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Abstract

Approximately 0.5–1% of the global population is afflicted with epilepsy, a neurological disorder 

characterized by repeated seizures. Sudden Unexpected Death in Epilepsy (SUDEP) is a poorly 

understood complication that claims the lives of nearly 1-in-1000 epilepsy patients every year. 

This paper aims to explore diagnosis codes, demographic and payment features on mortality of 

epilepsy patients. We design a mortality prediction model with diagnosis codes and non-diagnosis 

features extracted from US commercial insurance claims data. We present classification accuracy 

of 0.91 and 0.85 by using different feature vectors. After analyzing the aforementioned features in 

prediction model, we extend the work to causal inference between modified diagnosis codes and 

selected non-diagnosis features. The uplift test of causal inference using three algorithms indicates 

that a patient is more likely to survive if upgrading from a low-coverage healthcare plan into a 

high-coverage plan.
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I. Introduction

Approximately 50 million people worldwide are afflicted with epilepsy [1], a neurological 

disorder characterized by repeated seizures. Sudden Unexpected Death in Epilepsy 

(SUDEP) is a poorly understood complication that claims the lives of nearly 1-in-1000 

epilepsy patients every year [2]. Although the risk of SUDEP is shown to increase in those 

patients with refractory cases of epilepsy [3], the underlying cause of the condition remains 

elusive. To support understanding of epilepsy and SUDEP, we aim to predict mortality on 
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epilepsy patients using insurance claims data and explore the casual relationship between 

diagnosis codes and non-diagnosis information on epilepsy patients.

Few studies have associated epilepsy patients with insurance claims data. Shcherbakova et al 

[4] identified clinical, medication and demographic factors related to seizure recurrence with 

epilepsy patients receiving antiepileptic monotherapy by using US commercial insurance 

claims data from Jan. 2007 to Sept. 2010. They demonstrated that comorbid conditions and 

prior seizures are the likely predictors for epilepsy patients to require urgent care at one-year 

follow up. Cramer et al [5] explored the utilization and cost on epilepsy patients using an 

insurance claims database covering a study period from 1/1/2007 to 12/31/2009. The author 

confirmed that uncontrolled epilepsy patients have higher economic cost and require more 

non-epilepsy-related healthcare services than stable epilepsy patients.

How do we evaluate the relationship between diagnosis codes and non-diagnosis 

information, such as utilization/ cost? Causal inference is an effective tool. Identifying the 

causal effect of one variable on another is a key subject of causal inference, and has various 

applications in biomedical data analysis, for example, a recent study on the increase of 

emergence department usage due to Medicare insurance [6]. Specifically, we have a binary 

variable T and an outcome Y, and we aim to identify the average treatment effect (ATE) of 

administering T on Y, i.e., the uplift difference between two outcomes Y(T = 1) and Y(T = 

0) [7].

In this paper, we work on the clinical (diagnosis codes) features and non-diagnosis features 

of epilepsy patients from a very large commercial insurance claims database. We have two 

main contributions:

• We design a mortality prediction model to figure out top features contributing to 

death on epilepsy patients and recommend a competitive feature vector that 

concatenates both diagnosis codes and non-diagnosis features.

• We explore the causal relationship between diagnosis code and non-diagnosis 

features. By utilizing uplift models, we demonstrate that a patient is more likely 

to survive if upgrading from a bad healthcare plan into a good healthcare plan, 

given the same conditions.

This paper is organized as follows: in section II, we introduce the U.S. commercial insurance 

claims database Truven and epilepsy patients in Truven. In section III, we explore the 

importance of features extracted from inpatient and outpatient health record by performing 

mortality prediction on epilepsy patients with different feature vectors and discuss the 

prediction results corresponding to top ranking features. We recommend a fair yet 

competitive feature vector in the end. In section IV, we validate the casual relationship that 

better healthcare plan gives rise to lower mortality rate on epilepsy patients by using three 

different uplift algorithms. In section V, we summarize our work and indicate possible future 

work.
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II. Dataset

A. Data Tables in Truven Database

Insurance claims data in Truven database contain heath records for around 10 million 

patients across the U.S from 01/01/2011 to 09/30/2016. Truven has three major data tables: 

Inpatient Admission, Outpatient Claims and Prescription Claims.

Inpatient Admission table has the most critical information, such as up to 15 diagnosis 

codes, up to 15 procedure codes and discharge status per record. Discharge status is the only 

information that indicates whether a patient is dead or alive by the end of the hospital visit. 

In addition, Inpatient Admission includes demographic information, such as gender, age, 

Metropolitan Statistical Area (MSA, which is equivalent to city, town or county) and state. 

Healthcare plan information, including coordination of benefits (COB), copay, co-insurance 

(COIN) and deductible, and net payment as well as total payment, are also included.

Outpatient Claims table has fewer diagnosis codes and procedure codes, while preserving 

the same amount of demographic, healthcare plan and payment information. Prescription 

Claims table has prescription information, such as National Drug Code and refill limits.

