the development of SCCs for mean curves of functional data, see the 

simulation-based techniques (Degras, 2011; Cao et al., 2012; Zheng et al., 2014; Cao and 

Wang, 2018), the functional principal component (FPC) decomposition-based approach 

(Goldsmith et al., 2013), and the geometric approach by Choi and Reimherr (2018) in 

Hilbert spaces. Zhu et al. (2012) proposed SCCs for the regression coefficient functions for 

multivariate varying coefficient model for functional responses. Gu et al. (2014) and Chang 

et al. (2017) proposed the SCC for coefficient functions in the function-on-scalar regression 

model. However, there is scant literature on SCCs for imaging data or other more general 

two-dimensional (2D) functions. Although the geometric method in Choi and Reimherr 

(2018) can be used to construct SCCs in Hilbert spaces over rectangular domains, it doesn’t 

work well for objects over complex domains with arbitrary shape, which are very common 

in biomedical imaging studies. In addition, the geometric method is conservative because it 

is essentially based on a modification of Scheffé’s method.

In this article, we derive SCCs with exact coverage probability for the 2D functional mean 

function μ(z), z ∈ Ω, in (1) via the extreme value theory of Gaussian processes (Adler, 1990) 

and approximating mean functions with bivariate splines. Our simulation studies indicate 

that the proposed SCCs are computationally efficient and have the correct coverage 

probability for finite samples. We also show that the spline estimator and the accompanying 

SCC are asymptotically the same as if all the images are observed without noise.

Motivated by the need to statistically quantify the difference between two imaging data sets 

arising in medical imaging studies, we further consider two-sample inference and extend our 

SCC construction procedure to a two-sample problem. Specifically, we focus on 

constructing SCC for the difference of the mean functions from two independent samples. 

The comparison of mean functions is particularly useful for imaging analysis in some 

biomedical settings such as comparing imaging outcomes for groups randomized either to 

placebo or to active treatment. Any mean differences may be localized and irregularly 

shaped, and so an estimation method should be flexible enough to allow for such 

differences. The approach developed here allows comparison of treatments simultaneously 

across the entire domain of interest.

We organize our article as follows. Section 2 describes the BPS estimators, and establishes 

their asymptotic properties for imaging data. Section 3 proposes asymptotic pointwise 

confidence intervals and SCCs that are constructed based on the BPS estimators. In Section 
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4, we discuss how to estimate the unknown components involved in the SCC construction 

and other issues of implementation. Section 5 reports findings from a simulation study. In 

Section 6, we apply the proposed methods to two real brain imaging data sets. In Section 7, 

we conclude the article with some discussions. Proofs of the theoretical results and 

additional numerical results are provided in Supporting Information.

2 | MODELS AND ESTIMATION METHOD

In practice, the functional imaging response variable, Yi (⋅), is only measured on a regular 

grid of pixels, zj ∈ Ω, j = 1, …, N. For notational simplicity, we let Yij = Yi (zj) be the 

imaging response of subject i at location j, and the actual data set consists of {(Yij, zj)}, i = 

1, …, n, j = 1, …, N, which can be modeled as

Y ij = μ zj + ηi zj + σ zj εij . (2)

2.1 | Bivariate spline basis approximation over triangulations

For model (2), we first consider the estimation of the mean function, μ(⋅). Medical imaging 

data are typically observed on an irregular domain Ω. We approximate the mean function in 

(2) by the bivariate splines that are piecewise polynomial functions over a 2D triangulated 

domain; see Lai and Wang (2013). In the following, we briefly introduce the techniques of 

triangulations and describe the BPS smoothing method.

Triangulation is an effective tool for handling data distributed on irregular regions with 

complex boundaries and/or interior holes. In the following, we use T to denote a triangle 

which is a convex hull of three points that are not collinear. A collection Δ = {T1, …, TM} of 

M triangles is called a triangulation of Ω = ∪m = 1
M Tm if any nonempty intersection between 

a pair of triangles in Δ is either a shared vertex or a shared edge. Given a triangle T ∈ Δ, let|

T| be its longest edge length, then the size of Δ is defined as |Δ| := max {|T|, T ∈ Δ}, that is, 

the length of the longest edge of all triangles in Δ.

