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Abstract

In November 2018, the American Society for Mass Spectrometry hosted the Annual Fall 

Workshop on informatic methods in metabolomics. The Workshop included sixteen lectures 

presented by twelve invited speakers. The focus of the talks was untargeted metabolomics 

performed with liquid chromatography/mass spectrometry. In this review, we highlight five 

recurring topics that were covered by multiple presenters: (i) data sharing, (ii) artifacts and 

contaminants, (iii) feature degeneracy, (iv) database organization, and (v) requirements for 

metabolite identification. Our objective here is to present viewpoints that were widely shared 

among participants, as well as those in which varying opinions were articulated. We note that most 

of the presenting speakers employed different data processing software, which underscores the 

diversity of informatic programs currently being used in metabolomics. We conclude with our 

thoughts on the potential role of reference datasets as a step towards standardizing data processing 

methods in metabolomics.
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With recent advances in instrumentation, it has become routine to acquire high-quality 

LC-/MS-based metabolomic data.1,2 Accordingly, the field has grown exponentially and the 

number of facilities offering metabolomic services continues to rise. At this time, the 

technology is readily available to most interested researchers at relatively affordable costs 

around the world. Following the path of its “omic” predecessors, metabolomics is now in 

high demand among both technological specialists as well as biologists and clinicians who 

see the power of its application.

Despite the increasing amount of untargeted metabolomic data being acquired, the ability to 

process and interpret the data is still severely limited. It is typical to detect thousands of 

metabolomic features in liquid chromatography/mass spectrometry (LC/MS) experiments 

performed on biological samples.3,4 Yet, at this time, only a small fraction of these features 
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can typically be identified with biochemical names.5 Moreover, in most cases, the process of 

going from raw metabolomic data to biochemical structures is not automated. The 

informatic burden can require days, weeks, or even months of time and resources.6 Even 

then, after extensive data analysis, there may be large numbers of “unknowns” that cannot be 

characterized. Thus, although many researchers now have access to metabolomic data, the 

challenge of interpreting the results has created major obstacles that are preventing the full 

potential of metabolomics from being realized. In this light, the American Society for Mass 

Spectrometry (ASMS) selected informatic methods in metabolomics to be the focus of the 

Annual Fall Workshop.

The 2018 Fall Workshop: Metabolomics Informatics

On November 29-30 2018, the ASMS hosted the Annual Fall Workshop on “Metabolomics 

Informatics” in San Francisco, CA. The Workshop was designed to provide a broad 

perspective on the state of data processing in metabolomics by leading experts in the field.

The goal of the Fall Workshop was not only to make attendees aware of the latest 

developments in state-of-the-art informatic resources, but also to educate investigators on 

proper methods for reliably interpreting datasets. Processing metabolomic data involves 

multiple steps (e.g., peak detection, database searching, pathway mapping). Each has unique 

challenges and can produce misleading results when improperly performed. Scientists who 

have created foundational resources to accomplish these various steps presented their 

contributions at the Workshop to help attendees maximize the value of their metabolomic 

data and hopefully prevent misinterpretation.

The Workshop was organized by Erin Baker (North Carolina State University) and Gary 

Patti (Washington University in St. Louis), and there were approximately 100 attendees 

(Figure 1). The presenting speakers were Gary Patti, Erin Baker, Jessica Prenni (Colorado 

State University), Timothy Garrett (University of Florida), Emma Schymanski (University of 

Luxembourg), David Wishart (by proxy, University of Alberta), Alla Karnovsky (University 

of Michigan), Oliver Fiehn (University of California-Davis), Shuzhao Li (Emory 

University), Justin Cross (Memorial Sloan Kettering Cancer Center), Krista Zanetti 

(National Cancer Institute), and Lloyd Sumner (University of Missouri). Lecture topics 

included vendor software solutions in metabolomics, principles of peak picking and data 

alignment, databases and compound identification, annotation of adducts and fragments, 

characterization of “unknown” metabolites, in silico modeling, pathway analysis, isotope 

tracer analysis, integrating data from multiple “omic” experiments, using ion mobility in 

metabolomics, best practices for sharing metabolomic data, automating metabolite 

identification, and integrating informatic resources in metabolomics. All of the presentations 

in the Workshop focused on untargeted metabolomics performed with (LC/MS). The utility 

of (GC/MS) for profiling sugars was briefly noted. Oliver Fiehn raised the question whether 

we would be using GC/MS for untargeted metabolomics in 10 years. No workflows using 

direct infusion (i.e., profiling without chromatographic separation) were presented.

