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Abstract

Untargeted metabolomics aims to quantify the complete set of metabolites within a biological 

system, most commonly by liquid chromatography/mass spectrometry (LC/MS). Since nearly the 

inception of the field, compound identification has been widely recognized as the rate-limiting 

step of the experimental workflow. In spite of exponential increases in the size of metabolomic 

databases, which now contain experimental MS/MS spectra for over a half million reference 

compounds, chemical structures still cannot be confidently assigned to many signals in a typical 

LC/MS dataset. The purpose of this Perspective is to consider why identification rates continue to 

be low in untargeted metabolomics. One rationalization is that many naturally occurring 

metabolites detected by LC/MS are true “novel” compounds that have yet to be incorporated into 

metabolomic databases. An alternative possibility, however, is that research data do not provide 

database matches because of informatic artifacts, chemical contaminants, and signal redundancies. 

Increasing evidence suggests that, for at least some sample types, many unidentifiable signals in 

untargeted metabolomics result from the latter rather than new compounds originating from the 

specimen being measured. The implications of these observations on chemical discovery in 

untargeted metabolomics is discussed.

Introduction

The last few decades have seen an increasing number of ‘omic technologies become 

available to profile biological systems.1 One such approach, referred to as metabolomics, 

aims to provide quantitative comparisons of metabolite concentrations between samples. 

Metabolomics offers some unique advantages relative to the other profiling strategies 

available, thereby making it highly complementary. First, metabolite concentrations provide 

a direct readout of biochemical activity.2 A change in one or more metabolite levels signifies 

an alteration in phenotype. In the context of cellular metabolism, metabolite concentrations 

typically change as a result of modified enzyme activity or differences in the rates of nutrient 

consumption and excretion. When profiling genes and proteins, in contrast, enzyme 

activities and nutrient-exchange rates can only be inferred.3 Second, most biological 

processes depend upon metabolism.4 Metabolomics provides an opportunity to better define 

these relationships between cellular functions and biochemical pathways, some of which are 
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likely to be unexpected. From a human disease perspective, such knowledge may reveal new 

therapeutic targets.5 From the point of view of metabolic engineering, it could contribute to 

increased cellular production of therapeutics and biofuels, improved crop yields, better 

strategies for renewable energy, as well as other potential advances in synthetic biology.6–9

A defining attribute of a metabolomic experiment is which metabolites it assays. In theory, 

the metabolome describes the complete set of all metabolites in a biological system.10 In 

practice, however, measurement of the entire metabolome in a single experiment is not 

possible. A challenge, which represents both an exciting opportunity for chemical discovery 

and an intimidating analytical burden, is that the size of the metabolome is not well defined. 

Metabolites, typically recognized as the small molecules in cells, may be taken up directly 

from the environment or produced through endogenous transformation processes. Although 

the latter can potentially be predicted from genes or proteins, the former is only limited by 

the chemicals that the biological system encounters. Human tissues and biofluids, for 

example, contain metabolites derived from the specific foods, drugs, hygiene products, and 

pollutants to which a person is exposed (the so-called “exposome”).11, 12 Without a list of 

molecules present in a sample, metabolome coverage is difficult to quantitatively evaluate. 

Regardless of the size of the metabolome, it is clear that no single profiling experiment can 

be truly comprehensive for even known metabolites because of the physicochemical 

diversity of small molecules.13 Experimental methods that are optimal for analysis of 

hydrophobic metabolites are generally not well suited for analysis of hydrophilic 

metabolites, and vice versa.14 Attempting to assay as many metabolites as possible in one 

experiment is an approach known as “untargeted metabolomics”. Although a number of 

analytical platforms can be used to perform untargeted metabolomics, liquid 

chromatography/mass spectrometry (LC/MS) is the most commonly applied and will be the 

focus of our attention here.

One Author’s Reflection (G.J.P.)

Ten years ago, I used to entice chemistry students to pursue a research career in 

metabolomics by highlighting the thousands of leads from metabolomic data that I argued 

might represent new naturally occurring compounds in human serum. By that time, we had 

spent several years analyzing human serum with untargeted metabolomics. After attempting 

to remove isotopes and well-known adducts from the LC/MS data, we were left with over 

twelve thousands peaks having a unique combination of retention-time and m/z values (so-

called “features”).15 Strikingly, MS and MS/MS data for the overwhelming majority of these 

features did not provide a match in any of the major metabolomic databases (METLIN, 

LipidMaps, HMDB, and MassBank). Even when we turned our attention to a well-

characterized model organism, E. coli, we obtained an equally small number of chemical 

identifications.15 Given that MS/MS databases contained most of the metabolites included in 

conventional biochemistry textbooks, I was excited by the notion that there were potentially 

thousands of metabolites detected by LC/MS-based metabolomics that had not yet been 

reported, possibly produced by promiscuous enzyme activity or enzymes with unknown 

function.16–20
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Flashing forward to current times, I still show prospective graduate students a pie chart to 

illustrate the number of features that we can identify in a typical untargeted metabolomic 

experiment. Even for E. coli, the proportion that we have structurally characterized remains 

strikingly small relative to the overall size of the dataset (i.e., just a few percent). From a 

bird’s-eye view, it may not look like we have made much progress. Indeed, the pie charts I 

have been showing for the last ten years do not look all that different. Yet, my interpretation 

of the data has evolved considerably. The goal of this Perspective is to outline developments 

that have contributed to shifts in my thinking about what, superficially, appears to be the 

same general set of structural identifications. As T.S. Eliot wrote, “And the end of all our 

exploring Will be to arrive where we started And know the place for the first time.”21

