
Genetics of syndromic ocular coloboma: CHARGE and COACH 
syndromes

Aman George, Tiziana Cogliati, Brian P Brooks*

Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of 
Health. Bethesda, Maryland, 20892 USA.

Abstract

Optic fissure closure defects result in uveal coloboma, a potentially blinding condition affecting 

between 0.5 and 2.6 per 10,000 births that may cause up to 10% of childhood blindness. Uveal 

coloboma is on a phenotypic continuum with microphthalmia (small eye) and anophthalmia 

(primordial/no ocular tissue), the so-called MAC spectrum. This review gives a brief overview of 

the developmental biology behind coloboma and its clinical presentation/spectrum. Special 

attention will be given to two prominent, syndromic forms of coloboma, namely, CHARGE 

(Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, 

and Ear anomalies/deafness) and COACH (Cerebellar vermis hypoplasia, Oligophrenia, Ataxia, 

Coloboma, and Hepatic fibrosis) syndromes. Approaches employed to identify genes involved in 

optic fissure closure in animal models and recent advances in live imaging of zebrafish eye 

development are also discussed.

Introduction

The eye develops starting the third week of human gestation as an evagination of the 

diencephalic neuroepithelium to form the optic vesicle, which subsequently invaginates to 

form the optic cup. During evagination, the optic vesicle comes in close proximity to the 

surface ectoderm, which subsequently thickens, forming the lens placode. As the optic 

vesicle invaginates to give rise to a bilayered optic cup (innermost neural retina and 

outermost retinal pigment epithelium, RPE), the lens placode also invaginates in a 

coordinated morphogenetic process to form the primordial crystalline lens, the lens vesicle 

(Figure 1). Optic vesicle invagination, however, is asymmetric, such that a ventral opening, 

the optic fissure, forms around the fifth week of human gestation (O’Rahilly 1983). For the 

eye to develop normally, the two edges of the fissure must approximate and fuse. If the optic 

fissure margins fail to fuse, uveal coloboma, a potentially blinding congenital malformation, 

ensues.
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Clinically, coloboma presents as lens, iris, neural retina/RPE/choroid and/or optic nerve 

defects in the inferior (and often slightly nasal) quadrant (Figure 2A, B). The visual impact 

is largely determined by whether the defect affects macular development. Coloboma may 

occur in normal-sized eyes but it is also frequently accompanied by small eyes 

(microphthalmia), or even rudimentary eye tissue or clinically absent (anophthalmia) eyes 

(i.e., the microphthalmia anophthalmia-coloboma disease or MAC spectrum). In the 

broadest sense, any eye with an antero-posterior axial length two standard deviations shorter 

than the age-appropriate mean is microphthalmic, even if this may not be clinically obvious 

to inspection. Mild forms of optic fissure closure defects include peaking of the pupil 

towards the inferonasal quadrant and minor RPE defects seen on fundoscopy (Figure 2C, D). 

Variable expressivity and incomplete penetrance often exist within families where multiple 

affected individuals are present and the phenotype may be asymmetrically severe within an 

individual. Both observations suggest that genetic and/or environmental as well as stochastic 

processes influence the phenotype.

The term “coloboma” is often used in the nomenclature of other eye defects such as the 

“eyelid coloboma” of Treacher-Collins syndrome and the “macular coloboma” in severe 

forms of Leber congenital amaurosis; the “morning glory” anomaly is sometimes 

erroneously referred to as “optic nerve coloboma.” Each of these conditions is characterized 

by missing and/or dysplastic tissue in an ocular or adnexal structure. However, they all arise 

from processes quite distinct from optic fissure closure and should not be confused with 

uveal coloboma. For the purposes of this article, the terms “uveal coloboma” and 

“coloboma” can be considered synonymous.

Coloboma presents with considerable genetic heterogeneity; it is associated with many 

chromosomal abnormalities and is likely influenced by environmental factors that are 

reviewed in detail in the literature (Chang et al., 2006). Mutations in several 

developmentally-regulated genes encoding transcription factors, cell-cell adhesion proteins, 

growth factors, cytoskeletal proteins and enzymes have been reported in patients with uveal 

coloboma. We performed pathway analysis with human MAC associated genes using 

Enrichr website (https://amp.pharm.mssm.edu/Enrichr/) to identify signaling pathways that 

significantly contribute towards the human MAC phenotype. To test the accuracy of our 

analysis we checked the “Disease/Drug” tab and the top entry in the ClinVar option was 

“anophthalmia microphthalmia syndrome” with an adjusted P-value of 3.856e-24, the top 

entry in the “Cell Types” tab was retina (P=0.000003883) according to the Human Gene 

Atlas option (Figure 3). Top ten pathways based on the adjusted P-value in the KEGG 2019 

option according to our analysis are show in Figure 3. Some usual suspects like TGF-β 
signaling, adherens junctions and Hedgehog signaling were observed, providing credence to 

our analysis. The most significant and rather unexpected was the Hippo signaling pathway, 

which is involved in the regulation of organ size (Harvey et al., 2003; Wu et al., 2003). Some 

recent studies have shown the association of Hippo signaling genes like FAT1, RERE and 

YAP1 with human MAC phenotype (Lahrouchi et al., 2019; Fregeau et al., 2016; 

Williamson et al., 2014).

Genetic diversity may help explain, in part, the phenotypic complexity of the disease and 

suggests that multiple developmental mechanisms (e.g., cell autonomous, non-cell 
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autonomous) may be at work to produce a similar human disease presentation. Because 

developmentally- regulated genes are expressed in discrete anatomical locations at defined 

times, genetic diversity may also explain specific phenotypic patterns. For example, 

mutations in the paired box 2 (PAX2) transcription factor gene in Papillorenal Syndrome 

tend to result in colobomas most often affecting the optic nerve, as this gene is expressed 

prominently in the optic stalk, the precursor of the optic nerve (Sanyanusin et al., 1995; 

Pichaud and Desplan, 2002).

MAC may be isolated (non-syndromic) or associated with other systemic abnormalities 

(syndromic). Nomenclature classifications have been made in the Online Mendelian 

Inheritance in Man (OMIM) based, in part, on this distinction, as well as on the gene(s) 

associated with the phenotype (Table 1). The occurrence of coloboma with a myriad of 

syndromic conditions suggests that the process of optic fissure closure shares the same 

developmental pathways at play in the development of other organ systems. Using the 

example of PAX2 in Papillorenal Syndrome again, both the kidney and the eye rely on this 

transcription factor during development and PAX2 mutations result in congenital ocular and 

renal defects. The explanations provided by these patterns of expression, however, are not 

absolute. For example, genes associated with syndromic forms of coloboma may also 

present with isolated microphthalmia and/or coloboma and some syndromic forms of MAC 

have circumscribed phenotypes despite a much wider pattern of mutant gene expression.