Rather than comprehensively summarizing individual lectures, here, we provide a list of 

some recurring themes that were discussed by multiple presenters throughout the Workshop. 
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We use this as an opportunity to highlight ideas that were widely shared by participants, as 

well as topics in which clear differing opinions were expressed. We (the authors of this 

Review) note that the text reflects our interpretation of events at the meeting. Additionally, 

although our objective here is to identify shared and differing perspectives, this was not an 

explicit goal of the Workshop.

More Data Sharing Is Needed

There was universal enthusiasm among all participants for increased sharing of not only 

primary data files but also the associated meta-data. Krista Zanetti highlighted the benefits 

of data sharing by analogy to genomics. In 2007, the NIH introduced the Genome-Wide 

Association Studies (GWAS) Policy, which applied to grants generating GWAS data after 

the start of 2008. The NIH also introduced the database of Genotypes and Phenotypes 

(dbGaP) to facilitate access to GWAS data based on informed consent.7 By 2014, dbGaP 

had provided 2221 investigators access to 304 studies. Strikingly, this resulted in 924 

publications. The example highlighted that data sharing not only allows for replication of 

results but can also increase the visibility of a study. It was suggested that metabolomics data 

could similarly be extended beyond single studies with related data-sharing practices. Emma 

Schymanski described that data exchange can also facilitate identification of unknowns in 

metabolomics by cross-annotation. In addition to the NIH-supported Metabolomics 

Workbench for data sharing, MetaboLights was also presented.2,8 Participants voiced 

enthusiasm for stronger mandates of data sharing from research journals.

High Frequency of Artifacts and Contaminants in Metabolomics Data

A point common to several presentations was the high frequency of features in LC-/MS-

based metabolomics data that do not correspond to unique metabolites (Figure 2). The 

percentage of artifacts from informatic errors and contaminants from chemical background 

was estimated to be greater than 50% in some experiments.9 Multiple approaches were 

presented to address the issue ranging from credentialing to blank feature filtering (i.e., 

using a blank for background subtraction).10,11 It was shown that, because of artifacts and 

contaminants, total feature number is a poor evaluation metric for metabolome coverage. 

When metabolites have poor chromatographic peak shapes, for example, they are often 

reported as multiple artifactual features by software programs. It was also demonstrated that 

filtering out this noise improves statistics when making global comparisons of the data.

High Frequency of Redundant Signals in Metabolomics Data

It was agreed that an additional source of considerable complexity when analyzing 

metabolomics data is redundant signals arising from the same metabolite. Redundant signals 

result from naturally occurring isotopes, in-source fragmentation, adducts from salts such as 

sodium, analyte-analyte dimers, etc. (Figure 3). Similar to artifacts and contaminants, signal 

redundancies complicate compound identification, statistical analyses, and pathway 

mapping. Multiple software solutions were presented for annotating redundant signals 

including CAMERA, RamClust, MS-FLO, Mz.Unity, Binner, and various vendor options.
12,15 It was noted that CAMERA (and its predecessor16) has been one of the mostly widely 
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used software programs for the analysis of feature degeneracies. It was also brought up that 

rigorous comparisons of the software platforms for annotating feature degeneracies, some of 

which are conceptually similar, have not been performed. The question was raised whether 

different laboratories need to reimplement analogous algorithms. Notwithstanding, most 

workflows presented highlighted that it is critical to filter redundant features when 

processing datasets. The percentage of metabolites represented in a dataset after filtering 

varied by presenter and sample type.

Organization of Reference Data: Global or Specialized Databases?

Although it is common to perform untargeted metabolomics by searching m/z values in 

comprehensive databases, some argued that this was a mistake. It was stated that many 

compounds in databases such as ChemSpider may not occur in the biological system being 

investigated. Accordingly, searching these databases may result in a high number of false 

positives. Similarly, it was highlighted that databases like METLIN, MoNA, and GNPS mix 

compounds from many different organisms like plants, fungi, and bacteria as well as 

compounds that do not occur naturally in cells such as drugs and pesticides.17,18 As David 

Wishart argued, “yeast don’t wear cosmetics.” These databases may therefore similarly yield 

a high rate of false hits. As an alternative, it was suggested that databases be developed for 

specific applications. KNApSAck, KEGG, MetaboLights, MetaCyc, for example, were 

presented as databases with species or source information.19–21 There was disagreement, 

however, about whether m/z values from untargeted metabolomics should be searched in 

general databases or specialized databases. The argument against the latter was that it might 

limit discovery of unexpected compounds, which is a major goal of untargeted 

metabolomics.

