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a b s t r a c t 

Similar to other epidemics, the novel coronavirus (COVID-19) spread very fast and infected almost two 

hundreds countries around the globe since December 2019. The unique characteristics of the COVID-19 

include its ability of faster expansion through freely existed viruses or air molecules in the atmosphere. 

Assuming that the spread of virus follows a random process instead of deterministic. The continuous time 

Markov Chain (CTMC) through stochastic model approach has been utilized for predicting the impending 

states with the use of random variables. The proposed study is devoted to investigate a model consist 

of three exclusive compartments. The first class includes white nose based transmission rate (termed 

as susceptible individuals), the second one pertains to the infected population having the same pertur- 

bation occurrence and the last one isolated (quarantined) individuals. We discuss the model’s extinc- 

tion as well as the stationary distribution in order to derive the the sufficient criterion for the persis- 

tence and disease’ extinction. Lastly, the numerical simulation is executed for supporting the theoretical 

findings. 

© 2020 Published by Elsevier Ltd. 
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. Introduction 

The 2019- novel coronavirus has been known to the virologist’s

ommunity as Severe Acute Respiratory Syndrome Coronavirus-2

SARS-CoV-2) [1] . The COVID-19 refers to the virus associated syn-

rome. SARS-CoV-2 being previously unrecognized novel-strain of

he coronavirus in humans [2,3] . Coronaviruses in general circulate

mong various animals with some being highly susceptible for in-

ecting humans. Among these animals, naturally bats are thought

o be proven hosts of such novel coronaviruses, nevertheless, var-

ous species of other animals are also considered an active cause

or such spreads [4] . At present, the Middle East Respiratory Syn-

rome Coronavirus (MERS-CoV) which is much similar to COVID-

9 was spread from camels to humans, while the civet cats have

een considered as source of Severe Acute Respiratory Syndrome

oronavirus-1 (SARS-CoV-1) for transmission into human. Bunch of

nformation are presented in the ECDC factsheet on coronaviruses

4,5] . 
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Though the animals are understood to be a proven source, how-

ver, currently, human-to-human transmission is also considered

s one of the spread source. At present, the epidemiological in-

ormation are sparse for the determination of an effortless spread

f this virus among the people, nonetheless, currently, on average,

t is estimated that, infection in one person can cause the spread

mong 2-3 more people [1,5] . The virus appears to be transferred

ostly through narrow respiratory droplets by coughing, sneezing,

r people’s interaction in close proximity (usually less than one

eter) with each other for a certain time frame. These droplets

an further be inhaled, or can stay on the surfaces being came in

ontact by the infected person, that can cause infection in others

y touching their nose, mouth or eyes. The virus possesses ability

o survive on various surfaces commencing several hours (e.g. cop-

er, cardboard) up to a few days (e.g. plastic and stainless steel).

onetheless, the quantity of the viable virus certainly decays over

 time span and might not be present in sufficient quantity for

ausing the infection. It is currently estimated that the appearance

f symptoms and initial infections in case of COVID-19 almost lies

etween 1-14 days [1,5,6] . Moreover till today there is no proper

reatment in term of vaccine etc. However, the scientists are work-

ng faster to develop vaccine for the novel COVID-19, which will

https://doi.org/10.1016/j.chaos.2020.110036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110036&domain=pdf
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take enough time. Therefore the only way to stop the spread of

this disease is to quarantine or isolate the initially infected popu-

lation as showed by the Chinese Govt and also the guide line of

WHO. 

It could be also noted that most of the real world phenomenon

are not simply deterministic, because in deterministic models, the

output of the model is fully determined by the parameter values

and the initial conditions. Stochastic models possess some inher-

ent randomness. The same set of parameter values and initial con-

ditions will lead to an ensemble of different outputs or we can say

in simple world a deterministic model is one that uses numbers as

inputs, and produces numbers as outputs. A stochastic model in-

cludes a random component that uses a distribution as one of the

inputs, and results in a distribution for the output. These distribu-

tions may reflect the uncertainty in what the input should be (e.g.

a deterministic input plus noise), or may reflect a random process

(i.e. a stochastic input) [7–9] . 