Defining the unknown

The term “unknowns” is often used in the field of metabolomics, but its meaning depends 

upon context.22 Generally speaking, an unknown is a feature in a metabolomic dataset for 

which an identity has not yet been assigned. Theoretically, every feature in a dataset starts as 

an unknown. After data processing, some unknowns will be identified (e.g., amino acids, 

central carbon metabolites, etc.) by using typical informatic pipelines. Many unknowns will 

remain unidentified after standard data processing, meaning that they do not return a match 

in the metabolomic databases or libraries searched. One possible reason why an unknown 

does not return a match is because it represents a compound that has not yet been entered in 

the database or library searched. These unknowns could correspond to novel compounds 

whose chemical structures have not yet been previously described in the literature, but that is 

not necessarily the case. In fact, a major goal of this Perspective article is to present evidence 

that often these unknowns do not represent novel compounds, at least for the samples most 

commonly analyzed in our laboratory. Rather, many unknowns do not return matches 

because they are redundant signals, artifacts, and contaminants that are not included in 

metabolomic databases and libraries (vide infra).23 Other unknowns may arise from unique 

metabolites that have not yet been incorporated in the databases or libraries searched, but 

these compounds may still be well-studied chemicals. Consider an example when a drug 

metabolite is detected from a patient sample. Although the drug metabolite may not be in 

metabolomic databases, there could be a large body of research describing the chemical. It 

would be inappropriate to describe this drug metabolite as a novel compound.

Equivocating the term “unknown” with “unknown metabolite” or “novel compound” can be 

highly misleading. First, an unknown is an unidentified feature. Multiple features will be 

derived from the same metabolite or compound.24 An unidentified feature could be 

redundant for a metabolite already identified. Second, some features may be the result of 

informatic errors and chemical contaminants.25 It should not be assumed that an unidentified 

feature is biologically meaningful. Third, the number of unknowns in a metabolomic dataset 

is a function of the informatic methods being applied. When only small databases and 

libraries are searched, for example, then more unknowns will remain. Thus, the number of 

unknowns in any particular study is likely to be more indicative of the informatic workflow 

and experimental techniques being applied rather than the potential for discovery of 

previously unreported metabolites.
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A lesson learned

In 2012, our enthusiasm for discovering previously unreported compounds with LC/MS-

based metabolomics was high. A feature with an m/z of 809.1550 captured our attention. We 

observed it in almost all of the biological samples we had evaluated in negative ion mode, 

ranging from E. coli to human tissue. At the time, accurate-mass searches in metabolomic 

databases provided no matches. Although it is typical that many features do not return 

database matches, our interest in this particular signal was piqued by a statistically 

significant increase in its intensity in a subset of transformed mammalian cells. We 

speculated that, whatever the identity of this signal, it may be relevant to the metabolism of 

some cancers.

We decided to invest effort into structurally characterizing the feature. In total, the project 

would ultimately involve five graduate students, a postdoctoral fellow, and two professors 

over a three year period. Our first step was to perform MS/MS analysis. In retrospect, had 

the fragmentation pattern looked more unfamiliar, we may have abandoned the search. We 

noted, however, a number of recognizable fragments in the spectra. One fragment had an 

m/z of 408.01, for example, which is characteristic of molecules containing adenosine 

diphosphate (Figure 1A). Moreover, after culturing mammalian cells in uniform 13C-

glucose, the feature reflected incorporation of five and ten 13C labels. The result was 

consistent with synthesis of a ribose component, which is a five-carbon sugar, via the 

pentose phosphate pathway. The data were compelling enough to be presented at the 

American Association for Cancer Research meeting as a potentially novel metabolite whose 

level was increased in some cancer cells. Discussion with conference attendees led to 

speculation that the compound might be a damaged nucleotide, similar to the well-

characterized metabolites that others have investigated previously.26–29

In 2015, we determined that m/z 809.1550 was a heteromer formed through adduction of 

glutamate and nicotinamide adenine dinucleotide (NAD+) in the source of the mass 

spectrometer. The change in intensity we had observed was a result of varying levels of 

glutamate, a constituent of the heteromer, between cell types. The fragmentation patterns 

looked familiar because they were derived from glutamate and NAD+. The latter contains 

two ribose moieties, explaining the shift of five and ten mass units after labeling with 

uniform 13C-glucose. Given that the extracted ion chromatograms of glutamate and NAD+ 

only partially overlap with the separation method we applied, the profile of the heteromer’s 

extracted ion chromatogram did not match the profile of either glutamate or NAD+. Thus, 

the heteromer eluded our searches for redundant features of the same metabolite on the basis 

of chromatographic peak shape similarity (Figure 1B).

The motivation for sharing this anecdote is to highlight that unknown features without 

matches in metabolomic databases are not always biologically interesting, even when they 

show a statistically significant fold-change between sample groups and have seemingly 

interpretable MS/MS patterns and isotope tracing results. We tend to see only the success 

stories in research publications.30, 31 Here we show the other side of the coin, where 

resources are exhausted without reaching a satisfying conclusion. This example, and many 

others, have taught us to think carefully about the complexity of LC/MS-based metabolomic 
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data. We urge investigators to consider the roadmap of signal classifications below before 

choosing to invest time in characterizing an unknown feature as a potentially novel 

compound.

Understanding the challenges of compound identification

Determining the structural identity of features is usually thought of as the bottleneck of the 

conventional untargeted metabolomic workflow.32–34 For convenience, we will therefore 

consider steps upstream of feature identification together. These include the following 

experimental steps, for which thousands of protocols have been published: sample 

collection, metabolite extraction, chromatographic separation, and mass spectrometry 

analysis.35–46 Additionally, prior to identification, the features must be detected from the 

raw data. Feature detection and related informatic functions can be accomplished with any 

number of well-established software programs.47–51 Graphical user interfaces have been 

developed for some platforms to facilitate use by investigators with limited expertise in 

computer programming.52

Given the wealth of protocols available and the simplicity of applying automated software 

solutions, most researchers can readily go from a biological sample to a list of features.53 

Translating feature tables into metabolite names, however, is an arduous process. Without 

metabolite names, the data provide minimal biochemical insight. Thus, identifying 

metabolites is generally recognized as a barrier limiting progress in the field. The major 

challenge is that searching a feature’s accurate mass and experimental MS/MS data against 

reference libraries frequently does not return a match. Although the number of reference 

MS/MS spectra curated in house may be small, the amount of reference MS/MS data that 

are freely or commercially available in metabolomic databases has grown considerably in 

recent years.15, 54, 55 Experimental MS/MS data are now available for over a half of a 

million authentic compounds (e.g., standards purchased from companies such as 

MilliporeSigma).56 We estimate that this is nearly one hundred times more reference 

MS/MS data than were available a decade ago. The subset of model compounds with MSn 

spectra, chromatographic retention time, and collisional cross section data from ion-mobility 

analyses is also expanding.57–60 Remarkably, despite these impressive efforts, data from 

thousands of features in a standard untargeted metabolomic analysis often still do not match 

any of the available reference data from authentic compounds.