Excellent, detailed reviews on non-syndromic coloboma have been published (Williamson 

and FitzPatrick, 2014; Reis and Semina, 2015) and this review only briefly discusses the 

genetics of non-syndromic coloboma. Most of our attention will be on the etiology and 

pathogenesis of syndromic coloboma, particularly in CHARGE and COACH syndromes, in 

which coloboma is highly prevalent.

Genetics of non-syndromic uveal coloboma: isolated microphthalmia 

(MCOP) and isolated microphthalmia with coloboma (MCOPCB)

Non-syndromic forms of coloboma can present in dominant, recessive, or X-linked patterns, 

although, most often, coloboma occurs sporadically, and the precise inheritance pattern is 

difficult to discern. A comprehensive list of genes associated to date with non-syndromic 

coloboma is presented in Table 2 and we refer the interested readers to the in-depth review 

of the genetics of non-syndromic coloboma by Williamson and FitzPatrick (2014). Most of 

the genes associated with non-syndromic coloboma tend to be eye-specific transcription 

factors that are involved in developmental processes.

Genetics of syndromic forms of coloboma: syndromic microphthalmia 

(MCOPS) loci, CHARGE, and COACH

The genes associated with syndromic forms of coloboma tend to be widely expressed and 

generally have pleiotropic effects. A list of all the syndromes involving coloboma is 

presented in Table 3. The prevalence varies among syndromes, with CHARGE and COACH 

being strongly associated with coloboma; coloboma, in fact, is one of their diagnostic 
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criteria. However, genotyped-confirmed cases of CHARGE and COACH in the absence of 

coloboma are also observed.

Syndromic coloboma associated with transcription factor mutations

Transcription factors known to play a key role in early eye development (e.g. SOX2, OTX2, 

and MITF) are strongly associated with syndromic MAC phenotypes. These are among the 

earliest eye field transcription factors and play multiple roles in several aspects of eye 

development. SOX2 (OMIM *184429) is one of the most frequently identified genes 

associated with bilateral anophthalmia and severe microphthalmia. The majority of known 

cases of SOX2 are de novo mutations (Fantes et al., 2003), but familial, autosomal dominant 

transmission has also been observed (Chassaing et al., 2007; Williamson and FitzPatrick, 

2014). Germline mosaicism is reported in five cases where the SOX2 mutations were 

maternally transmitted (Chassaing et al., 2007, Faivre et al., 2006, Schneider et al., 2008, 

Schneider et al., 2009, Stark et al., 2011) and germline transmission of a SOX2 loss-of-

function allele has been reported only for one family (Gerth-Kahlert et al., 2013). Mosaicism 

is important to look for clinically, as it potentially affects genetic counseling, changing a 

rare, de novo mutation event unlikely to recur into a recurrence risk of up to 50% with each 

pregnancy. Numerous systemic abnormalities including pituitary/hypothalamus dysfunction 

(Kelberman et al., 2006), intellectual disability (Zenteno et al., 2005), esophageal atresia 

(Williamson et al., 2006; Zenteno et al., 2006), microcephaly (Faivre et al., 2006) and 

(possibly) dental abnormalities (Numakura et al., 2010) have been reported.

Mutations in OTX2 (OMIM *600037) were first reported by Ragge et al. (2005a) in a cohort 

of patients with microphthalmia/clinical anophthalmia. Additional ocular (retinal 

degeneration, microcornea, cataract, optic nerve hypoplasia, coloboma) and non-ocular 

(developmental delay, structural brain abnormalities, hypotonia, seizures, pituitary 

dysfunction) abnormalities were also noted in this report and largely confirmed in 

subsequent studies (Dateki et al, 2008; Tajima et al., 2009; Chassaing et al., 2012). 

Mutations can appear de novo or are transmitted in an autosomal dominant fashion. Unlike 

SOX2, there is no evident transmission bias between paternal vs. maternal alleles. Non-

penetrance and variable expressivity have been reported for non-synonymous or clear loss-

of-function alleles. Two confirmed and one suspected case of gonadal mosaicism have been 

reported concomitant with OTX2 mutation (Ragge et al., 2005a, Wyatt et al., 2008).

Autosomal dominant mutations in PAX2 (OMIM *167409) cause Papillorenal Syndrome 

and are strongly associated with optic nerve coloboma/congenital excavation of the optic 

nerve and renal dysfunction (Sanyanusin et al., 1995). Microphthalmia is not a common 

presentation with the Papillorenal Syndrome. De novo mutations and familial cases are 

approximately equally reported. Non-penetrance and highly variable expressivity can be 

present within the same family as well as maternal and paternal germline mosaicism (Amiel 

et al., 2000; Cheong et al., 2007).

We recently reported two cases of MITF (OMIM *156845) compound heterozygosity 

(George et al., 2016) resulting in colobomatous microphthalmia, macrocephaly, severe 

albinism, sensorineural deafness and osteopetrosis (COMMAD syndrome). Both probands 

with a strong phenotypic overlap were born of non-consanguineous unions and parents were 
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diagnosed with classic Waardenburg syndrome, type 2a (WS2A) due to heterozygous MITF 
mutations. Each parent in both families had a unique variant described in the literature to be 

present in all the known MITF isoforms. In both probands, there was complete lack of 

melanin pigment in the hair, skin, and eyes, severe colobomatous microphthalmia, profound 

congenital sensorineural hearing loss, and osteopetrosis.

Syndromic coloboma associated with secreted growth factors

Genes of the transforming growth factor beta (TGFβ) superfamily signaling pathway play 

important roles in many aspects of eye development. For example, bone morphogenetic 

protein (BMP) ligands are involved in the formation of the retina, lens, iris, and ciliary body 

(for review see Wang et al., 2014). Furthermore, growth differentiation factors (GDFs) are 

involved in determining the dorso-ventral symmetry of the optic cup (Yang, 2004). 

Dominant mutations in genes encoding growth factors from these two families are known to 

cause coloboma. Heterozygous mutations in BMP4 (OMIM*112262, Reis et al., 2011) and 

BMP7 (OMIM*112267, Wyatt et al., 2010) are associated with bilateral anophthalmia, 

microphthalmia and/or coloboma. MAC phenotypes ranging from anophthalmia (bilateral or 

unilateral) to uveal coloboma are associated with incompletely penetrant autosomal 

dominant GDF3 and GDF6 mutations (Asai-Coakwell et al, 2007; Asai-Coakwell et al., 

2009; Ye et al., 2010).

Colobomatous microphthalmia in CHARGE syndrome due to CHD7 mutation

CHARGE syndrome (OMIM 214800) is a rare genetic condition arising during early fetal 

development that affects multiple organ systems. Diagnosis is classically clinically based, 

relying on the presence of major and minor criteria (Table 4) (Blake et al., 1998; Verloes, 

2005; Hale et al., 2016). CHARGE syndrome has an estimated prevalence of approximately 

1:10,000 births worldwide and presents with considerable clinical variability (Issekutz et al., 

2005; Sanlaville and Verloes, 2007). The term CHARGE itself is an acronym first coined in 

1982 for the association of Coloboma, Heart defect, Atresia choanae, Retarded growth and 

development, Genital hypoplasia, and Ear anomalies/deafness (Pagon et al., 1981). 