For an integer r ⩾ 0, let Cr(Ω) be the collection of all r-th continuously differentiable 

functions over Ω. Given a triangulation Δ, let Sd
r (Δ) = s ∈ Cr(Ω):s T ∈ ℙd(T ), T ∈ Δ  be a 

spline space of degree d and smoothness r over triangulation Δ, where s|T is the polynomial 

piece of spline s restricted on triangle T, and ℙd is the space of all polynomials of degree 

less than or equal to d. We use Bernstein basis polynomials to represent the bivariate splines. 

For any triangle T ∈ Δ and any fixed point z ∈ Ω, let b1, b2 and b3 be the barycentric 

coordinates of z relative to T. Then, the Bernstein basis polynomials of degree d relative to 

triangle T are defined as Bijk
T , d(z) = (i!j!k!)−1d!b1

i b2
jb3

k, i + j + k = d. Let {Bm}m ∈ ℳ be the set 

of degree-d bivariate Bernstein basis polynomials for Sd
r (Δ), where ℳ stands for an index set 

of Bernstein basis polynomials. Denote by B the evaluation matrix of Bernstein basis 

polynomials, where the jth row of B is given by BΤ(zj) = {Bm (zj), m ∈ ℳ}, for j = 1, …, N. 

We can approximate the mean function μ(z) by μ(z) ≈ BΤ(z)γ, where γΤ = (γm, m ∈ ℳ) is 
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the spline coefficient vector. The above bivariate spline basis can be easily constructed via 

the R package BPST.

To define the penalized spline method, for any function g(z) and direction zh, h = 1,2, let 

∇zℎ
v g(z) denote the v-th order derivative in the direction zh at the point z. We consider the 

following penalized least squares problem: ming ∈ Sd
r(Δ)∑i = 1

n ∑j = 1
N Y ij − g zj

2 + ρnℰ(g), 

where ℰ(s) = ∑T ∈ Δ∫T ∑i + j = 2
2
i ∇z1

i ∇z2
j s 2dz1dz2 is the roughness penalty, and ρn is the 

roughness penalty parameter. To meet the smoothness requirement of the splines, we need to 

impose some linear constraints on the spline coefficients γ: Hγ = 0 to be specific. See 

Section B.2 of the Supplementary Material of Yu et al. (2019) for a simple example of H. 

Thus, we have to minimize ∑i = 1
n ∑j = 1

N Y ij − BT zj γ 2 + ρnγTPγ, subject to Hγ = 0, where 

P is the block diagonal penalty matrix satisfying γΤPγ = ε(Bγ).

We first remove the constraint via QR decomposition of HT :HT = QR = Q1Q2
R1
R2

, where 

Q is orthogonal and R is upper triangular, the submatrix Q1 is the first p columns of Q, 

where p is the rank of H, and R2 is a matrix of zeros. Next, we reparametrize using γ = Q2θ 
for some θ, then it is guaranteed that Hγ = 0. The minimization problem is thus converted to 

a conventional unrestricted penalized regression problem:

∑
i = 1

n
∑
j = 1

N
Y ij − BT zj Q2θ

2
+ ρnθTQ2

TPQ2θ, (3)

where B(z) = Q2
TB(z). Denote Y ⋅ , j = n−1∑i = 1

n Y ij, Y = Y ⋅ , 1, …, Y ⋅ , N
T , U = BQ2, and 

D = Q2
TPQ2. Then, minimizing (3) is equivalent to minimizing

Y − BQ2θ 2 + n−1ρnθTQ2
TPQ2θ

= Y − Uθ 2 + n−1ρnθTDθ,

and the solution is given by θ = UTU + n−1ρnD −1UTY. Thus, the estimator of γ and μ(⋅) 

are: γ = Q2θ, μ(z) = B(z)Tγ.