With the amount of reference data available, it is interesting to consider why the 

identification rate of features in untargeted metabolomic data (i.e., the number of features 

structurally characterized relative to the total) continues to be relatively low, even for well-

studied samples such as human plasma and E. coli. One possibility is that a large number of 

features being detected correspond to small molecules that have yet to be included in 

metabolomic databases and libraries.61 Alternatively, many of the features searched may fail 

to return matches because they are not metabolites (e.g., artifacts and contaminants) or 

because they represent metabolites that have been modified in the source of the mass 

spectrometer (e.g., oligomers, adducts, fragments, etc.).23
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The relative frequency of novel compounds, artifacts, contaminants, and redundant signals 

within an experiment is context dependent. Plants and fungi, for example, are likely to have 

more novel compounds compared to E. coli.22 Impure solvents and dirty containers, on the 

other hand, will increase the number of contaminants observed in an experiment. One 

contaminant can appear in a dataset as many features because of fragments, adducts, 

heteromers, etc. Similarly, the application of poor data processing methods can create a large 

number of informatic artifacts. Thus, although the barrier in untargeted metabolomics is 

often considered to be the informatic challenge of translating features into metabolite names, 

it is important to recognize that the difficulty of this identification process is highly 

dependent upon steps upstream in the workflow (Figure 2). Generating a features table may 

be perceived to be the “easy” part of metabolomics, but the methods applied to perform 

these routine steps determine the complexity of data interpretation (Figure 3).

A map of data complexity in metabolomics

Thus far, we have discussed various types of features that commonly occur when untargeted 

metabolomics is performed with LC/MS. The goal of this section is to define each and 

describe their relationship to one another (Figure 4). First, we categorize features as being 

either biological or non-biological. To distinguish between the two, we consider human 

plasma as an example. Human plasma contains endogenous small molecules as well as 

exogenous small molecules (e.g., drugs, exposure chemicals, etc.). These endogenous and 

exogenous small molecules originate from the sample and therefore we consider any feature 

that is derived from them to be biological. We note that, by this definition, not all biological 

features represent compounds that were produced in the sample by enzymes.

In contrast, non-biological features do not originate from the sample being measured. There 

are two major sources of non-biological features: artifacts and contaminants. Although the 

terms artifacts and contaminants have sometimes been used interchangeably to describe 

features in LC/MS data, we prefer to adopt the definitions that have been established in the 

field of NMR.62, 63 Artifacts are man-made signals and do not arise from actual molecules. 

A common source of artifacts is distorted chromatographic baselines, which may be 

improperly recognized as a feature during peak detection. Another cause of artifacts is 

electronic noise from the mass spectrometer.

Unlike artifacts, contaminants do represent real chemicals. Features that arise from 

contamination are not biologically relevant because the compounds were not originally 

present in the sample prior to its preparation for metabolomic analysis. Frequent 

contaminants include solvent impurities, chemical additives used in sample containers, and 

carry over from a previous experiment. We point out that it can be experimentally 

challenging to differentiate contaminant features from biological features because they can 

correspond to the same compound. Palmitate, for instance, is an endogenous metabolite that 

is synthesized in the cytosol of mammalian cells. It is also used commercially as a slip agent 

when making plastic containers.64 Features derived from palmitate can therefore be 

biological and/or non-biological. One strategy to assess the potential conflation of biological 

and non-biological signals is to analyze a blank, which helps identify background 

interferences that can then be experimentally or computationally removed.
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Given that contaminants are true chemicals, they almost always show up as multiple features 

in a metabolomic dataset. Here we lump all of these features together as not being 

biologically meaningful. The structures of each could be individually characterized but, in 

our laboratory, we usually stop with the annotation of non-biological.

Small molecules originating from a biological sample also typically produce more than one 

feature.65, 66 We divide these biological features into those that represent unique compounds 

and those that are redundant. There are multiple causes of redundancy, also called peak 

degeneracy, which we split into five categories here on the basis of the methods we use to 

annotate them. (i) Isotopes: the most prevalent naturally occurring isotope in metabolomic 

data is 13C. When a 13C is substituted for a 12C in a metabolite, the resulting mass shift 

creates a unique feature. The extent to which 13C and other naturally occurring isotopes 

contribute to feature degeneracy depends upon the sensitivity and resolving power of the 

mass spectrometer being used for metabolomic analysis. Compared to the other sources of 

peak degeneracy elaborated below, naturally occurring isotopes are well defined and can be 

calculated from chemical formulae. (ii) Fragments: in most LC/MS-based workflows, 

feature detection is performed on data collected from instruments in MS1 mode where no 

fragmentation is intended.67 Ideally, all features would therefore correspond to intact 

metabolites, but some compounds inevitably undergo fragmentation in the instrument at a 

frequency that is dependent upon the instrument’s settings. Unintentional fragmentation 

(e.g., in-source fragmentation) contributes to degeneracy because a single compound breaks 

into two or more pieces, each of which can produce a unique feature. (iii) Adducts: a 

metabolite undergoes adduction when it interacts with another chemical species in the 

source of the mass spectrometer to form an ion containing all of the metabolite’s constituent 

atoms as well as an additional atom or atoms. The chemical species that the metabolite 

interacts with could be a halogen, ammonium, another metabolite, or even a contaminant. 