For describing the changing behavior of several epidemic dis-

eases in a realistic sense, the mathematical modeling is consid-

ered as an influential tool. Several epidemic models have been

developed by various mathematicians and ecologists for compre-

hending and controlling various epidemic diseases in a region. In

last twenty years, mathematical modeling is widely used for char-

acterizing the communication of various infectious diseases (see

e.g. [10,11] . Recently various comprehensions have been made to

deepen the understanding about the novel coronavirus (COVID-19)

particularly grasping the valuable inferences through mathemati-

cal modeling [12–14] . The modelsdescribe the dynamics of infec-

tious diseases, however, for modeling biological phenomenon, it is

appropriate to use the stochastic differential equations due to its

realistic approach. Compared to deterministic models, the stochas-

tic models can generally result in more valuable output, by several

times execution, a distribution of the expected results can be built,

such as the average infections at any time t , whereas the deter-

ministic models result in a single predicted value [15–18] . Numer-

ous approaches and methods exist for studying stochastic models

(such as Binomial moment equation etc.) [19,20] . 

The most basic stochastic epidemic models are those involving

global transmission, meaning that infection rates depend only on

the type and state of the individuals involved, and not on their lo-

cation in the population. How can a model be defined explaining

the sometimes-observed scenario of frequent mid-sized epidemic

outbreaks? How can evolution of the infectious agent transmis-

sion rates be modeled and fitted to data in a robust way? In this

paper we understand the transmission mechanism of the COVID-

19 mathematically, we have formulated a model using the avail-

able literature on modeling epidemics, we propose a stochastic

epidemic model for the transmission dynamics of COVID-19 virus

with a varying population environment for a long-term behavior.

We categorize the total population into three different classes. The

first class is the susceptible individuals in which the transmis-

sion rate is distributed by white noise. The second class includes

the infected individuals in which the same transmission occurs.

The third class consists of the quarantine individuals with white

noise. 

In the recent study, we proposed a stochastic epidemic model

for the transmission dynamics of the COVID-19 with a changing

environment considering long term behavior. The overall popula-

tion has been divided into three exclusive classes: the susceptible

individuals with white noise transmission rate distribution, the in-

fected individuals in which the same perturbation occur and quar-

antined individuals. Then, we will discuss the disease’ extinction

and stationary distribution and develop the sufficient condition for

the COVID-19. Furthermore, sample simulations are find out with

the help of stochastic Runge-Kutta method for supporting the the-

oretical results. 
. Mathematical Model for COVID-19 model 

The present section is devoted to formulation of a model based

n stochastic theory for studying the transmissions dynamic of the

ovel virus i.e., COVID-19 pandemic. We propose a susceptible-

nfected-quarantined epidemic model as according to the charac-

eristic of the disease. We also take the varying population envi-

onment to study the dynamics of the COVID-19 particularly its

ong-term behavior. Before to present the model, we put some as-

umption as given by the following assertions. 

( A 1 ). The total population at any time t is symbolized by N ( t )

nd it is stratified into three exclusive groups of individual: the

usceptible class S ( t ), the COVID-19 infected people I ( t ) and the

uarantined Q ( t ), i.e., S(t) + I(t) + Q(t) = N(t) which is changing

ith t . 

( A 2 ). The state variables and parameters included in the model

re assumed to be nonnegative. 

( A 3 ) The initially infected individuals move to the quarantined

lass as performed by the Chinese in Wuhan city. 

( A 4 ). Once the infection confirmed then the quarantined will go

ack to the infected compartment. 

In the light of the above assumption (A 1 ) − (A 4 ) , the proposed

odel leads to the following stochastic epidemic problem which

onsist of three stochastic differential equations 

S (t) = 

[
� − βS ( t ) I ( t ) 

N 
− μ0 S ( t ) 

]
dt + η1 S(t) dB 1 ( t ) , 

I ( t ) = 

(
βS(t) I(t) 

N 
−( γ1 + μ1 + μ0 ) I(t) + σQ(t) 

)
dt + η2 I(t) dB 2 (t) , 

Q (t) = ( γ1 I(t) − ( μ0 + μ + σ ) Q(t) ) dt + η3 Q(t) dB 3 (t) . 