Data Required to Structurally Identify Metabolites

There was a strong consensus among participants that accurate mass data alone are 

insufficient for structural identification of a metabolite. It was agreed that additional data 

(such as MS/MS fragmentation spectra, chromatographic retention times, collisional cross 

sections from ion mobility, and NMR results) increase identification confidence. Several 

participants discussed quantifying confidence in metabolite identification by using levels, 

such as those suggested by the Compound Identification work group of the Metabolomics 

Society.5,22–24 Notably, however, there was not a clear agreement on what data are needed 

for each level or whether levels suggested by the Compound Identification work group 

should be refined. Some members of the audience expressed concern that matching accurate 

mass, MS/MS data, retention time, collisional cross section, and NMR spectra to an 

authentic reference standard was often impractical.

Attendee Feedback

Attendees had an opportunity to provide anonymous feedback after the Workshop via an 

online survey. Multiple respondents noted the wide range of expertise among the audience, 

which complicated question and answer sessions. It was also suggested that the addition of 
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hands-on exercises for data analysis might be useful for future ASMS Workshops. Overall, 

most attendees expressed a high level of enthusiasm about their experiences at the meeting.

Perspective on the Future

The success of any big-data science relies upon establishing standardized practices for 

sample handling, data acquisition, data processing, and data sharing. Such standardized 

practices are important for several reasons. First, they facilitate interpretation of the data by 

other laboratories. Second, they enable metacomparisons of existing datasets. Third, they 

promote efficiency by preventing multiple laboratories from having to repeat the same 

experiment. Finally, standardized practices make data more accessible to researchers from 

other fields with less expertise.

A major challenge in standardizing data processing in metabolomics is the large amount of 

available software with overlapping functionality. Counting only the commonly used 

programs that are freely available, there are over 175 pieces of software designed to 

accomplish various functions within the metabolomics data processing workflow (e.g., peak 

picking, de-isotoping, adduct determinations, etc.).25 Considering the number of different 

ways in which many of these modular tools can be combined, it amounts to an even larger 

number of unique processing pipelines. The diversity in data processing algorithms was 

evident at the Fall Workshop, with each of the twelve speakers presenting unique software 

solutions. With such a heterogeneous landscape, a critical question for standardization is 

how software tools designed to accomplish the same function compare. Ideally, despite the 

application of different software platforms, users would obtain similar results from the 

processing of the same dataset. Yet, recent side-by-side comparisons of some of the most 

widely used metabolomic software indicate that concordance is less than 50%.26,28 At the 

current time, however, comparisons of existing software tools have been limited. Although a 

rigorous evaluation of informatic options would certainly benefit the community, such 

efforts are challenging because most research groups do not have expertise across multiple 

software platforms. Most importantly, without an accurate understanding of input 

parameters, a software output may not reflect optimal performance and conclusions based on 

the program’s results will therefore be of minimal or no value.

A potential path to standardization may be to establish reference datasets for rigorous 

benchmarking of metabolomic software performance. The reference dataset could be 

processed by different researchers having extensive expertise with specific software 

programs, thereby enabling accurate head-to-head comparison of output files. A critical 

question will be what sample(s) should be used to create the reference dataset(s). An 

advantage of using chemical standards is that the composition of the dataset will be well 

defined. On the other hand, chemical standards alone may not reflect the complexity of a 

biological sample. A challenge of using a biological sample to generate a reference dataset 

will be deciding which specimen to use (e.g., bacteria, plants, humans, biofluid, tissue, etc.). 

It is likely that different software tools are better suited for specific sample types, extraction 

methods, separation strategies, and instrument platforms, all of which cannot be captured in 

a single reference dataset. Notwithstanding, even a non-optimal reference dataset that was 
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broadly adopted by the community would represent a step forward in the standardization of 

data processing methods in metabolomics.

We note that the perspective expressed in this section reflects only that of the authors and not 

necessarily the attendees or other speakers at the Fall Workshop.
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Figure 1. 
Attendees of the 2018 ASMS Fall Workshop on Informatic methods in metabolomics, held 

in San Francisco, CA
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Figure 2. 
Adapted from slide presented by Gary Patti at the Fall Workshop. Chart illustrates that most 

features detected in the E. coli dataset shown arise from contaminants, artifacts, and signal 

degeneracy (i.e., adducts, naturally occurring isotopes, dimers, etc.)
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Figure 3. 
A schematic of an untargeted “omics” workflow, illustrating the analysis pipeline, two 

methods for feature prioritization, and several associated sources of signal degeneracy.
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