For an adduct to form, all chemical participants must be simultaneously present in the source 

of the mass spectrometer. Species like halogens and ammonium form adducts with a lot of 

different metabolites because they originate from solvents, glassware, etc. and are therefore 

persistent throughout the entire chromatographic run. One common example is sodium 

adducts, which are characterized by two mass spectral peaks (an [M+H]+ and an [M+Na]+) 

that are 21.9819 m/z apart. Software programs such as mz.unity take advantage of the 

frequency that adducts form by looking for recurring mass differences between pairs of mass 

spectral peaks throughout an experiment.68, 69 In contrast, it is rare for a single metabolite to 

form adducts with a large number of other metabolites. This is because metabolites can only 

adduct with other metabolites that co-elute, as observed for the glutamate- NAD+ adduct 

shown in Figure 1. Consequently, annotating metabolite-metabolite adducts necessitates the 

application of unique informatic methods. For convenience, we refer to this sub-class of 

adducts as its own fourth category of redundant signals. (iv) Oligomers: the sub-class of 

adducts containing two or more metabolites. The oligomers can be homo or hetero in 

composition, and can also be complicated by the contribution of contaminants with defined 

chromatographic peak shapes. (v) Multiply charged compounds: although relatively 

infrequent, one metabolite may form multiple ions with different charge states.70 As an 

example, a compound can occur as [M-H]1- and [M-2H]2- ions in the same experiment. 

Charge states can usually be calculated on the basis of the isotopic distribution of the 
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elements in the compound. Taken together, these five categories of redundancy can cause a 

single metabolite to be represented as more than 100 different features in LC/MS-based 

metabolomics.68

Each group of degenerate biological features represents a unique compound originating from 

the sample. The feature in the group corresponding to the protonated or deprotonated 

compound is likely to be the most informative for structural identification because of the 

availability of reference data on [M+H]+ and [M-H]− ions relative to others.71 In our 

experiences with well-studied patient and model-organism samples, a major fraction of the 

“unknowns” that do not match reference data end up representing non-biological or 

redundant features. Notably, however, there are a small number of features for which that is 

not the case.23 Given that these unknowns have been rigorously vetted, it is reasonable to 

assert that they represent true novel compounds. Notwithstanding, we still provide a couple 

of caveats. First, our experimental and computational approaches to identify unique 

biological compounds are evolving. As our methods for annotating data complexity continue 

to improve, it is likely that some “novel compounds” will prove to be false positives. 

Second, we must bear in mind that not having reference data for a particular compound may 

make the metabolite “novel” to the metabolomics community but it could still be a well-

studied chemical in other fields.

Show me your credentials

Assigning features from untargeted metabolomic data to the categories listed in Figure 4 has 

been a longstanding effort in the field.65, 72 The process is challenging and, at this time, not 

readily automated. A complication is that, for obvious practical reasons, we seek to 

categorize features without first identifying their structures. To that end, a number of 

innovative approaches have been developed that rely on one or more of the following: 

chromatographic peak shape, accurate mass, peak intensity across samples, MS/MS spectra, 

and isotopic labeling patterns.24, 68, 69, 73–79 Historically, some feature annotations (e.g., 

naturally occurring isotopes) have been easier to make than others (e.g., metabolite-

metabolite heteromers). A detailed description of available annotation methods is beyond the 

scope of this Perspective, but we direct readers to a recent review by Stanstrup et al. 

describing many of the associated software packages.80 For convenience, we call features 

that correspond to biological molecules “credentialed”.

Recently, we sought to perform a rigorous assessment of the number of actual compounds 

being measured in a representative untargeted metabolomic analysis of E. coli.23 To 

facilitate credentialing of features, we cultured E. coli in either unlabeled or uniformly 13C-

labeled media. After extracting the metabolites, we mix the samples in a defined ratio and 

perform LC/MS analysis.25 The procedure introduces an isotopic signature into biological 

features, but not features corresponding to contaminants and artifacts (Figure 5). We were 

surprised to find that only a small fraction of the total ~25,000 features in the dataset had 

appropriate isotopic signatures. After removing degeneracy from these biological features, 

we initially estimated that we were measuring fewer than 900 unique compounds.23 Upon 

applying some improved strategies to find degenerate features, the number of unique 

compounds was further reduced to half of that. Additional investigations using different 
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experimental methods and sample types, from our laboratory and others, have produced a 

comparably small number of credentialed compounds in orthogonal untargeted metabolomic 

experiments.81

It is important not to equate the number of unique compounds being detected in one LC/MS-

based metabolomic experiment to the total size of the cellular metabolome, or the total size 

of the small-molecule exposome.12 Even though untargeted metabolomics is often said to be 

global and comprehensive, it has long been recognized that metabolite coverage is highly 

dependent upon experimental conditions.36, 82 Data from credentialing experiments do not 

indicate that the metabolome is smaller than anticipated, but rather indicate limitations in the 

experimental coverage of existing LC/MS protocols.38 Indeed, among the hundreds of 

unique compounds that we have credentialed, there are some that likely represent novel 

compounds. We also want to point out that while we have focused on the protonated and 

deprotonated feature of unique biological compounds, we are not suggesting that all of the 

remaining features be discarded. To the contrary, these features can provide valuable 

insights. Some examples include leveraging knowledge of informatic artifacts to improve 

software performance, identifying potentially contaminated laboratory equipment, selecting 

vials and solvents that lead to the fewest number of non-biological interferences, and using 

in-source fragments to facilitate identification of metabolites.78, 83–88

Concluding remarks

We have been evaluating the same set of E. coli samples by LC/MS-based metabolomics for 

nearly a decade. Remarkably, despite impressive increases in the availability of reference 

data and informatic tools, the percentage of features that we have structurally identified is 

not strikingly different now relative to when we started. What is different, however, is our 

perception of why the identification rate is low. While we still believe that there are novel 

compounds to characterize in our E. coli datasets, the potential we see for chemical 

discovery has decreased as our understanding of the complexity of metabolomic data has 

increased.