Coloboma is present in 75–81% of patients; conversely, approximately 15–30% of patients 

diagnosed with microphthalmia/coloboma present with CHARGE syndrome (Traboulsi, 

1999). Additional consistent clinical observations in CHARGE syndrome patients include 

semicircular canal hypoplasia, external ear abnormalities, and cranial nerve dysfunction 

(over 90% of the patients); choanal atresis (i.e., blockage of the posterior nasal apertures 

found between the nasal cavity and the throat), resulting from failure of recanalization of the 

nasal fossae during fetal development (38–55%); congenital heart defects (76–77%); genital 

hypoplasia (62–81%); cleft lip and/or palate (33–48%) and tracheoesophageal anomalies 

(19–29%) (Bergman et al., 2011; Zentner et al., 2010b).

In 2004, Vissers and colleagues identified an overlapping 2.3Mb de novo microdeletion on 

chromosome 8q12 by using comparative genomic hybridization (CGH) in patients with 

CHARGE syndrome (Vissers et al., 2004). This region includes the Chromodomain Helicase 

DNA-binding 7 (CHD7) gene, which encodes a 2997 amino acid helicase-domain-

containing protein, localizing to both the nucleoplasm and nucleolus (Schnetz et al., 2009). 

Point mutations were further identified in CHD7 in unrelated CHARGE patients, 
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establishing this gene as causative for the syndrome (Jongmans et al., 2006; Lalani et al., 

2006). Although most mutations are de novo, autosomal dominant loss-of-function 

mutations or deletions have been reported in families with more than one affected member 

(Lalani et al., 2006). Known CHD7 mutations are scattered throughout the gene with no 

clear genotype-phenotype correlation (Jongmans et al., 2006); this becomes further apparent 

by the differences in clinical phenotype of sib pairs with identical mutations and mode of 

inheritance.

In CHARGE syndrome, coloboma is commonly bilateral, and can involve choroid, retina 

and optic nerve (Tellier et al., 1998; Aramaki et al., 2006; Jongmans et al., 2006; Alazami et 

al., 2008; McMain et al., 2008); iris colobomas are described less frequently (Aramaki et al., 

2006; Jongmans et al., 2006; McMain et al., 2008); and eyelid colobomas are rare. 

Microphthalmos, optic nerve hypoplasia, myopia, and strabismus are also reported (Aramaki 

et al., 2006; Jongmans et al., 2006; Lalani et al., 2006; Delahaye et al., 2007; Alazami et al., 

2008; Wincent et al., 2008; Jyonouchi et al., 2009) in CHARGE syndrome patients. Here, 

we focus on colobomatous-microphthalmic findings in genotype-confirmed CHARGE 

syndrome patients.

In a large cohort of individuals with the CHD7 mutations reported by Lalani et al., 2006, 

coloboma of the iris, retina, or optic disc/nerve was observed in 55 out of 62 affected 

individuals (89%). The study also included a pair of female monozygotic twins carrying the 

mutation p.(E1271X), both of whom displayed bilateral coloboma in the presence of other 

phenotypic variation; only one of them, however, survived. Delahaye et al., (2007) reported 

two familial cases of CHARGE syndrome exhibiting extreme intrafamilial variability and 

CHD7 mutations. Each family was comprised of a single mildly affected parent and severely 

affected children (two boys of each parent). In the first family, the mother carrying the p.

(S834F) mutation as well as one of the sons had unilateral (left) optic nerve coloboma 

whereas, hypoplastic optic nerves were observed in the other son. The father in the second 

family, who carried a truncating mutation p.(R157X), had no coloboma, whereas one son 

carrying the same mutation had unilateral retinal coloboma and the coloboma present in the 

deceased son was not specified. Both families included unaffected siblings without CHD7 
mutations.

Nishina et al., 2012, provided an in-depth ophthalmic evaluation from a multicenter study of 

19 Japanese affected individuals who were confirmed for CHD7 mutations and were 

retrospectively studied. Coloboma affected the posterior segment of 92.1% of the eyes 

examined. Fifteen patients presented with retinochoroidal and optic nerve coloboma 

bilaterally (78.9%) and three unilaterally (7.9%). Coloboma affecting the macula was 

observed in eight patients bilaterally (42.1%) and five patients unilaterally (13.2%). Only 

one patient displayed iris coloboma bilaterally and another patient presented with lens 

coloboma unilaterally. Microphthalmos was present bilaterally in three patients and 

unilaterally in two patients. The article also reports the patient’s refractive errors and BCVA. 

The authors suggest a correlation between the location of the protein truncation and the 

severity of the anatomical abnormality in the eye. However, an earlier study had not found 

any significant genotype-phenotype correlation in a cohort of 107 European patients 

(Jongmans et al., 2006).
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Husu et al., 2013, reported that out of 18 Danish patients with CHD7 mutations, coloboma 

and microphthalmia were observed in 17 of the cases. Of 17 affected, one individual 

presented with unilateral and all others had bilateral coloboma. Coloboma was observed in 

all structures of the eye i.e., retina (73%), iris and choroid (7%), optic disc (13%). No 

information was available for one of the affected individuals. Four cases of unilateral and 

one of bilateral microphthalmia accounted for 28% of the subjects.

In a large French cohort of 92 patients carrying mutations in the CHD7 gene (Legendre et 

al., 2017), 67 (73%) were observed to have coloboma. As reported for earlier studies, 

coloboma of the retina (80%) was more common than iris coloboma (15%).

Recently, prenatal diagnosis of CHARGE syndrome has been conducted in three studies 

(Busa et al., 2016; Hoch et al., 2017 and Millischer et al., 2019) in which ocular defects have 

been investigated prenatally. This is particularly important as it would enable better care and 

management of affected individuals after birth. Busa et al., (2016) screened 12 pregnancies 

with CHARGE syndrome diagnosis and CHD7 mutation. At birth, coloboma was observed 

in 11/12 patients and two had severe microphthalmia along with coloboma. Although the 

authors were not able to detect ocular abnormalities during the prenatal screening by 

ultrasound and MRI with the help of a dysmorphologist, they argue that the microphthalmia 

and coloboma could have been identified by careful examination of the ocular region. 