B. Epilepsy in Truven

After consulting physicians from Union Chimique Belge (UCB) Pharma., we adopt the 

following criteria to identify epilepsy patients: 1) at least one epilepsy diagnosis code (345 

in ICD9, G40 in ICD10) or 2) at least two convulsion codes (7803 in ICD9, R56 in ICD10). 

As shown in Fig. 1, we identify a total of 972,008 epilepsy patients. Among them, only 

14,025 patients are indicated dead from their inpatient admission records, and only 365,049 

live epilepsy patients have inpatient visits.

III. Feature vectors and mortality prediction

In this section, we design a mortality prediction model to find out top features contributing 

to death on epilepsy patients and recommend optimal feature vector based on our definition. 

Our initial definition towards mortality prediction is: given all diagnosis codes and non-

diagnosis features, predict whether an epilepsy patient will die by the end of the last visit.

A. Feature vector: Diagnosis codes + non-diagnosis features

We first extract all inpatient and outpatient visits for each epilepsy patient, filling the 

diagnosis codes into a sparse matrix: each row corresponds to one visit to the physician/ 

hospital, and the columns are all diagnosis codes in the database; then we condense the 

matrix into one row by summing up the occurrence of each diagnosis code. This vector of 

diagnosis codes is highly sparse: among all 45,547 diagnosis codes, in average less than 1% 

entries are non-zero.

When defining non-diagnosis entries, we include demographic information, health plan 

information and payment information from the last day of visit for each epilepsy patient in 

the database. To be more specific, each epilepsy patient shall have a non-diagnosis feature 

vector that consists of 11 entries: age, gender, state, MSA, Plan type, COB, co-insurance, 

Zhu et al. Page 3

IEEE EMBS Int Conf Biomed Health Inform. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



copay, deductible, net payment and total payment. The non-diagnosis feature vector is 

shown in Table 1.

B. Classification

We choose gradient boosting, the ensemble method implemented by scikit-learn [8] for 

classification. To search for the optimal classification results, we loop the learning rate from 

0.01 to 0.5. The learning rate of 0.1 or 0.2 provides the highest accuracy. We select all 

14,025 dead patients and randomly sample the same number of live patients from the data 

set. In addition, 5-fold cross validation is implemented to average the performance of each 

fold. Three performance metrics are considered: accuracy, f1 score and Matthews correlation 

coefficient (MCC).

C. Results and Discussion

As indicated in Table 2, the feature vector with all 45,547 diagnosis codes and 11 non-

diagnosis features achieves 0.912 accuracy. We realize that, nevertheless, Net Payment and 

Total Payment from the last visit are too dominating when ranking the 11 non-diagnosis 

features alone using Spearman correlation score (shown in Table 3) and analyzing the top 10 

features from the entire feature vector in classification (shown in Table 4). Besides, since in 

practice Net Payment and Total Payment wouldn’t be obtained shortly after the patients’ 

visit to the hospital, we decide to remove them from death prediction feature vector.

After modifying our feature vector as all diagnosis codes plus the nine non-diagnosis 

features, the predication accuracy drops to 0.887 (shown in Table 2). We further notice that, 

certain top-ranking diagnosis codes in Table 3, such as acute respiratory failure and cardiac 
arrest, tend to appear during the last visit before the patient dies. These factors are too close 

to death, which makes prediction meaningless. For fairness consideration, we eliminate all 

diagnosis codes from the last visit.

Now the new definition towards mortality prediction is: given the diagnosis codes of (N-1) 
visits and the nine non-diagnosis features, predict whether the epilepsy patients will die 

during the last (Nth) visit. We assume that demographic information and health plan 

information remain the same for each epilepsy patient. Consequently, our recommended 

feature vector consists of all diagnosis codes without the last visit and the nine non-

diagnosis features. This feature vector leads to prediction accuracy 0.859.

In addition, we also test feature vector of 11 non-diagnosis features, nine non-diagnosis 

features and diagnosis codes without the last visit. It’s interesting to notice that feature 

vector of 11 non-diagnosis features alone outperforms all feature vectors without Net 
Payment and Total Payment. Besides, the concatenation of all diagnosis codes and the nine 

non-diagnosis codes outperforms either one of them. Thus, our recommended feature vector 

is meaningful and competitive.

IV. Uplift Causal Inference on healthcare plan

From previous section, we figure out that both diagnosis codes and non-diagnosis features 

contribute to mortality prediction. In this section, we would like to show the causal 
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relationship between them. We define the problem as whether the same patient with feature 

vector X will have a lower mortality rate (denoted as Y) by upgrading a bad healthcare plan 

(T = 0) into a good healthcare plan (T = 1), i.e., the difference of mortality probability 

with/out a good healthcare plan ATE = P(Y = 1; T = 1|X) − P(Y = 1; T = 0|X). Since in 

reality we cannot change the real healthcare plan for the patients, we can only evaluate the 

average treatment effect (ATE) on the virtual manipulation in causal inference model.

