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ABSTRACT: Quantitative predictions of reaction properties, such as activation energy, have
been limited due to a lack of available training data. Such predictions would be useful for
computer-assisted reaction mechanism generation and organic synthesis planning. We develop
a template-free deep learning model to predict the activation energy given reactant and product
graphs and train the model on a new, diverse data set of gas-phase quantum chemistry
reactions. We demonstrate that our model achieves accurate predictions and agrees with an
intuitive understanding of chemical reactivity. With the continued generation of quantitative
chemical reaction data and the development of methods that leverage such data, we expect
many more methods for reactivity prediction to become available in the near future.

Activation energy is an important kinetic parameter that
enables quantitative ranking of reactions for automated

reaction mechanism generation and organic synthesis planning.
Achieving reliable activation energy prediction is an integral
step toward the complete prediction of kinetics. Machine
learning, particularly deep learning, has recently emerged as a
promising data-driven approach for reaction outcome
prediction1−6 and for use in organic retrosynthetic anal-
ysis.7−10 These methods leverage massive data sets of organic
reactions, such as Reaxys11 and Pistachio.12 However, the
methods operate on qualitative data that indicate only the
major reaction product and mostly lack any information
regarding reaction rates. Moreover, many of the organic
chemistry reactions are not elementary. The data used by
Kayala and Baldi1 and Fooshee et al.2 are an exception, but
quantitative information is still missing.
Linear methods, like Evans−Polanyi relationships13 and

group additivity models,14−17 have been successfully used in
automated reaction mechanism generation to estimate rate
constants, but they are limited in scope and applicability. New
parameters have to be derived for each reaction family, and
predictions far from the training data often go awry. Nonlinear
decision trees provide more flexible models for the estimation
of kinetics but are also most effective when they are specific to
a reaction family.18 Neural networks may be a promising
alternative as large data sets become more readily available.
Recently, some quantitative reaction prediction research

using neural networks has become available, but it is limited in
its application. Gastegger and Marquetand developed a neural
network potential for a specific organic reaction involving bond
breaking and formation, likely the first of its kind.19 Allison
described a rate constant predictor for a specific reaction type
involving reactions with OH radicals.20 Choi et al. looked

specifically at activation energy prediction using machine
learning.21 However, their training data were composed of
reactions in the Reaction Mechanism Generator (RMG)18

database that comprised many similar reactions such that a
random test split yielded ostensibly good results. Their issue
stems from the fact that the vast majority of the RMG database
is composed of just two reaction families: hydrogen abstraction
and addition of a radical to a multiple bond. Reactions within
the same family tend to have similar kinetics. Therefore, a
model trained on such data performs particularly well for the
two reaction types but not well for others. Moreover, the
model of Choi et al. required knowledge of the reaction
enthalpy and entropy to make a prediction. Singh et al.
similarly predicted reaction barriers for a small data set of
dehydrogenation reactions involving dissociation of N2 and O2
on surfaces.22 Their model also required the reaction energy as
additional input.
Our goal is to develop a deep learning model to predict

activation energies across a wide range of reaction types that
does not depend on any additional input and requires only a
graph representation of reactants and products. Such a model
would be useful as a first step in deep learning-based
estimation of kinetics for automated reaction mechanism
generation (e.g., in RMG18) or would allow for quantitative
ranking of reaction candidates that were generated via
combinatorial enumeration of potential products given a
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reactant.23 Training such a model requires suitable quantitative
data. We use data based on large-scale quantum chemistry
calculations,24 but high-throughput experimentation25 is also
starting to become a valuable source of new data.
To effectively learn activation energy, we must encode the

atoms involved in a reaction that change significantly in a way
that they contribute most to the predicted property. To
accomplish this, we extend a state-of-the-art molecular
property prediction method, chemprop, developed by Yang et
al.,26 to work with atom-mapped reactions. Figure 1 shows a
schematic of the method, while the Supporting Information
provides more detail about the network, training procedure,
and hyperparameter optimization. Our modified code is
available on GitHub in the reaction branch of chemprop.27