2.2 | Functional principal component analysis

For the second component, ηi (z), in model (2), we consider a spectral decomposition of its 

covariance function Gη(z, z′). Denote the eigenvalue and eigenfunction sequences of the 

covariance operator Gη(z, z′) as λk k = 1
∞  and ψk(z) k = 1

∞ , in which 

λ1 ⩾ λ2 ⩾ ⋯ ⩾ 0, ∑k = 1
∞ λk < ∞, and ψk k = 1

∞  form an orthonormal basis of L2 (Ω). It 

follows from spectral theory that Gη z, z′ = ∑k = 1
∞ λkψk(z)ψk z′ . The ith stochastic process 

{ηi (z), z ∈ Ω} allows the Karhunen-Loéve L2 representation: ηi(z) = ∑k = 1
∞ ξikϕk(z), where 
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ϕk (z) = (λk)1/2ψk (z), and the coefficients ξik’s are uncorrelated random variables with 

mean 0 and E (ξik ξik′) = I k( = k′), referred to as the kth FPC score of the ith subject in 

classical functional principal component analysis (FPCA). Thus, the response measurements 

in (2) can be represented as follows:

Yij = μ zj + ∑
k = 1

∞
ξikϕk zj + σ zj εij .

Next, we describe the method of estimating the FPCA: the variance-covariance function 

Gη(z, z′) and its eigenvalues and eigenfunctions. For any i = 1, …, n, j = 1, …, N, let 

Rij = Y ij − μ zj  be the residual. We estimate ηi (z) individually by employing the bivariate 

spline smoothing method to {(Rij, zj)}j = 1
N . To be more specific, for each i = 1, …, n, we 

define the spline estimator of ηi (z) as 

ηi(z) = argmingi ∈ Sd
r(Δ * )∑j = 1

N {Rij − gi zj }2 + ρn*ℰ gi , where the triangulation Δ* and 

smoothness penalty ρn* may be different from those introduced in Section 2 when estimating 

μ(z). Next, define the estimator of Gη(z, z′) as

Gη z, z′ = n−1 ∑
i = 1

n
η i(z)η i z′ , (4)

and we estimate the eigenfunctions ψk (⋅) using the following eigenequations:

∫
Ω

Gη z, z′ ψk(z)dz = λkψk z′ , (5)

where ψk’s are subject to ∫Ωψk
2(z)dz = 1 and ∫Ωψk(z)ψk′(z)dz = 0 for k′ < k. If N is 

sufficiently large, the left hand side of can be (5) approximated by 

∑j = 1
N G(zj, zj′)ψk zj A zj , where A(zj) is the area of the pixel zj.

2.3 | Theoretical properties of the estimators

We investigate the asymptotic properties of the proposed spline estimators. To discuss these 

properties, we introduce some notation first. For any function g over the closure of domain 

Ω, denote by ‖g‖L2(Ω)
2 = ∫Ωg2(z)dz the regular L2 norm of g, and by g ∞, Ω = supz ∈ Ω | g(z)|

the supremum norm of g. Let |g |v, ∞, Ω = maxi + j = v ∇z1
i ∇z2

j g ∞, Ω be the maximum norms 

of all the υ th order derivatives of g over Ω. For notational simplicity, we suppress the 

subscript Ω below. Given random variables Sn for n ⩾ 1, we write Sn = OP (bn) if limc→∞ 
lim supnP (|Sn| ⩾ cbn) = 0. Similarly, we write Sn = oP (bn) if limnP(|Sn| ⩾ cbn) = 0, for any 

constant c > 0.

The following theorem provides the L2 and uniform convergence rate of μ( ⋅ ). The detailed 

proofs of this theorem are given in Web Appendix B.3 of Supporting Information.
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Theorem 1. Suppose Assumptions (A1) to (A4) in Web Appendix B of Supporting 
Information hold, and N1/2|Δ| → ∞ as N → ∞. Then the bivariate penalized spline 
estimator μ( ⋅ ) is consistent and satisfies

‖μ − μ‖L2 = OP
ρn

nN Δ 3‖μ‖2, ∞

+ 1 +
ρn

nN Δ 5 |Δ|d + 1‖μ‖d + 1, ∞

+ 1
n + 1

nN Δ .

In addition, if Assumptions (A1) to (A5) hold, we have ‖μ − μ‖∞ = oP{(n−1log(n))1/2} and 

‖μ − μ‖L2 = OP n−1/2 .