In our experiences, there are one to two orders of magnitude more metabolomic features 

than there are unique compounds in a sample.23 We have found that it is challenging for us 

to structurally identify many of these features by matching them to reference data in 

metabolomic libraries because they do not correspond to unique metabolites. Instead, they 

represent artifacts, contaminants, and degeneracy, with the latter sometimes causing a single 

metabolite to appear as more than 100 different features in the data. The frequency of non-

biological and redundant features are heavily influenced by experimental methods and data-

processing strategies. Thus, although feature identification is often recognized as the rate-

limiting step of metabolomics, its difficulty is at least partly determined by steps upstream of 

data interpretation, which are dangerously easy to perform with suboptimal procedures.

The perspective that we have provided here has been shaped by our experiences with 

relatively well-studied samples (e.g., E. coli, mammalian cells, mice, patients, etc.) and 

commonly applied metabolomic methods. We acknowledge that other sample types and 

methods could lead to results that are different from those we have discussed. Nonetheless, 
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structurally identifying a novel compound requires considerable time and resources. We urge 

researchers to be judicious in which features they chose to pursue. We have learned the hard 

way that just because a feature is statistically elevated in a sample group, produces familiar 

MS/MS spectra, and has a seemingly interpretable isotope tracing result does not mean that 

it is necessarily biologically interesting.

Acknowledgements

G.J.P. received financial support for this work from the National Institutes of Health grants R35ES028365, 
U01CA235482, and R24OD024624.

References

1. Hasin Y, Seldin M, and Lusis A (2017) Multi-omics approaches to disease, Genome Biol 18, 83. 
[PubMed: 28476144] 

2. Fernie AR, Trethewey RN, Krotzky AJ, and Willmitzer L (2004) Metabolite profiling: from 
diagnostics to systems biology, Nature Reviews Molecular Cell Biology 5, 763–769. [PubMed: 
15340383] 

3. Cravatt BF, and Sorensen EJ (2000) Chemical strategies for the global analysis of protein function, 
Curr Opin Chem Biol 4, 663–668. [PubMed: 11102872] 

4. DeBerardinis RJ, and Thompson CB (2012) Cellular metabolism and disease: what do metabolic 
outliers teach us?, Cell 148, 1132–1144. [PubMed: 22424225] 

5. Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision 
medicine, Nature Reviews Drug Discovery 15, 473–484. [PubMed: 26965202] 

6. Hollywood KA, Schmidt K, Takano E, and Breitling R (2018) Metabolomics tools for the synthetic 
biology of natural products, Curr Opin Biotechnol 54, 114–120. [PubMed: 29567581] 

7. Sumner LW, Lei Z, Nikolau BJ, and Saito K (2015) Modern plant metabolomics: advanced natural 
product gene discoveries, improved technologies, and future prospects, Nat Prod Rep 32, 212–229. 
[PubMed: 25342293] 

8. Fernie AR, and Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop 
improvement?, Trends Genet 25, 39–48. [PubMed: 19027981] 

9. Martien JI, and Amador-Noguez D (2017) Recent applications of metabolomics to advance 
microbial biofuel production, Curr Opin Biotechnol 43, 118–126. [PubMed: 27883952] 

10. Oliver SG, Winson MK, Kell DB, and Baganz F (1998) Systematic functional analysis of the yeast 
genome, Trends in Biotechnology 16, 373–378. [PubMed: 9744112] 

11. Wild CP (2012) The exposome: from concept to utility, International Journal of Epidemiology 41, 
24–32. [PubMed: 22296988] 

12. Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, 
Vrijheid M, and Barr DB (2017) Biomonitoring in the Era of the Exposome, Environ Health 
Perspect 125, 502–510. [PubMed: 27385067] 

13. Winder CL, Dunn WB, Schuler S, Broadhurst D, Jarvis R, Stephens GM, and Goodacre R (2008) 
Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching 
and extraction of intracellular metabolites, Anal Chem 80, 2939–2948. [PubMed: 18331064] 

14. Naser FJ, Mahieu NG, Wang L, Spalding JL, Johnson SL, and Patti GJ (2018) Two complementary 
reversed-phase separations for comprehensive coverage of the semipolar and nonpolar 
metabolome, Anal Bioanal Chem 410, 1287–1297. [PubMed: 29256075] 

15. Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, and Siuzdak G (2012) An accelerated 
workflow for untargeted metabolomics using the METLIN database, Nat Biotechnol 30, 826–828.

16. (2008) Dark matter, Nature 455, 698. [PubMed: 18833282] 

17. Fiehn O, Barupal DK, and Kind T (2011) Extending biochemical databases by metabolomic 
surveys, J Biol Chem 286, 23637–23643. [PubMed: 21566124] 

Sindelar and Patti Page 10

J Am Chem Soc. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Schwab W (2003) Metabolome diversity: too few genes, too many metabolites?, Phytochemistry 
62, 837–849. [PubMed: 12590111] 

19. Patti GJ, Yanes O, and Siuzdak G (2012) Innovation: Metabolomics: the apogee of the omics 
trilogy, Nat Rev Mol Cell Biol 13, 263–269. [PubMed: 22436749] 

20. Prosser GA, Larrouy-Maumus G, and de Carvalho LPS (2014) Metabolomic strategies for the 
identification of new enzyme functions and metabolic pathways, EMBO Rep 15, 657–669. 
[PubMed: 24829223] 

21. Eliot TS (1942) Little Gidding, Faber and Faber, London.

22. Wishart DS (2009) Computational strategies for metabolite identification in metabolomics, 
Bioanalysis 1, 1579–1596. [PubMed: 21083105] 

23. Mahieu NG, and Patti GJ (2017) Systems-Level Annotation of a Metabolomics Data Set Reduces 
25000 Features to Fewer than 1000 Unique Metabolites, Anal Chem 89, 10397–10406. [PubMed: 
28914531] 

24. Kuhl C, Tautenhahn R, Bottcher C, Larson TR, and Neumann S (2012) CAMERA: an integrated 
strategy for compound spectra extraction and annotation of liquid chromatography/mass 
spectrometry data sets, Anal Chem 84, 283–289. [PubMed: 22111785] 

25. Mahieu NG, Huang X, Chen YJ, and Patti GJ (2014) Credentialing features: a platform to 
benchmark and optimize untargeted metabolomic methods, Anal Chem 86, 9583–9589. [PubMed: 
25160088] 