The code also includes the trained model in the model
directory that can be directly used with the predict.py script in
chemprop.
The method of Yang et al. is a directed message passing

neural network (D-MPNN) for molecular property prediction,
which is a type of graph convolutional neural network.28−30

Graphs naturally represent molecules in which atoms are the
vertices and bonds are the edges. The D-MPNN constructs a
learned representation of a molecule by passing information
between elements of the graph using messages associated with
directed edges/bonds. A hidden representation for each
directed bond embeds initial atom features, such as atomic
number, and initial bond features, such as bond order, using a
neural network. Additional neural networks iteratively update
these hidden representations by incorporating the information
from neighboring bonds. Afterward, we transform the hidden
bond vectors into hidden atom vectors and sum them to obtain

a molecular feature vector. However, such a summation would
lose information about the order of atoms, which is necessary
to encode reactions effectively. As shown in Figure 1, we
resolve this issue by using the same D-MPNN to encode the
reactant and product into the intermediate representation
given by the hidden atom vectors. Because the mapping of
atoms between the reactant and product is known, we calculate
differences between all product and reactant atoms to yield
atomic difference fingerprints. This approach is similar to the
difference network described in ref 5. Next, we pass each of the
fingerprints through the same neural network and aggregate
them into a reaction encoding. The last step of the process is
the readout phase, in which the network learns a linear
combination of the elements in the reaction encoding to give
an estimate of the activation energy.
The idea behind constructing difference fingerprints is to

subtract out the effects of atoms that do not change
significantly in the reaction and, therefore, do not contribute
much to the activation energy prediction. This requires that
atom-mapped reactions are available, which is often not the
case, but developing methods for automatic atom mapping is
an active area of research.31−33 With large molecules, even
atoms that do not change their covalent bonding environment
may have large difference fingerprint magnitudes because they
may strengthen van der Waals attractions between different
parts of the molecule or sterically hinder certain transition
states.
We train our model on a newly developed gas-phase organic

chemistry data set of elementary atom-mapped reactions based
on density functional theory (DFT).24 These data span a
diverse set of reactions with at most seven heavy atoms

Figure 1. Illustration of the neural network model used to predict activation energy given a chemical reaction. The difference fingerprint approach
emphasizes atoms that change during the reaction.
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involving carbon, hydrogen, nitrogen, and oxygen. Reactions
are available at two different levels of theory: B97-D3/def2-
mSVP and ωB97X-D3/def2-TZVP. Both levels are used in a
transfer learning approach similar to that in ref 34, but we
measure the final model performance against the ωB97X-D3/
def2-TZVP data. We augment our data by including all of the
reverse reactions, as well, which essentially doubles the training
data and may further help in subtracting out the effect of
distant atoms. This results in a total of 33000 B97-D3/def2-
mSVP and 24000 ωB97X-D3/def2-TZVP reactions. The
activation energies, Ea, provided in the data set are not
obtained by fitting to an Arrhenius form, but they represent the
difference of transition state and reactant electronic energies,
each including zero-point energy.
To assess whether the trained model can make useful

predictions across a wide range of chemical reactions, the test
set should contain reactions that are sufficiently different from
those in the training data, i.e., out-of-domain data. To generate
such a data split, we partitioned our data on the basis of the
scaffold splitting technique, which has been shown to
approximate time splits that are common in industry and are
a better measure of generalizability than random splits.26 We
performed the split on the basis of the scaffold of the reactant
molecule. Moreover, to obtain a less variable estimate of the
model performance, we evaluated the model using 10-fold
cross-validation. A split into 85% training, 5% validation, and
10% test data yields a test set mean absolute error (MAE) of

1.7 ± 0.1 kcal mol−1 and a root-mean-square error (RMSE) of
3.4 ± 0.3 kcal mol−1, where the indicated bounds correspond
to one standard deviation evaluated across the ten folds. While
this error is quite small given the diverse nature of the data,
which span an activation energy range of 200 kcal mol−1,24 the
true error is confounded by the accuracy of the ωB97X-D3
method used to generate the training and test data, which itself
has an RMSE of 2.28 kcal mol−1 measured against much more
accurate reference data.35