Theorem 2 characterizes the uniform weak convergence of Gη z, z′  and the convergence of 

ψk and λk.

Theorem 2. Under Assumptions (A1) to (A7) in Web Appendix B of Supporting 
Information, we have the following results: (a) The spline estimator Gη z, z′  in (4) 

uniformly converges to Gη(z, z′) in probability, that is, 

sup z, z′ ∈ Ω2 Gη z, z′ − Gη z, z′ = oP(1); (b) ‖ψk − ψk‖ = oP(1), |λk − λk| = oP(1), for k = 1, 

…, κ.

Although, in theory, the Karhunen-Loéve representation of the covariance function consists 

of an infinite number of terms. In applications, it is typical to truncate the spectral 

decomposition to an integer chosen so as to account for some predetermined proportion of 

the variance. One can select the number of principal components using the Akaike 

information criterion (AIC; Yao et al., 2005) or Bayesian information criterion (BIC; Li et 
al., 2013).

3 | SIMULTANEOUS CONFIDENCE CORRIDORS

3.1 | One sample

Let Gη(⋅,⋅) be a positive definite function defined as Gη z, z′ = ∑k = 1
κ λkψk(z)ψk z′ , z, z′ ∈ 

Ω. Denote by ζ (z), z ∈ Ω a standardized Gaussian process such that Eζ (z) = 0, Eζ2 (z) = 1 

with covariance function Eζ (z)ζ (z′) = Gη(z, z′){Gη(z, z)Gη(z′, z′)}−1/2, z, z′ ∈ Ω. Denote 

by q1−α the 100(1 − α)th percentile of the distribution of the absolute maximum of ζ (z), z ∈ 
Ω, that is P{supz∈Ω |ζ (z)| ⩽ q1−α} = 1 − α, α ∈ (0,1).

Define the “oracle” estimator μ(z) = μ(z) + n−1∑i = 1
n ηi(z), which is infeasible due to the 

finite pixel grid {zj: j = 1, …, N} and the measurement error. The following theorem 

presents the asymptotic properties of μ(z) and shows that the difference between the BPS 

estimator μ(z) and the “oracle” smoother μ(z) is uniformly bounded at an oP (n1/2) rate.
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Theorem 3. Under Assumptions (A1) to (A6) in Web Appendix B of Supporting 
Information, for any α ∈ (0,1), as N → ∞, n → ∞,

P sup
z ∈ Ω

n1/2 |μ(z) − μ(z) | Gη(z, z)−1/2 ⩽ q1 − α 1 − α,

and sup
z ∈ Ω

|μ(z) − μ(z) | = oP n−1/2 .

Based on Theorems 1 and 3, we obtain the following asymptotic SCCs for μ(z), z ∈ Ω.

Corollary 1. Under the assumptions of Theorem 3, for any α ∈ (0,1), as N → ∞, n → ∞, 

an asymptotic 100(1 − α)% exact SCC for μ(z) is μ(z) ± n−1/2q1 − αGη(z, z)1/2.

3.2 | Extension to two-sample case

While one-sample SCCs are of primary interest in many situations, in some brain imaging 

analysis, interest lies in comparing two groups, for example, patients and normal control 

subjects. Next, we extend our method to two-sample problems, constructing SCCs for the 

difference between mean functions from two independent groups, analogous to a two-

sample t test.

Given two groups of imaging observations with sample sizes n1 and n2, respectively, defined 

on a common region Ω. For H = 1, 2, let GHη z, z′ = ∑k = 1
κH ϕHk(z)ϕHk z′  be a positive 

definite function and μH be the spline estimates for the group mean function μH. Let V (z, z

′) = G1η(z, z′) + τG2η(z, z′), where τ = limn1 ∞n1/n2. Denote by W (z), z ∈ Ω, a 

standardized Gaussian process such that EW (z) = 0, EW2 (z) = 1 with covariance E[W (z) 

W (z′)] = {V (z, z)}−1/2V (z, z′){V (z′, z′)}−1/2. Denote q12,α the (1 − α)th quantitle of the 

absolute maximal distribution of W (z), z ∈ Ω.