Recently, Millischer et al., 2019 performed a retrospective study of 26 suspected cases of 

CHARGE syndrome, with 20 out of 26 patients positive for the CHD7 mutation. The MRI 

features that were most consistently detected were arhinencephaly, dysplasia of the 

semicircular canals, agenesis and posterior fossa anomalies, whereas, ocular anomalies were 

observed in only four individuals out of 11 and were overlooked in five cases. Coloboma 

was identified as a posterior focal bulging of the eyeball, in the MRI axial plane. Ocular 

asymmetry suggested microphthalmia. Note that the current resolution of MRI does not 

allow for the imaging of the optic fissure closure defect per se. The literature suggests that 

CHD7 functions by controlling gene expression programs through ATP-dependent 

chromatin remodeling (Bajpai et al., 2010; Schnetz et al., 2009) and rearrangement of 

nucleosomes on the DNA (Jiang and Pugh 2009). Zentner et al. have suggested that CHD7 

may also play a role in the nucleolus, where it promotes ribosomal RNA biogenesis (Zentner 

et al, 2010a). Experiments with human pluripotent stem cells have suggested a role for 

CHD7 in specification of neural crest fate (Bajpai et al. 2010). Chai et al., (2018) reported 

that CHD7 is essential in maintaining neuro-epithelium identity and CNS lineage 

development by indirectly suppressing the induction of neural crest fates. Furthermore, 

important roles for CHD7 in neurogenesis and oligodendrocyte maturation and myelination 

(He et al. 2016) have been identified using the mouse as a model. In the developing mouse 

eye, CHD7 is expressed in the neural ectoderm and surface ectoderm but not in the peri-

ocular mesenchymal tissue, and is required for eye morphogenesis, lens development and 

optic fissure closure (Gage et al., 2015). Finally, Bajpai demonstrated that, in Xenopus, 
CHD7 is necessary for normal neural crest development and is essential for activating 

several components of the neural crest transcriptional circuitry (e.g., Twist, Slug and Sox9) 

(Bajpai et al., 2010). Taken together, these studies suggest that CHD7 may play multiple 

roles in optic fissure closure and these may vary in different species, as CHD7 expression, 
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for example, was not observed in the mouse peri-ocular mesenchyme, which is comprised of 

neural crest and mesenchymal tissue.

Coloboma in COACH syndrome due to mutations in TMEM67

Joubert syndrome (JS, OMIM#213300) is a developmental disorder characterized by 

brainstem malformation, cerebellar vermis hypoplasia/dysplasia, ataxia, hypotonia, mental 

retardation, neonatal breathing abnormalities, and oculomotor apraxia. It is caused by 

mutations in more than 35 genes that encode proteins involved in primary cilia and cilium 

basal body establishment. Additional clinical features in JS subtypes include 

nephronophthisis, renal cystic dysplasia, hepatic fibrosis, ocular coloboma, retinal 

dystrophy, and polydactyly. One of the subsets of JS, sometimes referred to as Joubert 

syndrome related disorders - JSRD, is COACH syndrome, caused by mutations in the 

transmembrane protein 67 (TMEM67)/MKS3 gene (Verloes and Lambotte, 1989 and Smith 

et al., 2006). An autosomal recessive condition, COACH syndrome is characterized by 

Cerebellar vermis hypoplasia, Oligophrenia (developmental delay/mental retardation), 

Ataxia, Coloboma, and Hepatic fibrosis. Multiple transcript variants encoding different 

protein isoforms have been found for this gene. Chorioretinal coloboma, a partially penetrant 

phenotype of COACH syndrome, is also strongly associated with TMEM67 mutations. 

Mutations causing COACH syndrome are spread throughout the TMEM67 gene. Missense 

mutations in TMEM67 largely cause COACH syndrome, whereas truncating mutations are 

more likely to cause a related condition, Meckel syndrome, type 3 (OMIM#607361) (Otto et 

al, 2009). No correlation exists, however, between mutation position/type and the coloboma 

phenotype.

Otto et al., 2009, performed mutation screening of 120 unrelated individuals with JS and 

identified TMEM67 recessive mutations in five patients belonging to four independent 

families. Retinal coloboma was observed in three of these patients and a blind sibling pair. 

Brancati et al., (2009) reported eight patients carrying recessive TMEM67/MKS3 mutations 

out of 12 affected individuals diagnosed with COACH syndrome. Of these eight, 

chorioretinal or optic nerve colobomas were detected in five patients (42%) and two other 

cases revealed abnormalities (enlarged optic cup or pale optic disc) upon fundoscopy. 

Subsequently, Doherty et al., (2010), showed that TMEM67 mutations account for 9% of 

families in a large JSRD cohort, and that TMEM67 mutations are observed almost 

exclusively in the COACH syndrome subtype of JSRD.

Iannicelli et al., (2010), performed mutation analysis of TMEM67 in 341 probands (265 

were JSRD and 76 Meckel syndrome fetuses). Among the 265 JSRD patients, TMEM67 
compound heterozygous mutations were identified in eight out of ten probands with a 

phenotype of JS plus liver disease and six of these eight probands had coloboma (unilateral 

or bilateral). No coloboma was reported in 12 of the fetuses from terminated pregnancies 

carrying TMEM67 mutation out of 76 Meckel syndrome cases.

In a Northern European patient cohort (51 cases) diagnosed with JS, Kroes et al., (2016) 

identified five (~10%) patients with colobomatous microphthalmia carrying recessive 

TMEM67 mutations. Bachmann-Gagescu et al., (2015), also reported a significant genotype-

phenotype correlation between TMEM67 mutations causing JS and coloboma. Suzuki et al., 
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2016 analyzed a cohort of 27 families of Japanese descent diagnosed with JS and found 

TMEM67 gene mutation in seven of them, however none displayed coloboma. Kang et al. 

(2016) identified four Korean patients with recessive mutations in TMEM67 out of seven 

nephronophthisis patients with hepatic fibrosis. All four of these patients had JS and 

congenital hepatic fibrosis compatible with COACH diagnosis (Gentile et al., 1996).

Recently, Brooks et al., (2018) reported a comprehensive ophthalmic evaluation of JS 

patients and observed high prevalence of coloboma in those patients carrying mutations in 

TMEM67 gene. Out of 22 patients genotypically confirmed for TMEM67 mutation, retinal 

coloboma was observed in 13, retina and optic nerve coloboma in four, and optic nerve 

coloboma alone in one, for a total of 18 coloboma affected individuals. Conversely, 

coloboma was observed only rarely in JSRD due to mutations in other genes.

The TMEM67 gene product MECKELIN, is predicted to be a 7-transmembrane receptor- 

like protein and contains an extracellular cysteine-rich region (Smith et al., 2006). 

MECKELIN (also referred to as MKS or MKS3) is localized to the transition zone of the 

cilium in protein complexes with other JS and NePHronoPhthisis (NPHP) proteins. The 

protein complexes localized at ciliary transition zone can be categorized into three main 

protein families- MKS, NPHP and CEP290 group. These protein complexes extensively 

collaborate for the proper assembly and functioning of the transition zone and are further 

composed of multiple interacting proteins including – MKS, B9D1, B9D2, TCTN1, TCTN2, 

TCTN3, CC2D2A, TMEM17, TMEM67, TMEM107, TMEM216, TMEM231, TMEM237, 

NPHP1, NPHP4, CEP290, NPHP5, RPGRIP1L, RPGRIP1, RPGR, LCA5, AHI1, CEP162, 

TMEM138, JBTS17 and TMEM80 (Gonçalves and Pelletier 2017). MECKELIN has also 

been detected at the plasma membrane in cell lines and primary cells. Silencing of 

TMEM67/MKS3 and of the related MKS1 gene was shown to regulate centrosome number 

and cilia length in IMCD-3 cell cultures (Dawe et al., 2007). The role of TMEM67 in eye 

development has not yet been studied and more importantly, the functional relationship 

between primary cilium defects and optic fissure fusion defects remains unknown.