Because the model does not take three-dimensional
structural information into account and because the training
and test sets include only a single conformer for each molecule
(not necessarily the most stable one), some of the error is due
to conformational variations of the reactant or product
structures. More accurate models could be based on the
molecular geometries, which have been shown to work well for
molecular property prediction and the development of neural
network potentials.36 Nonetheless, we do not employ such
information here because it is often not readily available in
applications when one wishes to rapidly predict activation
energies, like in automated reaction mechanism generation.
More fine-grained results are shown in Figure 2. The parity

plot in Figure 2a shows that accurate predictions are made
across the entire activation energy range, and this accuracy is
even maintained in regions where data are sparser.
Furthermore, there seems to be no systematic over- or
underprediction, and large outliers are relatively infrequent.

Figure 2. Deep learning model results. (a) Parity plot of model predictions vs “true” (ωB97X-D3) data for the first fold. (b) Histogram of
prediction errors (predicted minus “true”) for the first fold. (c) MAE vs the number of training data points for the deep learning model. The error
bars indicate one standard deviation calculated across the ten folds. (d) Distributions of errors (outliers not shown) for the six most frequent
reaction types (first fold). Each reaction type includes only the bond changes occurring in the reaction, e.g., +C−H,−C−H,−C−C means that a
carbon−hydrogen bond is formed, a different carbon−hydrogen bond is broken, and a carbon−carbon single bond is broken in the reaction.
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This is further shown in the error histogram in Figure 2b,
which indicates that only very few reactions have errors in
excess of 10 kcal mol−1. Depending on the application, the
model may be sufficiently accurate for quantitative predictions
if errors slightly in excess of those of the ωB97X-D3 method
are acceptable. An MAE of 1.7 kcal mol−1 implies that rate
coefficients differ by a factor of 2.4 from the true/DFT value at
1000 K on average, which is often quite acceptable. However,
this error increases to a factor of 17.5 at 300 K. Moreover,
entropic effects that would typically be captured in the
prefactor used in Arrhenius expressions are not taken into
account in this analysis and would constitute an additional
source of error.
Regardless, the results show that the model is suitable for

ranking a list of candidate reactions by their likelihood of

occurring. This may lead to an improvement over qualitative
reaction outcome prediction approaches by enabling a more
quantitative ranking. However, a direct comparison is not
currently possible because such approaches are generally not
based on elementary reactions and involve multiple steps in
solvated environments. A promising, immediate application of
the model could be to enable discovery of novel reactions from
species in large chemical mechanisms. Reaction candidates can
be generated from each molecule in a mechanism by changing
bonds systematically to enumerate potential products.23 The
deep learning model can then assess which candidates have the
lowest barriers and warrant further evaluation. Such a reaction
discovery process would proceed in a template-free manner,
whereas conventional reaction mechanism generation software
is based on templates to restrict the allowable chemistry.18

Figure 2c also shows that the model strongly benefits from
additional training data, and the typical decrease in the slope of
the learning curve is not yet evident. However, this is partially
because hyperparameter optimization was performed on an
85:5:10 split. Optimization for the points at lower training
ratios would lead to improved performance and show a more
typical curve.
Unlike our model, other methods for the estimation of

activation energy and kinetics, such as the decision tree
estimator used in the RMG software,18 are often applicable
only within a specific reaction family/template. The decision
tree templates implemented in RMG are based on known
reactivity accumulated over decades and manually curated into
reaction rules. Conversely, the training data for the deep
learning model are obtained from systematic potential energy
surface exploration and contain many unexpected reactions
that do not fall within the space encoded by the RMG
templates. In fact, only 15% of all reactions in the data used for
this study have a matching template in RMG (distribution of
RMG families shown in the Supporting Information). There is
no statistically significant difference between the deep learning
model performance on RMG-type reactions and on non-RMG-
type reactions (p ≤ 0.05), which shows that our template-free
model can be applied to many reactions that do not fit into

Figure 3. t-Distributed stochastic neighbor embedding (t-SNE) of the
learned reaction encodings for the test set of the first fold. The
embeddings correlate with the activation energy (top). The reactions
cluster in t-SNE space on the basis of their reaction type. Shown are
the six most frequent reaction types (bottom). Each reaction type
includes only the bond changes occurring in the reaction, e.g., +C−
H,−C−H,−C−C means that a carbon−hydrogen bond is formed, a
different carbon−hydrogen bond is broken, and a carbon−carbon
single bond is broken in the reaction.