Theorem 4. Under Assumptions (A1) to (A6) in Web Appendix B of Supporting 
Information, for any α ∈ (0,1), as N → ∞, n1 → ∞,

P sup
z ∈ Ω

n1
1/2 μ1 − μ2 (z) − μ1 − μ2 (z)

V (z, z) ⩽ q12, α

1 − α .

Theorem 4 suggests that an asymptotic 100(1 − α)% exact SCC for (μ1 − μ2)(z) can be 

constructed as μ1 − μ2 (z) ± n1
−1q12, α V (z, z) 1/2.

4 | IMPLEMENTATION

Without loss of generality, we describe the implementation of the proposed SCCs for the 

one-sample case. The procedure can be similarly adopted to the two-sample mean cases.
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4.1 | Quantile estimation and smoothing parameter selection

The quantile q1−α used to construct the SCCs in Corollary 1 cannot be obtained analytically; 

however, it can be approximated by numerical simulation as follows: first, we simulate 

ζb(z) = Gη
−1/2(z, z)∑k = 1

κ λk
1/2Zk, bψk(z), where Zk,b are i.i.d standard normal variables with 1 

⩽ k ⩽ κ and b = 1, …, B for a preset large integer B. Then, we estimate the quantile q1−α by 

the corresponding empirical quantile of these maximum values by taking the maximal 

absolute value for each copy of ζb (z). To construct the SCC for the two-sample case, denote 

V z, z′ = G1η z, z′ + τG2η z, z′ . We simulate 

W b(z) = V (z, z) −1/2 ∑k = 1
κ1 λ1k

1/2Z1k, bψ1k(z) − n1/n2
1/2∑k = 1

κ2 λ2k
1/2Z2k, bψ2k(z) , z ∈ Ω. 

Then, q12,α can be estimated by the empirical quantile of the B simulated | |W b | |∞’s, b = 1, 

…, B.

Next, for a good fit of the data, it is necessary to choose a suitable value of the smoothing 

parameter ρn. A large value of ρn enforces a smoother fitted function with larger fitting 

errors, while a small ρn may result in overfitting of the data. Since the in-sample fitting 

errors cannot gauge the prediction accuracy of the fitted function, we select a criterion 

function that attempts to measure the out-ofsample performance of the fitted model. 

Minimizing the generalized cross-validation (GCV) criterion is one computationally 

efficient approach to selecting smoothing parameters that also has good theoretical 

properties. We choose the smoothing parameter by minimizing the following 

GCV ρn = ‖Y − S ρn Y‖2/ N 1 − tr S ρn /N 2  over a grid of values of ρn, where S(ρn) = 

U(UΤU + n−1ρnD)−1UΤ.

4.2 | Spline basis and triangulation selection

To construct the SCC, we need to choose the spline basis functions and triangulation used in 

the BPS, a notoriously difficult task for constructing nonparametric pointwise confidence 

intervals or simultaneous confidence bands.

When the resolution of the imaging is relatively high and the mean imaging seems to be a 

realization from some smooth function without sharp edges, we suggest using smooth 

parameter r = 1 with degree d ⩾ 4. When d ⩾ 5, the proposed spline achieves full estimation 

power asymptotically (Lai and Wang, 2013). It is generally believed that subject-level image 

variation ηis are less smooth than the mean function. Thus, we suggest considering lower 

order splines, such as d = 2, when estimating the ηis.

An optimal triangulation is a partition of the domain which is best according to some 

criterion that measures the shape, size or number of triangles. For example, a “good” 

triangulation usually refers to those with well-shaped triangles, no small angles or/and no 

obtuse angles. We suggest building the triangulated meshes using typical triangulation 

construction methods such as Delaunay Triangulation (De Loera et al., 2010). The Matlab 

code DistMesh and R package Triangulation can be used to construct the triangulation. 

When estimating the mean function μ(⋅), we suggest choosing the triangulation Δμ based on 

leave-images-out k-fold cross-validation (CV). In the estimation of the ηi (⋅)’s, we suggest 
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choosing the triangulation Δη so as to minimize a bootstrap estimator of the coverage error 

of the SCCs. In Algorithm A1 in Supporting Information, we describe our selection scheme 

for the one-sample case, which can be extended straightforwardly to the two-sample case.