Molecular and cellular studies of optic fissure closure

Identification of genes involved in optic fissure closure using animal models

One of the first efforts to identify genes involved in optic fissure closure in an unbiased 

fashion was reported by Brown et al., 2009. The authors performed gene expression 

microarray analysis of mouse tissue samples micro-dissected from the fusing margins of the 

optic fissure corresponding to before (embryonic day (E)10.5), during (E11.5) and after 

(E12.5) optic fissure fusion. Data analysis identified 250 probe sets that represent 168 

annotated genes and 54 predicted genes. Of the 168 annotated candidate genes, 83 have been 

experimentally mutated in mouse or zebrafish models, out of which, five exhibit coloboma, 

22 have other eye phenotypes and 21 have no reported eye phenotype. Association with eye 

or eye development for 35 of the mutated genes could not be determined from published 

reports. A high percentage of annotated genes from the screen were confirmed to be 

expressed during eye development. Of the 78/168 genes for which in situ hybridization 

(ISH) studies exist at relevant time points, 70 are expressed in the eye, four are not expressed 

in the eye, and expression in the eye is undetermined for the remaining four.
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Similar efforts have been reported in mouse (Cao et al., 2018), chick (Hardy et al., 2019) and 

zebrafish (Richardson et al., 2019) to identify genes involved in optic fissure closure. Cao et 

al., (2018), used laser-assisted microdissection to collect optic cup tissue samples from 

E11.5 mouse embryos from central-nasal, central-temporal retina and ventral optic fissure, 

to provide a comparative gene expression profile of the three different regions. Microarray 

data analysis highlighted 36 probe sets corresponding to 32 genes that showed significantly 

different expression levels between nasal and temporal retina and include many known 

genes (e.g., Foxg1, Foxd1, Hmx1, Efna5, Epha5, and Tenm3), validating the robustness of 

the technique. These data also revealed several new nasal-temporal differentially expressed 

genes, including those encoding cell adhesion molecules (Cdh9, Cdh11 and Sema5a), 

transcription factors (Sall1, Zfhx4, Onecut2, Tfec, and Glis3), and a predicted noncoding 

RNA (3110039M20Rik). The authors further performed differential gene expression 

analysis comparing the optic fissure transcription profile with nasal and temporal retinal 

gene expression to identify optic fissure- specific genes. Using this strategy, novel and 

already known optic fissure signature genes were identified, including Vax1, Vax2, Vax2os, 

Ntn1, Smoc1, Aldh1a3, Cyp1b1, Ptchd1, Zfp503, Laminins, Bmpr1b, Bmp7 and Tenm3. A 

number of genes that had not been reported previously to be expressed in the optic fissure 

were confirmed by ISH and 11 were conclusively established as new optic fissure-specific 

genes: Afap1l2, Adamts16, Bmf, Slitrk1, Cp, Ror2, Tfec, Cplx3, Neto1, Shtn1, and Flrt2.

In 2019, Hardy et al., reported on a similar developmental profiling strategy applied to the 

chick eye, albeit using a distinct and complementary approach to laser capture 

microdissection (Hardy et al, 2019). The authors manually microdissected tissue in/around 

the optic fissure margins, the ventral eye, the dorsal eye and the eye as a whole from 

Hamburger-Hamilton stage (HH.St) 25–26 (pre-fusion), HH.St27–28 (initiation of fusion) 

and HH.St28–30 (during active optic fissure fusion) embryos. After RNA sequencing (RNA-

Seq) profiling and analysis, they compiled a list of genes enriched in the optic fissure; these 

include both known coloboma genes (e.g., PAX2, VAX1) and genes not well established to 

be important in optic fissure closure. Among the latter, the gene with the highest expression 

at all stages is Netrin-1 (NTN1), which is also differentially regulated during mouse optic 

fissure closure (Brown et al, 2009). NTN1 belongs to a family of laminin-related secreted 

proteins important for axonal guidance. Knockout of Ntn1/ntn1a function in mouse and 

zebrafish produces optic fissure closure defects— an additional proof that optic fissure gene 

profiling strategies can identify genes of potential clinical relevance for coloboma.

Lastly, Richardson et al., (2019) performed RNA-Seq of dorsal retina versus tissue around 

the optic fissure and identified candidate genes that are differentially expressed at 

developmental time points corresponding to before (32 hpf), during (48 hpf), and after (56 

hpf) optic fissure closure in zebrafish. This screen also suggests an important role for ntn1a 
in optic fissure closure, that was further confirmed via morpholino-mediated depletion and 

ocular coloboma appearance in zebrafish morphants. Notably, ntn1a expression is 

completely downregulated at the optic fissure margins prior to fusion.

A major difference (other than the obvious species difference) between the Richardson et al., 

(2019) and the Hardy et al., (2019) data sets compared Brown et al., (2009) and Cao et al., 

(2018) is the use of RNA-Seq technology instead of microarrays. Unlike hybridization-based 
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approaches, RNA-Seq is not limited to detecting transcripts that correspond to known 

genomic sequences and is applicable to non-model organisms with genomic regions that are 

yet to be sequenced.

Studies of optic cup morphogenesis and optic fissure margins fusion using live zebrafish

Investigation of the morphogenetic dynamics of optic cup formation and optic fissure 

margins fusion was initiated as early as the 1980s (Hero 1989, 1990 and Hero et al., 1991). 

In seminal studies performed on the cinnamon mouse, Hero used transmission electron 

microscopy (TEM) to show how early appositional junctions are established, followed by 

subsequent creation of cell-cell junctions in apposing RPE cells during optic fissure margins 

fusion. Given the limitations of working with developing mouse embryos, the focus has 

shifted towards the use of developing zebrafish. Imaging optic cup morphogenesis in live 

zebrafish presents with many advantages over fixed tissues. In one of the earliest efforts, 

Kwan et al., (2012) showed how live imaging eliminates fixation artifacts, yields relatively 

accurate size and shape measurements, and allows concomitant tracking of many cell types. 

These “4-dimensional” data sets, coupled with advanced cell tracking and the use of 

segmentation software, have revealed several unexpected findings: 1) although cell division 

contributes to the growth of the optic cup, it is largely dispensable for eye formation; 2) 

optic vesicle evagination persists longer than it had been previously appreciated and cells 

move in a “pinwheel” fashion, with retinal precursors involuting around the rim of the optic 

cup; and 3) cells that are adjacent early in the process and, presumably, subject to similar 

extracellular cues, can settle in disparate locations in the final optic cup structure.