26. Niehaus TD, Richardson LG, Gidda SK, ElBadawi-Sidhu M, Meissen JK, Mullen RT, Fiehn O, 
and Hanson AD (2014) Plants utilize a highly conserved system for repair of NADH and NADPH 
hydrates, Plant Physiol 165, 52–61. [PubMed: 24599492] 

27. Golubev AG (1996) [The other side of metabolism], Biokhimiia 61, 2018–2039. [PubMed: 
9004862] 

28. Tawfik DS (2010) Messy biology and the origins of evolutionary innovations, Nat Chem Biol 6, 
692–696. [PubMed: 20852602] 

29. Showalter MR, Cajka T, and Fiehn O (2017) Epimetabolites: discovering metabolism beyond 
building and burning, Curr Opin Chem Biol 36, 70–76. [PubMed: 28213207] 

30. Artyukhin AB, Yim JJ, Srinivasan J, Izrayelit Y, Bose N, von Reuss SH, Jo Y, Jordan JM, Baugh 
LR, Cheong M, Sternberg PW, Avery L, and Schroeder FC (2013) Succinylated octopamine 
ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans, The 
Journal of biological chemistry 288, 18778–18783. [PubMed: 23689506] 

31. Kalisiak J, Trauger SA, Kalisiak E, Morita H, Fokin VV, Adams MWW, Sharpless KB, and 
Siuzdak G (2009) Identification of a new endogenous metabolite and the characterization of its 
protein interactions through an immobilization approach, J Am Chem Soc 131, 378–386. 
[PubMed: 19055353] 

32. Chaleckis R, Meister I, Zhang P, and Wheelock CE (2019) Challenges, progress and promises of 
metabolite annotation for LC-MS-based metabolomics, Curr Opin Biotechnol 55, 44–50. 
[PubMed: 30138778] 

33. Blazenovic I, Kind T, Ji J, and Fiehn O (2018) Software Tools and Approaches for Compound 
Identification of LC-MS/MS Data in Metabolomics, Metabolites 8.

34. Bingol K, and Brüschweiler R (2017) Knowns and unknowns in metabolomics identified by 
multidimensional NMR and hybrid MS/NMR methods, Current opinion in biotechnology 43, 17–
24. [PubMed: 27552705] 

35. Geier FM, Want EJ, Leroi AM, and Bundy JG (2011) Cross-platform comparison of 
Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage, Anal 
Chem 83, 3730–3736. [PubMed: 21480661] 

36. Masson P, Alves AC, Ebbels TM, Nicholson JK, and Want EJ (2010) Optimization and evaluation 
of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-
MS, Anal Chem 82, 7779–7786. [PubMed: 20715759] 

37. Patti GJ (2011) Separation strategies for untargeted metabolomics, J Sep Sci 34, 3460–3469. 
[PubMed: 21972197] 

38. Wang L, Naser FJ, Spalding JL, and Patti GJ (2019) A Protocol to Compare Methods for 
Untargeted Metabolomics, Methods Mol Biol 1862, 1–15. [PubMed: 30315456] 

Sindelar and Patti Page 11

J Am Chem Soc. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Dietmair S, Timmins NE, Gray PP, Nielsen LK, and Kromer JO (2010) Towards quantitative 
metabolomics of mammalian cells: development of a metabolite extraction protocol, Anal 
Biochem 404, 155–164. [PubMed: 20435011] 

40. Lorenz MA, Burant CF, and Kennedy RT (2011) Reducing time and increasing sensitivity in 
sample preparation for adherent mammalian cell metabolomics, Anal Chem 83, 3406–3414. 
[PubMed: 21456517] 

41. Ivanisevic J, Zhu ZJ, Plate L, Tautenhahn R, Chen S, O’Brien PJ, Johnson CH, Marletta MA, Patti 
GJ, and Siuzdak G (2013) Toward ‘omic scale metabolite profiling: a dual separation-mass 
spectrometry approach for coverage of lipid and central carbon metabolism, Anal Chem 85, 6876–
6884. [PubMed: 23781873] 

42. Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, and Rabinowitz JD (2006) Separation and 
quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-
tandem mass spectrometry, J Chromatogr A 1125, 76–88. [PubMed: 16759663] 

43. Lindahl A, Saaf S, Lehtio J, and Nordstrom A (2017) Tuning Metabolome Coverage in Reversed 
Phase LC-MS Metabolomics of MeOH Extracted Samples Using the Reconstitution Solvent 
Composition, Anal Chem 89, 7356–7364. [PubMed: 28613827] 

44. Gross RW (2017) The evolution of lipidomics through space and time, Biochim Biophys Acta Mol 
Cell Biol Lipids 1862, 731–739. [PubMed: 28457845] 

45. Stevens VL, Hoover E, Wang Y, and Zanetti KA (2019) Pre-Analytical Factors that Affect 
Metabolite Stability in Human Urine, Plasma, and Serum: A Review, Metabolites 9, 156.

46. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, and Nicholson JK 
(2010) Global metabolic profiling procedures for urine using UPLC-MS, Nature Protocols 5, 
1005–1018. [PubMed: 20448546] 

47. Mahieu NG, Genenbacher JL, and Patti GJ (2016) A roadmap for the XCMS family of software 
solutions in metabolomics, Curr Opin Chem Biol 30, 87–93. [PubMed: 26673825] 

48. Pluskal T, Castillo S, Villar-Briones A, and Oresic M (2010) MZmine 2: modular framework for 
processing, visualizing, and analyzing mass spectrometry-based molecular profile data, BMC 
Bioinformatics 11, 395. [PubMed: 20650010] 

49. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, 
and Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive 
metabolome analysis, Nat Methods 12, 523–526. [PubMed: 25938372] 

50. Lommen A, and Kools HJ (2012) MetAlign 3.0: performance enhancement by efficient use of 
advances in computer hardware, Metabolomics 8, 719–726. [PubMed: 22833710] 

51. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, and Xia J (2018) MetaboAnalyst 
4.0: towards more transparent and integrative metabolomics analysis, Nucleic Acids Res 46, 
W486–W494. [PubMed: 29762782] 

52. Spicer R, Salek RM, Moreno P, Canueto D, and Steinbeck C (2017) Navigating freely-available 
software tools for metabolomics analysis, Metabolomics 13, 106. [PubMed: 28890673] 

53. Cho K, Mahieu NG, Johnson SL, and Patti GJ (2014) After the feature presentation: technologies 
bridging untargeted metabolomics and biology, Curr Opin Biotechnol 28, 143–148. [PubMed: 
24816495] 

54. Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, and Fiehn O (2013) LipidBlast in silico tandem 
mass spectrometry database for lipid identification, Nat Methods 10, 755–758. [PubMed: 
23817071] 

55. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li 
C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, 
Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, and 
Scalbert A (2018) HMDB 4.0: the human metabolome database for 2018, Nucleic Acids Res 46, 
D608–D617. [PubMed: 29140435] 

56. Siuzdak G (2019) METLIN at Half a Million Standards with Experimental ESI-MS/MS Data, In 
MetaboNews (Forsythe IJ, Ed.), pp 4–6.

57. Leaptrot KL, May JC, Dodds JN, and McLean JA (2019) Ion mobility conformational lipid atlas 
for high confidence lipidomics, Nat Commun 10, 985. [PubMed: 30816114] 

Sindelar and Patti Page 12

J Am Chem Soc. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



58. Zheng X, Aly NA, Zhou Y, Dupuis KT, Bilbao A, Paurus VL, Orton DJ, Wilson R, Payne SH, 
Smith RD, and Baker ES (2017) A structural examination and collision cross section database for 
over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry, Chem Sci 8, 
7724–7736. [PubMed: 29568436] 

59. Codesido S, Randazzo GM, Lehmann F, Gonzalez-Ruiz V, Garcia A, Xenarios I, Liechti R, Bridge 
A, Boccard J, and Rudaz S (2019) DynaStI: A Dynamic Retention Time Database for 
Steroidomics, Metabolites 9.

60. Yang X, Neta P, and Stein SE (2017) Extending a Tandem Mass Spectral Library to Include MS(2) 
Spectra of Fragment Ions Produced In-Source and MS(n) Spectra, J Am Soc Mass Spectrom 28, 
2280–2287. [PubMed: 28721670] 

61. Cooper BT, Yan X, Simon-Manso Y, Tchekhovskoi DV, Mirokhin YA, and Stein SE (2019) Hybrid 
Search: A Method for Identifying Metabolites Absent from Tandem Mass Spectrometry Libraries, 
Anal Chem.

62. Stejskal EO, and Schaefer J (1975) Removal of artifacts from cross-polarization NMR 
experiments, Journal of Magnetic Resonance (1969) 18, 560–563.

63. Schaefer J, and Stejskal EO (1974) Baseline artifacts in high-resolution fourier transform NMR 
spectra, Journal of Magnetic Resonance (1969) 15, 173–176.

64. Yao CH, Liu GY, Yang K, Gross RW, and Patti GJ (2016) Inaccurate quantitation of palmitate in 
metabolomics and isotope tracer studies due to plastics, Metabolomics 12.

65. Tautenhahn R, Böttcher C, and Neumann S (2007) Annotation of LC/ESI-MS Mass Signals, pp 
371–380, Springer Berlin Heidelberg, Berlin, Heidelberg.

66. Nash WJ, and Dunn WB (2019) From mass to metabolite in human untargeted metabolomics: 
Recent advances in annotation of metabolites applying liquid chromatography-mass spectrometry 
data, TrAC Trends in Analytical Chemistry 120, 115324.

67. Goudarzi M, Weber WM, Mak TD, Chung J, Doyle-Eisele M, Melo DR, Brenner DJ, Guilmette 
RA, and Fornace AJ Jr. (2015) Metabolomic and lipidomic analysis of serum from mice exposed 
to an internal emitter, cesium-137, using a shotgun LC-MS(E) approach, J Proteome Res 14, 374–
384. [PubMed: 25333951] 

68. Mahieu NG, Spalding JL, Gelman SJ, and Patti GJ (2016) Defining and Detecting Complex Peak 
Relationships in Mass Spectral Data: The Mz.unity Algorithm, Anal Chem 88, 9037–9046. 
[PubMed: 27513885] 

69. Brown M, Dunn WB, Dobson P, Patel Y, Winder CL, Francis-McIntyre S, Begley P, Carroll K, 
Broadhurst D, Tseng A, Swainston N, Spasic I, Goodacre R, and Kell DB (2009) Mass 
spectrometry tools and metabolite-specific databases for molecular identification in metabolomics, 
Analyst 134, 1322–1332. [PubMed: 19562197] 

70. Kind T, and Fiehn O (2010) Advances in structure elucidation of small molecules using mass 
spectrometry, Bioanalytical Reviews 2, 23–60. [PubMed: 21289855] 

71. Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, Rinehart D, Valentine E, 
Gowda H, Ubhi BK, Tautenhahn R, Gieschen A, Fields MW, Patti GJ, and Siuzdak G (2015) 
Autonomous metabolomics for rapid metabolite identification in global profiling, Anal Chem 87, 
884–891. [PubMed: 25496351] 

72. Brown M, Wedge DC, Goodacre R, Kell DB, Baker PN, Kenny LC, Mamas MA, Neyses L, and 
Dunn WB (2011) Automated workflows for accurate mass-based putative metabolite identification 
in LC/MS-derived metabolomic datasets, Bioinformatics (Oxford, England) 27, 1108–1112.

73. Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, and Prenni JE (2014) RAMClust: a novel 
feature clustering method enables spectral-matching-based annotation for metabolomics data, Anal 
Chem 86, 6812–6817. [PubMed: 24927477] 

74. Kachman M, Habra H, Duren W, Wigginton J, Sajjakulnukit P, Michailidis G, Burant C, and 
Karnovsky A (2019) Deep annotation of untargeted LC-MS metabolomics data with Binner, 
Bioinformatics.