4.3 | Variance estimation for measurement errors and SCC adjustment

For certain imaging types and modalities, our Assumptions (A2) and (A3) about the 

measurement errors may not be completely satisfied. We propose a modification to the SCC 

procedure in Section 3 to deal with images with relatively large measurement errors.

For the one-sample SCC, for any j = 1, …, N, let εij = Rij − ηi zj , and we estimate σ2(zj) by 

σ2 zj = n−1∑i = 1
n εijεij. Next, denote ε(z) = (nN)−1B(z)TΓN, ρ

−1 ∑i = 1
n ∑j = 1

N B zj σ zj εij. We 

estimate the variance-covariance function of ε(z), Gε z, z′ = Cov ε(z), ε z′ , by

Gε z, z′ = n−1N−2B z TΓN, ρ
−1 ∑

j = 1

N
B zj σ2 zj B zj

T

× ΓN, ρ
−1 B z′ ,

where ΓN,ρ is given in (B.5) in Supporting Information.

Denote Σ z, z′ = Gη z, z′ + nGε z, z′ . We adjust the approximation procedure of quantile 

q1−α as follows: first, we simulate

ζb(z) = Σ−1/2(z, z) ∑
k = 1

κ
λk

1/2ψk(z)Zk, ξ
(b)

+N−1B(z)TΓN, ρ
−1 ∑

j = 1

N
B zj σ zj Zj, ε

(b) ,

where Zk, ξ
(b)  and Zj, ε

(b)  are i.i.d standard normal variables with 1 ⩽ k ⩽ κ, 1 ⩽ j ⩽ N; next, we 

estimate the quantile q1−α by the corresponding empirical quantile of the B simulated ‖ζb‖∞; 

finally, we construct the SCC as μ(z) ± n−1/2q1 − αΣ(z, z)1/2, z ∈ Ω.

For the two-sample case, we can similarly modify the procedure by defining 

ΣH z, z′ = Gη, H + nHGε, H, for H = 1, 2, and Ξ z, z′ = Σ1 z, z′ + n1/n2Σ2 z, z′ . Let σH(z) be 

the estimator of σH (z), for H = 1, 2. To estimate q12,α, we simulate
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W b(z) = Ξ(z, z) −1/2 ∑
k = 1

κ2
λ1k

1/2Z1k, ξ
(b) ψ1k(z)

−
n1
n2

1/2
∑

k = 1

κ2
λ2k

1/2Z2k, ξ
(b) ψ2k(z)

+ B z TΓN, ρ1
−1 1

N ∑
j = 1

N
B zj σ1 zj Z1j, ε

(b)

−
n1
n2

1/2
B z TΓN, ρ2

−1 1
N ∑

j = 1

N
B zj σ2 zj Z2j, ε

(b) ,

where ZHk, ξ
(b)  and ZHj, ε

(b)  are i.i.d standard normal variables with 1 ⩽ k ⩽ κH, 1 ⩽ j ⩽ N for H 

= 1, 2. Then, q12,α can be estimated by the empirical quantile of the B simulated ‖W b‖∞’s, b 

= 1, …, B. A modified SCC for μ1(z) − μ2(z) can thus be constructed as 

μ1 − μ2 (z) ± n1
−1/2q12, α Ξ(z, z) 1/2.

5 | SIMULATION STUDIES

In this section, we describe two Monte Carlo simulations to examine the finite sample 

performance of the proposed method.

5.1 | One sample SCC

In this simulation study, the measurements on the images are generated from the model:

Yij = μ zj + ∑
k = 1

2
λk

1/2ξijψk zj + σ zj εij, i = 1, …, n,

j = 1, …, N,

where zj = (z1j, z2j) ∈ Ω ⊂ [0,1]2, and Ω is the same as the domain of the brain images shown 

in Section 6. To demonstrate the practical performance of our theoretical results, we 

consider the following four mean functions:

• (quadratic) μ(z) = 20{(z1 − 0.5)2 + (z2 − 0.5)2},

• (exponential) μ(z) = 5 exp[−15{(z1 − 0.5)2 + (z2− 0.5)2}] + 0.5,

• (cubic) μ(z) = 3.2(−z1
3 + z2

3) + 2.4,

• (sine) μ(z) = −10[sin{5π (z1 + 0.22)} − sin {5π (z2 − 0.18)}] + 2.8,

shown in the first column of Figures A1 to A6 in Supporting Information.