Recent studies have shed light for the first time on morphogenetic events shaping the optic 

cup (Heermann et al., 2015 and Bryan et al., 2016), optic stalk (Gordon et al., 2018) and 

fusion of optic fissure margins (Bernstein et al., 2018), in real time. These studies have been 

instrumental in understanding optic cup morphogenesis up to the point of the optic fissure 

margins organizing around the fissure. Such understanding would not have been possible 

studying fixed tissues at different “static” time points.

Heermann et al., (2015) describe the lens-averted epithelium as a source of presumptive 

stem cells that flow around the distal rims of the optic cup to their destination in the ciliary 

marginal zone and contribute to the growing neuroretina. This epithelial flow contributes to 

optic cup morphogenesis and, when inhibited by BMP, ectopic neuroretina forms in the RPE 

domain, leading to failed fissure closure and coloboma. Using live imaging, Bryan et al., 

(2016) determined the important role of laminin extracellular matrix in optic cup 

morphogenesis. They showed that in lama1 mutant zebrafish, optic cup morphogenesis, 

optic stalk constriction, invagination, and formation of a spherical lens are affected. Also, 

lama1 mutants exhibit loss of epithelial polarity and altered adhesion leading to defective 

tissue architecture and disorganized retina. Similarly, Nicolás-Pérez et al., (2016) provided 

evidence for the role of contractile actomyosin network dynamics mediated by lamc1 and 

extracellular matrix in shaping the optic cup. They elegantly demonstrated that optic cup 

morphogenesis requires clustered myosin accumulation inside basal neuroepithelial cells and 

attachment of these cells to an underlying extracellular matrix. In addition, Sidhaye and 

Norden (2017) have shown that active migration of connected epithelial cells into the retinal 
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neuroepithelium, driven by cell-matrix contacts, together with basal shrinkage of retinal 

neuroepithelium are crucial for optic cup formation. Finally, Gordon et al., (2018) for the 

first time employed a combination of four-dimensional imaging, cell tracking, and molecular 

genetics in zebrafish to understand the morphogenesis of the optic stalk in relation to the 

optic fissure. Using the ptch2 mutant in which the Hedgehog (Hh) signaling is overactive, 

they show how cell motility required for optic fissure and stalk formation is impaired via 

non-cell-autonomous and cell-autonomous mechanisms.

More recent studies are focused on understanding the actual fusion process of the optic 

fissure margins. Although Drosophila dorsal lip/pore closure has been the system of choice 

for studying epithelial sheet fusion, investigations of optic fissure margin fusion have been 

gaining traction in vertebrate models. Bernstein et al., (2018) suggest that optic fissure 

closure is accomplished by breaking down of the basement membrane along the fissure 

margins, and by subsequently establishing basement membrane continuity along the dorsal 

and ventral surfaces of the fissure. Fissure closure is finally accomplished by cell protrusions 

and movements of partially polarized retinal cells into the fissure space to initiate the fusion 

and intercalation of various tissues into the fissure space.

Conclusion and future directions

One of the most important aspects of understanding the genetics of human optic fissure 

closure defects is to disentangle the primary drivers of fusion per se and other, more 

“secondary” causes such as morphogenetic defects and non-cell autonomous effects from 

surrounding tissues. Tools such as in vivo imaging (especially if this were to extend into a 

mammalian system), tissue-specific genetic manipulations, and complementary in vitro cell 

culture models will likely be crucial in disentangling these potential mechanisms. We 

anticipate that the knowledge gained by studying optic cup formation and optic fissure 

closure will have important implications for human disease and will likely be generalizable 

to other developmental processes involving epithelial sheet fusion.
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Highlights

• Uveal coloboma, a rare potentially blinding condition affecting between 0.5 

and 2.6 per 10,000 births.

• Isolated and syndromic cases of uveal coloboma.

• Current knowledge on the genetics of human uveal coloboma with a specific 

focus on CHARGE and COACH syndromes.

• Approaches to identify genes involved in optic fissure closure using animal 

models.

• Live imaging of zebrafish eye development to understand optic fissure 

closure.
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Figure 1. 
Schematic of embryonic eye development.
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Figure 2. 
Clinical presentations of uveal coloboma. (A) Typical iris coloboma of a left eye. Note the 

inferonasal positioning of the coloboma, corresponding to the position of the optic fissure. 

(B) Typical chorioretinal coloboma inferior to the optic nerve in a patient with excellent 

visual acuity. (C) Microform of iris coloboma in a patient with Waardenburg syndrome, type 

2A. Note slight peaking of the pupil of the inferonasal quadrant (arrow). (D) Microform of a 

chorioretinal coloboma in the asymptomatic mother of a patient with bilateral nonsyndromic 

coloboma.
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Figure 3. 
Pathway analysis was performed using online tool Enrichr (https://amp.pharm.mssm.edu/

Enrichr/enrich#) where ninety genes described Table 1 and 2 were uploaded to the site. The 

genes were assigned to the most relevant disease phenotype by the ClinVar and Cell Types 

by Human Gene Atlas options. KEGG 2019 Human option was used to identify the 

significant pathways that were arranged in the order of decreasing P value as shown in the 

table.
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Table 1:

Classification of coloboma genes based on MAC phenotype. The number preceding the gene name denotes the 

OMIM nomenclature# (CHX10:MCOP2).

MAC phenotype OMIM Nomenclature OMIM #. Gene

Isolated microphthalmia

MCOP

1. ch 14q32, 5. MFRP

2. CHX10 6. PRSS56

3. RAX 7. GDF3

4. GDF6 8. ALDH1A3

Syndromic microphthalmia

MCOPS

1. NAA10 8. 6q21

2. BCOR 9. STRA6

3. SOX2 10. -

4. ANOP1 11. VAX1

5. OTX2 12. RARB

6. BMP4 13. HMGB3

7. HCCS 14. MAB21L2

Isolated microphthalmia with coloboma

MCOPCB

1. Chr.X 5. SHH

2. 15q12-q15 6. GDF3

3. CHX10 7. ABCB6

4. - 8. STRA6

9. TENM3
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Table 2.

Genes associated with non-syndromic coloboma

Gene MAC phenotype OMIM Inheritance
Syndrome/associated 

phenotype -*
Reference

ABCB6 Microphthalmia, Coloboma of 
iris, retina and choroid

605452 AD - Wang et al., 2012

ALDH1A3 Microphthalmia, retinal 
coloboma

600463 AR - Fares-Taie et al., 2013; 
Yahyavi et al., 2013

ATOH7 Microphthalmia 609875 AR Persistent hyperplastic 
primary vitreous

Khan et al., 2012

CRYAA Coloboma of iris, Cataract 123580 AD - Beby et al., 2007

FZD5 Microphthalmia, Coloboma of 
iris, retina and choroid

601723 AD - Liu et al., 2016

IPO13 Microphthalmia, coloboma of 
iris, cataract

610411 AR - Huang et al., 2018

LCP1 Coloboma of iris and choroid 153430 AD - Rainger et al., 2017

MAF Coloboma of iris, Cataract 177075 AD Cataract Jamieson et al., 2002

Mir204 Coloboma of iris 610942 AD Retinal dystrophy Conte et al., 2015

PAX6 Coloboma of iris, retina, 
choroid and optic nerve 

Anophthalmia

607108 AD AR Aniridia, Morning glory disc 
anomaly, Peter’s Anomaly, 
Anterior segment dysgenesis, 
Cataract with late-onset 
corneal dystrophy, Foveal 
hypoplasia, Keratitis, Optic 
nerve hypoplasia.