75. Alonso A, Julia A, Beltran A, Vinaixa M, Diaz M, Ibanez L, Correig X, and Marsal S (2011) 
AStream: an R package for annotating LC/MS metabolomic data, Bioinformatics 27, 1339–1340. 
[PubMed: 21414990] 

Sindelar and Patti Page 13

J Am Chem Soc. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



76. DeFelice BC, Mehta SS, Samra S, Cajka T, Wancewicz B, Fahrmann JF, and Fiehn O (2017) Mass 
Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in 
Untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) Data Processing, Anal Chem 
89, 3250–3255. [PubMed: 28225594] 

77. Uppal K, Walker DI, and Jones DP (2017) xMSannotator: An R Package for Network-Based 
Annotation of High-Resolution Metabolomics Data, Anal Chem 89, 1063–1067. [PubMed: 
27977166] 

78. Domingo-Almenara X, Montenegro-Burke JR, Guijas C, Majumder EL, Benton HP, and Siuzdak G 
(2019) Autonomous METLIN-Guided In-source Fragment Annotation for Untargeted 
Metabolomics, Anal Chem 91, 3246–3253. [PubMed: 30681830] 

79. Stupp GS, Clendinen CS, Ajredini R, Szewc MA, Garrett T, Menger RF, Yost RA, Beecher C, and 
Edison AS (2013) Isotopic ratio outlier analysis global metabolomics of Caenorhabditis elegans, 
Anal Chem 85, 11858–11865. [PubMed: 24274725] 

80. Stanstrup J, Broeckling CD, Helmus R, Hoffmann N, Mathe E, Naake T, Nicolotti L, Peters K, 
Rainer J, Salek RM, Schulze T, Schymanski EL, Stravs MA, Thevenot EA, Treutler H, Weber 
RJM, Willighagen E, Witting M, and Neumann S (2019) The metaRbolomics Toolbox in 
Bioconductor and beyond, Metabolites 9.

81. Wang L, Xing X, Chen L, Yang L, Su X, Rabitz H, Lu W, and Rabinowitz JD (2019) Peak 
Annotation and Verification Engine for Untargeted LC-MS Metabolomics, Anal Chem 91, 1838–
1846. [PubMed: 30586294] 

82. Yanes O, Tautenhahn R, Patti GJ, and Siuzdak G (2011) Expanding coverage of the metabolome 
for global metabolite profiling, Anal Chem 83, 2152–2161. [PubMed: 21329365] 

83. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, and Nicholson JK 
(2006) UPLC/MS(E); a new approach for generating molecular fragment information for 
biomarker structure elucidation, Rapid Commun Mass Spectrom 20, 1989–1994. [PubMed: 
16755610] 

84. Seitzer PM, and Searle BC (2019) Incorporating In-Source Fragment Information Improves 
Metabolite Identification Accuracy in Untargeted LC-MS Data Sets, J Proteome Res 18, 791–796. 
[PubMed: 30295490] 

85. Godzien J, Armitage EG, Angulo S, Martinez-Alcazar MP, Alonso-Herranz V, Otero A, Lopez-
Gonzalvez A, and Barbas C (2015) In-source fragmentation and correlation analysis as tools for 
metabolite identification exemplified with CE-TOF untargeted metabolomics, Electrophoresis 36, 
2188–2195. [PubMed: 25754920] 

86. Xu YF, Lu W, and Rabinowitz JD (2015) Avoiding misannotation of in-source fragmentation 
products as cellular metabolites in liquid chromatography-mass spectrometry-based metabolomics, 
Anal Chem 87, 2273–2281. [PubMed: 25591916] 

87. Mahieu NG, Spalding J, and Patti GJ (2015) Warpgroup: Increased Precision of Metabolomic Data 
Processing by Consensus Integration Bound Analysis, Bioinformatics 32, 268–275. [PubMed: 
26424859] 

88. Spalding JL, Naser FJ, Mahieu NG, Johnson SL, and Patti GJ (2018) Trace Phosphate Improves 
ZIC-pHILIC Peak Shape, Sensitivity, and Coverage for Untargeted Metabolomics, J Proteome Res 
17, 3537–3546. [PubMed: 30160483] 

Sindelar and Patti Page 14

J Am Chem Soc. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Experimental data from the heteromer of glutamate and NAD+ (m/z 809.1550 in negative-

ion mode). (A) MS/MS spectra from glutamate, NAD +, and the glutamate-NAD + 

heteromer. Fragments detected in both the glutamate and heteromer MS/MS spectra are 

colored red. Fragments detected in both the NAD+ and the heteromer MS/MS spectra are 

colored blue. (B) Chromatographic profile of glutamate, NAD +, and a glutamate-NAD + 

heteromer.
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Figure 2: 
General workflow for performing untargeted metabolomics with LC/MS. The green light 

indicates steps that are automated and straightforward to perform. The red light indicates 

steps that are slow and challenging.
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Figure 3: 
Free-energy analogy for translating features into metabolite identifications. The process is 

not automated and therefore never spontaneous. When the steps that are colored green in 

Figure 2 are done rigorously, however, then structurally identifying features requires less 

“activation energy (Ea)”. This is because the frequency of artifacts, contaminants, and 

redundant features is decreased.
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Figure 4: 
Roadmap of the composition of an untargeted metabolomic dataset. The relative frequency 

of each type of feature from a representative experiment in our laboratory is shown by the 

histogram on the right. Redundancies due to multiple-charge states are omitted because of 

their infrequency. We note that the specific number of features in any one category may vary 

with experimental method, processing software, sample type, etc.

Sindelar and Patti Page 18

J Am Chem Soc. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Schematic of an isotope-based credentialing approach. Labeled and unlabeled samples are 

mixed at either a 1:1 ratio (top) or a 1:2 ratio (bottom). 12C signals are only credentialed if 

they have a partner peak whose apex is in the blue box in both cases. The x-dimension of the 

blue box represents m/z and is set based on carbon number. The y-dimension of the blue box 

represents intensity and is set based on the ratio used for mixing.
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