We categorize the patients’ plans based on the ratio between net payment and total payment 

from the last visit. We eliminate “inadmissible” records, including zero total payment, 

negative net payment and net payment larger than total payments from our data set. In Fig. 2 

and Fig. 3, we observe that the majority of patients have healthcare plan that covers more 

than 50% of total cost. Thus, we define a good healthcare plan to have the ratio between net 

payment and total payment smaller than 50%. Vice versa, a bad plan indicates the ratio over 

50%.

We test three uplift algorithms, transformed outcome method implemented by pylift [9], as 

well as ordinary least square (OLS) and matching methods from Causal Inference Package 

[10]. We select all “admissible” 13,823 dead patients and randomly sample the same number 

of live patients from the data set five times, to test the aforementioned algorithms.

As shown in Table 5, the mean value of Average Treatment Effect (ATE) from all three 

algorithms fall into the interval of [−0.191, −0.181] and the standard deviation is small (< 

0.005). The results indicate that a patient tend to have a lower mortality rate if upgrading 

from a bad healthcare plan to a good healthcare plan given the same diagnosis code 

condition.

V. Conclusion and Future Work

In this paper, we design a mortality prediction model to figure out top features leading to 

death on epilepsy patients and recommend an ideal feature vector that concatenates 

diagnosis codes and non-diagnosis features. We have shown that both diagnosis codes and 

non-diagnosis features contribute to the prediction of death on epilepsy patients. All 

diagnosis codes with 11 non-diagnosis features lead to prediction accuracy 0.912; our 

recommended feature vector, diagnosis codes without the last visit concatenated with 9 non-

diagnosis features lead to prediction accuracy of 0.859. The latter feature vector is a safer 

definition towards prediction settings: given the (N-1) hospital records, predict death on the 

Nth visit.

In addition, we explore the causal relationship between diagnosis codes and non-diagnosis 

features. By using three different algorithms of uplift, we successfully demonstrate that an 

epilepsy patient is more likely to survive if upgrading into a better coverage healthcare plan 

given the same diagnosis condition.

Further work can include hierarchical features on diagnosis codes and non-diagnosis 

features. Besides, Long Short-Term Memory (LSTM) is capable of extracting time series 

features from health records. Statistical methods, such as Hawkes Processes, can be 

implemented to record the time interval between hospital visits.
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Besides, causal inference can be extended to explore clinical variables. For example, with 

professional clinical background knowledge, people can test whether a certain procedure 

code can replace another procedure code and consequently lead to a higher survival 

probability using the insurance claims data on one specific cohort of patients.
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Figure 1. 
Venn map for components of epilepsy patients in Truven.
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Figure 2. 
Healthcare plan percentage coverage for dead patients.
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Figure 3. 
Healthcare plan percentage coverage for live patients.
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Table 1.

An example of feature vector of 11 non-diagnosis entries.

Age Gender State MSA Plan Type COB COIN COPAY Deductible Net Pay Total Pay

75 1 28 35840 8 0 0 300 0 15754 16054
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Table 2.

Prediction results by using different feature vectors described in section III. The performance is ranked from 

high to low accuracy. For each feature vector, the best result is shown out of all classifiers.

Feature Vector Accuracy F1 Score MCC

Diagnosis codes (including last visit) + 11 non-diagnosis 0.91240 0.91207 0.82481

11 non-diagnosis only 0.89954 0.89556 0.80198

Diagnosis codes (including last visit) + 9 non-diagnosis 0.88741 0.88759 0.77489

Diagnosis codes (without last visit) + 9 non-diagnosis 0.85929 0.85746 0.71907

9 non-diagnosis only 0.80848 0.79990 0.62171

Diagnosis codes only (without last visit) 0.78563 0.79433 0.57361
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Table 3.

Spearman correlation score between 11 non-diagnosis features and mortality. The score is between −1 and 1. 

A score close to 1 indicates strong positive correlation; a score close to 0 indicates low correlation; a score 

close to −1 indicates strong negative correlation.

Non-diagnosis Feature Spearman Correlation Score

Total Payment 0.670

Net Payment 0.663

Age 0.277

Copay 0.242

COB 0.230

Deductible 0.197

MSA (City) 0.016

Coinsurance −0.046

State −0.058

Gender −0.078

Plan Type −0.083
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Table 4.

Top 10 features from feature vector of 45,547 diagnosis codes and 11 non-diagnosis entries. The third column 

is short description to the entries on the second column.

Ranking All Features

1 Total Pay

2 Net Pay

3 ICD9: 51881 Acute respiratory failure

4 ICD9: 4275 Cardiac arrest

5 AGE

6 ICD9: 0389 Unspecified septicemia

7 STATE

8 ICD9: V667 Encounter for palliative care

9 ICD9: V4986 Do not resuscitate status

10 ICD9: 78039 Unspecified convulsions
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Table 5.

Average Treatment Effect with different methods across five different sampling of dead and live patients from 

the entire data set.

Method Average Std.

Transformed Outcome −0.19169 0.00234

OLS −0.19075 0.00426

Matching −0.18160 0.00273
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