Azuma et al., 1996; Azuma 
et al., 2003; Glaser et al., 
1994

RARB Microphthalmia 180220 AR, AD diaphragmatic hernia, 
pulmonary hypoplasia, and 
cardiac defects

Srour et al., 2013

RAX Microphthalmia, anophthalmia, 
coloboma of optic nerve

601881 AR - Voronina et al., 2004

RBP4 Microphthalmia, Coloboma of 
iris, choroid and retina

180250 AD AR Retinal dystrophy, 
comedogenic acne syndrome

Cukras et al., 2012; Chou et 
al., 2015.

SALL2 Microphthalmia, Coloboma of 
iris, retina and choroid

602219 AR - Kelberman et al., 2014

SHH Microphthalmia with 
Coloboma of retina, choroid, 

iris and retina

600725 AD Holoprosencephaly Schimmenti et al. 2003; 
Nanni et al., 1999

SIX6 Coloboma of iris, choroid and 
optic nerve

606326 AR Optic disc anomalies, macular 
atrophy and reduces retinal 
ganglion cell differentiation

Aldahmesh et al., 2013; 
Yariz et al., 2015

STRA6 Microphthalmia, anophthalmia, 
coloboma

610745 AR - Casey et al., 2011

TENM3/
ODZ3

Microphthalmia, iris coloboma 610083 AR - Aldahmesh et al., 2012

VSX2 Microphthalmia, anophthalmia, 
iris coloboma

142993 AR cataracts Kohn et al., 1988; Bar-Yosef 
et al., 2004

*
No associated phenotype reported with this gene.

AD: Autosomal dominant, AR: Autosomal recessive.
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Table 3.

Human syndromes with eye coloboma

Gene MAC phenotype OMIM Inheritance Syndrome/associated 
phenotype

Reference

ACTB Coloboma of iris and retina 102630 AD Baraitser-Winter syndrome 1, 
Dystonia, juvenile-onset

Riviere et al., 2012

ACTG1 Coloboma of iris and choroid 102560 AD Baraitser-Winter syndrome 2, 
Deafness

Riviere et al., 2012

ALG3 Coloboma of iris 608750 AR Congenital disorder of 
glycosylation, type IV (CDGS 
type IV)

Korner et al., 1999

ALX1 Microphthalmia, coloboma 
of iris and eye lid

601527 AR Frontofacionasal dysostosis Uz et al., 2010

BCOR Microphthalmia, Coloboma 
of iris, choroid and optic 

nerve

300485 XL Recessive Lenz syndrome Ng et al., 2004

BMP4 Microphthalmia, 
anophthalmia, coloboma

112262 AD Orofacial cleft facial 
dysmorphism

Bakrania et al., 2008; 
Reis et al., 2011

BMP7 Microphthalmia, 
anophthalmia, Coloboma of 

retina, choroid and optic 
nerve

112267 AD Developmental delay, deafness, 
scoliosis, and cleft palate

Wyatt et al., 2010

C12orf57 Coloboma of iris, retina and 
choroid

615140 AR Temtamy syndrome Temtamy et al., 1996

CHD7 Coloboma of iris, retina, 
choroid and optic nerve, eye 

lid (rarely)

608892 AD CHARGE syndrome Vissers et al., 2004

CLDN19 Pseudo coloboma? 610036 AR Hypomagnesemia, renal, with 
ocular involvement

Khan et al., 2018

CREBBP Microphthalmia, coloboma 
of iris, choroid and retina

600140 AD/del Rubinstein-T aybi syndrome Ge et al., 1995

CRIM1 Coloboma of iris, retina, 
choroid and optic nerve

606189 AD Toker et al., 2003

DPYD Microphthalmia, coloboma 
of iris and choroid

612779 AR Dihydropyrimidine 
dehydrogenase deficiency

Van Gennip et al., 
1994; Meinsma et al. 
1995

FAT1 Microphthalmia, coloboma 
of choroid and retina

600976 AR Glomerulonephropathy, 
cutaneous syndactyly

Lahrouchi et al., 2019

FBN1 Coloboma of lens; rarely iris, 
retina and optic disk 

coloboma

134797 AR Marfan syndrome Nemet et al., 2006

FBN2 Coloboma of retina and 
choroid

612570 AD Congenitalcontractural 
arachnodactyly

Bard 1979

FGFR1 Microphthalmia, 
anophthalmia, coloboma of 

iris and eye lid

136350 Somatic 
Mosaicism

Oculocerebrocutaneous 
syndrome 
Encephalocraniocutaneo us 
lipomatosis

Prontera et al., 2009

FGFR2 Coloboma of iris 176943 AD Multiple Graul-Neumann et al., 
2017

FLNA Coloboma of iris, retina and 
optic nerve

300017 XL Dominant 
XL Recessive

Multiple Robertson et al., 2003

FOXA2 Choroidal coloboma 600288 de novo hypopituitarism, hyperinsulinism 
and endoderm-derived organ 
abnormalities

Giri et al., 2017
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Gene MAC phenotype OMIM Inheritance Syndrome/associated 
phenotype

Reference

FOXE3 Microphthalmia, Coloboma 
of iris, retina and optic disc

601094 AD, AR Anterior segment dysgenesis, 
Cataract, aniridia

Khan et al., 2016

FREM1 Anophthalmia, 
microphthalmia and 

coloboma of upper eyelid

608944 AR MOTA syndrome Marles et al., 1992

GDF3 - 606522 AD Klippel-Feil Syndrome3, skeletal 
anomalies

Ye et al., 2010

GDF6 Microphthalmia, Coloboma 
of iris, retina, choroid and 

optic nerve

601147 AD AR Klippel-Feil Syndrome1 Leber 
congenital amaurosis

Asai-Coakwell et al., 
2009

GJA8 Microphthalmia, 600897 AD Congenital cataracts Ceroni et al., 2019

HMGB3 Coloboma of iris, retina and 
choroid

300193 XL microcephaly, short stature, and 
intellectual disability

Scott et al., 2014

HMX1 Coloboma of iris, retina and 
choroid

142992 AR Oculoauricular syndrome
Schorderet et al., 2008

IGBP1 Coloboma of iris and optic 
nerve

300139 XL Recessive Corpus callosum defect, mental 
retardation, and micrognathia

Graham et al., 2003

KCTD1 Coloboma of iris and eye lid 613420 AD Scalp-ear-nipple syndrome 
(Finlay-Marks syndrome)