Figure 4. Investigation of how the difference fingerprint norm, i.e.,
contribution to the activation energy prediction, changes as atoms
move farther from the reactive center. The reactive center is defined
as those atoms that undergo bond changes in a reaction.
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expected reaction families and may be useful for discovering
new and unexpected reactions.
Figure 2d illustrates that the test set error is not the same

across all reaction types (examples of each reaction type are
shown in the Supporting Information), but the reasons for this
are not obvious. The +C−H,−C−H,−C−C type leads to the
formation of carbenes via hydrogen transfer and ring opening
and has a distribution of errors similar to that of the +C−H,−
C−H,+C−C type, which is its reverse. Of the most frequent
reaction types, the largest errors are associated with the +C−
O,−C−C,−C−O type, which is similar to the +C−H,−C−
H,−C−C type but involves the transfer of a hydroxy group
instead of a hydrogen or the rearrangement of a cyclic ether.
The last three reaction types shown in Figure 2d generally have
small errors, although the +C−H,+CO,−C−H,−C−C,−C−
O type has a tail skewed toward larger errors, potentially
because of its unusual zwitterion/carbene product. Interest-
ingly, the model generally performs poorly for reactions with
three heavy atoms (shown in the Supporting Information),
perhaps because the training data are dominated by larger
molecules.
To assess whether the reaction encoding learned by the

model is chemically reasonable, we embedded the encodings in
two-dimensional space using t-distributed stochastic neighbor
embedding (t-SNE).37 The activation energy gradient in
Figure 3 demonstrates that the model has learned to organize
reactions it has not seen during training in a sensible manner
that correlates with reactivity. Moreover, different regions in
this representation of reaction space correspond to different
reaction types. The six most frequent reaction types (same as
those in Figure 2d) are highlighted in Figure 3. Because the
reaction types are based on only the bond changes, the
reactions within each type involve many different chemical
functionalities; still, the model learns to cluster reactions of the
same type together. The same analysis as shown here using t-
SNE is conducted in the Supporting Information using
principal component analysis (PCA), but the separation into
reaction-type clusters is not as striking because the first two
PCA components capture only 46% of the total variance.
To further show that the model behaves correctly when

different functional groups are present, we analyzed the effects
of substituting hydrogen atoms with side chains containing
different functional groups and verified the model predictions
using DFT. This analysis (shown in the Supporting
Information) demonstrates that the model correctly identifies
that a substitution of an electronegative group close to the
reactive center of a reaction has a strong effect on the
activation energy, whereas the substitution of any group far
from the reactive center of another reaction does not affect the
activation energy to any significant degree.
This observation also agrees with the earlier hypothesis that

the difference fingerprints (recall Figure 1) should, on average,
have a smaller contribution to the activation energy for atoms
farther from the reactive center, although some distant atoms
may influence the reactivity via electronic or steric effects.
Figure 4 shows that the contribution, measured by the norm of
the difference fingerprint, does indeed decrease for atoms that
are farther from the reactive center.
With quantitative data becoming more readily available

through advances in high-throughput experimentation and
more extensive computational resources available for data
generation using, for example, quantum chemistry, quantitative
predictions of reaction performance based on large training

sets are becoming increasingly more feasible. Here, we have
demonstrated that activation energies for a diverse set of gas-
phase organic chemistry reactions can be predicted accurately
using a template-free deep learning method. We expect that
automated reaction mechanism generation software can
strongly benefit from such a model, whether to estimate
kinetics or to enable discovery of new reactivity. Further
generation of large quantitative data sets will likely result in
rapid development of novel machine learning algorithms
suitable for predicting such quantities.
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