To simulate the within-image dependence, we generate ξik ∼i.i.d N(0, 1), for k = 1,2. For the 

eigenvalues, we set λ1 = 0.5, λ2 = 0.2. For the eigenfunctions, we let ψ1(z) = c1 sin(πz1) + 

c2, ψ2 (z) = c3 cos(πz2) + c4, where c1 = 0.988, c2 = 0.5, c3 = 2.157, and c4 = −0.084 to 

guarantee that the eigenfunctions are orthonormal. We generate heterogenous measurement 

errors with σ (z) = 0.25{1 − (z1 − 0.5)2 − (z2 − 0.5)2}. We consider n = 50, 100, 200, and for 
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each image, we consider two types of resolution: 40 × 40 and 79 × 79 with N = 921 and 

3682 pixels falling inside the domain, respectively.

To apply our method, we consider three different triangulations which are also shown in the 

first column of Figures A1 to A6 in Supporting Information. The first triangulation (Δ1) 

contains 49 triangles and 38 vertices; the second triangulation (Δ2) contains 80 triangles and 

54 vertices; while the third triangulation (Δ3) contains 144 triangles and 87 vertices. The 

estimated mean function based on these three triangulations are shown in the second 

columns of Figures A1 to A6, and the corresponding 99% SCCs are given in the last two 

columns. From these figures, one can see that all three triangulations result in almost the 

same estimates and SCCs. One can also see that even when the number of images is 

moderately large, the estimation is very accurate regardless of the type of underling mean 

functions.

Table 1 and Table A1 in Supporting Information summarize the estimated coverage rate of 

the SCCs based on 1000 replications for N = 921 and 3682, respectively. The number in 

parenthesis represents the average width of the SCCs. These two tables also confirm that 

there is little difference among the three triangulations and that the coverage rate is closer to 

the nominal confidence level for larger values of n.

5.2 | Two-sample simultaneous confidence corridor

In this simulation study, we examine the power of detecting a difference in mean images 

based on the proposed two-sample SCC. Two group of images are generated from the model

YH, ij = μH zj + ∑
k = 1

κ
λk

1/2ξijψk zj + σ zj εij, H = 1, 2,

where ψk’s are generated as in the simulation in Section 5.1. We consider the following:

H0: μ1(z) = μ2(z), for all z ∈ Ω vs
Ha: μ1(z) ≠ μ2(z) for some z ∈ Ω . (6)

The mean functions for two groups considered here are μ1(z) = 20{(z1 − 0.5)2 + (z2 − 0.5)2}, 

and μ2(z) = μ1(z) + δ( − z1
3 + z2

3). The value of δ controls the difference between the two 

groups. The eigenvalues λk’s, eigenfunctions ψk’s and the measurement errors εij’s are 

generated in the same way as in the simulation presented in Section 5.1, and we set σ(z) = 

0.1.

Figure 1 and Table A2 in Supporting Information summarize the estimated probability of 

rejecting H0 in (6) with nominal level α = 0.10, 0.05, and 0.01. When δ = 0, the probability 

should be close to the nominal level, and when δ is large, the estimated power should be 

close to 1. From Figure 1 and Table A2, one can see even when the numbers of the images 

n1 and n2 are moderately large, the size of the test is very close to the nominal level. The 

estimated power increases quickly as n1 and n2 increase. The performance of the procedure 

is similar and consistent for different triangulations.
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6 | APPLICATIONS TO BRAIN IMAGING DATA