Sobreira et al., 2006

KMT2D Coloboma of iris, retina, 
choroid and optic nerve

602113 AD Kabuki syndrome
Ming et al., 2003

LINC00237 Coloboma of retina and eye 
lid

614992 AD MOMO syndrome Moretti-Ferreira et al., 
1993

LRP2 Coloboma of iris 600073 AR Donnai-Barrow syndrome Avunduk et al., 2000

MAB21L2 Anophthalmia, 
microphthalmia, Coloboma 

of iris and retina

604357 AD AR skeletal dysplasia Rainger et al., 2014

MITF Microphthalmia, coloboma 156845 AR COMMAD syndrome George et al., 2016

MKS1 Microphthalmia, coloboma 
of iris

609883 AR Meckel-Gruber syndrome Slaats et al., 2016

MSX2 Coloboma of iris, retina and 
choroid

123101 de novo 
duplication

Craniosynostosis 2, Parietal 
foramina 1

Plaisancie et al., 2015

OTX2 Microphthalmia 600037 AD Retinal dystrophy, early-onset, 
with or without pituitary 
dysfunction

Ragge et al., 2005a

PACS1 Coloboma of iris and optic 
nerve

615009 de novo 
(c.607C>T)

Schuurs-Hoeijmakers syndrome Pefkianaki et al., 2018

PAX2 Coloboma of optic nerve 167409 AD Papillorenal Syndrome Sanyanusin et al., 1995

PDE6D Coloboma of optic nerve 602676 AR Joubert syndrome 22 Thomas et al., 2014

PIGL Coloboma of retina and 
choroid

605947 AR CHIME syndrome Ng et al., 2012

PITX2 Microphthalmia, coloboma 
of iris

601542 AD Rieger syndrome, type1 Ozeki et al., 1999

POMT1 Microphthalmia, coloboma 607423 AR W alker-W arburg syndrome Beltran-Valero de 
Bernabe et al., 2002

PQBP1 Coloboma of retina, choroid 
and optic disc

300463 XL Recessive Renpenning syndrome Martinez-Garay et al., 
2007

PRR12 Coloboma of iris. 616633 de novo (LOF) Leduc et al., 2018

PTCH1 Coloboma of iris 601309 AD/Sporadic Holoprosencephaly, Basal cell 
nevus syndrome

Chassaing et al., 2016
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Gene MAC phenotype OMIM Inheritance Syndrome/associated 
phenotype

Reference

PTPN11 Coloboma of iris, retina and 
optic nerve

176876 AD Noonan syndrome Lee et al., 1992

PUF60 Coloboma of iris, retina and 
choroid

604819 de novo Verheij syndrome Graziano et al., 2017

RAB3GAP1 Microphthalmia, 
anophthalmia, coloboma of 
iris, choroid, retina, optic 

nerve

602536 AR Warburg micro syndrome 1 Aligianis et al., 2005

RERE Coloboma 605226 de novo Neurodevelopmental disorder 
with or without anomalies of the 
brain, eye, or heart

Fregeau et al., 2016

SALL1 Coloboma of retina and 
choroid

602218 AD Townes-Brocks syndrome Botzenhart et al., 2005

SALL4 Microphthalmia, coloboma 
of iris, choroid and optic 

nerve

607343 AD Duane-radial ray syndrome 
(Okihiro syndrome; acroreno-
ocular syndrome)

Borozdin et al., 2004

SCLT1/
TBC1D32

Retinochoroideal lacunae of 
colobomatous

611399 XL Orofaciodigital syndrome IX Gurrieri et al., 1992

SEMA3E Coloboma of iris, retina and 
optic nerve

608166 AD CHARGE syndrome Lalani et al., 2004

SIX3 Microphthalmia, coloboma 
of iris, retina, choroid and 

macula

603714 AD Holoprosencephaly2, 
Schizencephaly

Wallis et al., 1999

SMOC1 Microphthalmia, Coloboma 
of retina and limb anomalies

608488 AR limb anomalies Abouzeid et al., 2011; 
Okada et al., 2011

SMO Microphthalmia, coloboma 
of iris

601500 AD Curry-Jones syndrome Twigg et al., 2016

SOX2 Anophthalmia, 
microphthalmia, coloboma of 

iris, retina and choroid

184429 AD Optic nerve hypoplasia and 
abnormalities of the central 
nervous system

Fantes et al., 2003; 
Ragge et al., 2005b

SOX3 Microphthalmia, Coloboma 313430 XL (germline 
mosaicism)

Panhypopituitarism Mental 
retardation

Jelsig et al., 2018

SPINT2 Coloboma of optic nerve 605124 AR Congenital sodium diarrhea Hirabayashi et al., 
2018

SRD5A3 Coloboma of iris 611715 AR Congenital disorder of 
glycosylation, Kahrizi Syndrome

Cantagrel et al., 2010

TCOF1 Coloboma of iris, choroid, 
optic nerve and eye lid

606847 AD Treacher Collins 
Syndrome 
Collaborative Group 
(1996)

TFAP2A Microphthalmia, coloboma 
of iris, choroid and optic 

nerve

107580 AD Branchio oculofacial syndrome Milunsky et al., 2008

TGDS Coloboma of iris 616146 XL recessive Catel-Manzke syndrome Ehmke et al., 2014

TMEM67 Coloboma of iris, retina and 
choroid

609884 AR COACH syndrome Verloes et al., 1989

VAX1 Microphthalmia 604294 AR small optic nerves, orofacial 
clefting, agenesis of corpus 
callosum

Slavotinek et al., 2012

WDR11 Coloboma of iris. 606417 AD Hypogonadotropic 
hypogonadism with or without 
anosmia

Kim et al., 2010

WASHC5 Coloboma of iris and retina 610657 AR Ritscher-Schinzel syndrome (3C 
syndrome)

Leonardi et al., 2001
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Gene MAC phenotype OMIM Inheritance Syndrome/associated 
phenotype

Reference

YAP1 Coloboma of iris, retina and 
choroid

606608 AD hearing impairment, cleft lip/
palate, and/or mental retardation

Williamson et al., 2014

ZEB2 Coloboma of iris and retina 605802 AD Mowat-Wilson syndrome Wakamatsu et al., 2001

AD: Autosomal dominant, AR: Autosomal recessive, XL: X-linked, LOF: Loss of function.
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Table 4:

Diagnosis criteria for CHARGE syndrome

Major criteria Minor criteria

Coloboma Cranial nerves dysfunction including hearing loss

Choanal atresia and/or cleft lip or palate Dysphagia (feeding difficulties)

Abnormal external, middle or inner ears, including 
hypoplastic semicircular canals

Structural brain anomalies

Pathogenic CHD7 variant Developmental delay/intellectual disabilities/autism

Hypothalamo-hypophyseal dysfunction (gonadotropin or growth hormone 
deficiency) and genital anomalies

Heart or esophagus malformation

Renal anomalies

Skeletal/limb anomalies
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