In this section, we implement the proposed SCCs to analyze brain imaging data. In 

particular, we consider data taken from positron emission tomography (PET) studies with 

two different settings: one using the tracer [C11]WAY100635 that has an affinity for the 

serotonin 1 A receptor in a study of major depressive disorder (MDD); and one using the 

fluorodeoxyglucose tracer [F18]FDG, a glucose analog, in a study of dementia. The imaging 

data are naturally three-dimensional in each case, but we focus here on one strategically 

selected slice in each setting. For the MDD study, we select the horizontal slice which passes 

through the midbrain and the amygdala, two regions implicated in MDD (Parsey et al., 
2010). As pointed out by Marcus et al. (2014), within the brain, the anatomical regions that 

are commonly affected by Alzheimer diseases are the bilateral superior medial frontal, 

anterior, middle cingulate and bilateral parietal cortices, while the regions such as the 

bilateral medial temporal lobes are usually less affected. Therefore, for the [F18]FDG study, 

we focus on the 48th horizontal slice of the brain since it passes through the frontal and 

parietal lobes. In each case, we consider the hypotheses in (6) for the difference between two 

mean functions.

For the [C11]WAY100635 data, we have 40 subjects who are classified as normal controls 

and 26 who have been diagnosed with MDD (Parsey et al., 2006). Figure 2 displays the 

results of the application of the proposed procedure to these data. The portions of the SCCs 

not containing zero can be seen in (A); the estimation of the mean difference 

betweentowards the two groups is shown in (B), and the lower and upper SCCs are shown in 

(C) and (D).

Next, we illustrate these procedures using the PET data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI; adni.loni.usc.edu). One of the primary goals of the ADNI 

study is to test whether PET and some other biological markers can be combined to measure 

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

We use the proposed method in Section 4.2 to choose the triangulation and spline basis 

functions. Among the three triangulations (Δ1−Δ3) considered in simulation studies, we 

choose Δ3 when estimating the mean functions, and Δ1 when estimating the covariance 

functions. We use smooth parameter r = 1 with degree d = 5 for the estimation of mean 

function and d = 2 for the estimation of ηi’s. The first row of Figure 3 displays the areas in 

which zero is not contained within the 95% SCC comparing each pair of diagnostic groups. 

This suggests that the AD group has widespread mean differences from each of the other 

two groups. We also stratify the data according to sex and age, and the breakdowns of these 

data in terms of these variables are given in Table A1 in Supporting Information. Within 

each stratum, we examine the SCC for the difference between all pairs of diagnostic groups, 

and the results are also shown in Figure 3. The large apparent differences in the full group 

analysis can be seen (but to a lesser extent) in the comparisons among the males and among 

the relatively younger population, but are less pronounced in the other subgroup analyses.
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7 | DISCUSSION

We develop SCCs for mean functions of imaging data in the functional data framework. We 

show that the proposed procedure has desirable statistical properties: the estimators are 

asymptotically efficient as if all images were observed with no error. One main advantage of 

our method is its computational efficiency and feasibility for large-scale imaging data. It 

greatly enhances the application of SCCs to imaging data in biomedical studies.

A few more issues still merit further research. For instance, the triangulation selection using 

the CV and wild bootstrap works well in practice, but a stronger theoretical justification for 

their use is still needed. In recent years, there has been a great deal of work on functional 

regression. It is interesting to extend the proposed methodology to functional regression 

models. The construction of SCCs in such models is a significant challenge and requires 

more in-depth investigation. Last but not least, it is also interesting to develop SCCs for 

large-scale longitudinal imaging data, in which accounting for the dependence within the 

subject as well as for the longitudinal design is crucial for making inference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Type I error and empirical power of two-sample tests for different α’s: (A) α = 0.10, (B) α = 

0.05, and (C) α = 0.01
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FIGURE 2. 
Simultaneous confidence corridor (SCC) for comparison between normal control (CON) and 

major depressive disorder (MDD): (A) coverage of zero, (B) μMDD − μCON, (C) lower 

simultaneous confidence corridor (SCC), and (D) upper SCC. In (A), yellow color indicates 

zero falls above the upper SCC and blue color indicates zero falls beneath the lower SCC
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FIGURE 3. 
Coverage of zero of simultaneous confidence corridor (SCC) for pairwise comparisons 

among CON, mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Yellow color 

indicates zero falls above the upper SCC and blue color indicates zero falls beneath the 

lower SCC
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