(1)

ere in the model, � represents the per capita constant fecun-

ity rate. μ0 , μ1 and μ represents the natural mortality rate and

isease-related mortality rate, respectively. γ 1 represents the con-

tant rate at which people getting quarantined from COVID-19 in-

ected class. B ( t ) is considered to be the usual Brownian motion

ith intensity η1 , η2 and η1 taken to be positive. 

. Preliminaries 

Let ( �, { F t } t ≥ 0 , P ) be the complete probability space with

ltration { F t } t ≥ 0 which satisfy the normal conditions, X(t) =
(S(t) , I(t) , Q(t)) , | X(t) | = (S 2 (t) + I 2 (t) + Q 

2 (t)) 
1 
2 , and R 

d + = { x ∈
 

d : χ j > 0 , j = 1 , · · · , d} . 
Considering a d -dimensional SDE 

z(t) = f (z(t ) , t ) dt + g(z(t ) , t ) dB (t ) t ≥ t o , (2)

long with condition z(t 0 ) = z 0 ∈ R 

d , where B ( t ) denotes an m -

imensional usual Brownian motion. Define the operator L related

o (4) by 

 = 

∂ 

∂t 
+ 

d ∑ 

i =1 

f i ( z, t ) 
∂ 

∂z i 
+ 

1 

2 

d ∑ 

i, j=1 

[
g T ( z, t ) g ( z, t ) 

]
ij 

∂ 2 

∂ z i ∂ z j 
. 

By operating L on V (a function from the space C 2 , 1 (R 

d ×
 t 0 , ∞ ) ; R + ) ), then we have 

 V ( z, t ) = V t ( z, t ) + V z ( z, t ) f ( z, t ) + 

1 

2 

trace 
[
g T ( z, t ) V zz ( z, t ) g ( z, t )

here 

 t = 

∂V 

∂t 
, 

 z = 

(
∂V 

∂z 1 
, ..., 

∂V 

∂z d 

)T 

, 

 zz = 

(
∂ 2 V 

∂ z i ∂ z j 

)
d×d 

. 
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By generalized It ̂ o ’s formula, we have 

V ( z ( t ) , t ) = L V ( z ( t ) , t ) dt + V z ( z ( t ) , t ) g ( z ( t ) , t ) dB ( t ) , 

henever z(t) ∈ R 

d . 

. The existence and uniqueness of solution to COVID-19 model

This section is about studying the existence and uniqueness of

olution of the proposed stochastic COVID-19 model (1) . 

heorem 1. The triplet ( S ( t ), I ( t ), Q ( t )) being solution of the devel-

ped stochastic COVID-19 epidemic model (1) is unique for t ≥ 0 with

nitial condition (S(0) , I(0) , Q(0)) ∈ R 3 + . Further, the solution will al-

ays remains in R 3 + with unit probability, that is, (S(t) , I(t) , Q(t)) ∈
 

3 + ∀ t ≥ 0 almost surely (a.s). 

Proof: As for initial value of the state variables

(S(0) , I(0) , Q(0)) ∈ R 3 + , the coefficients used in equations are

ontinuous and locally lipschitz. Thus, there must exists a local

nique solution ( S ( t ), I ( t ), Q ( t )) of the model over t ∈ [0, τ e ).

or detail analysis of the explosion time τ e one must see the

eferences [21,22] . To prove the global nature of the solution, we

ust show that τe = ∞ a.s. Assume that we have a sufficiently

arge nonnegative number k 0 such that all of the initial conditions

n the state lie within [ 1 
k 0 

, k 0 ] . Let for each positive integer k ≥ k 0 ,

he finishing time be defined as 

k = 

{ 

t ∈ [0 , τe ) : min { S(t) , I(t) , Q(t) } ≤ 1 
k 

or 
max { S(t) , I(t) , Q(t) } ≥ k 

} 

. (3) 

Throughout this manuscript, we must choose inf φ = ∞ where

stand for the null set. Definition of τ k force us to say that it is

ncreasing as k tends to ∞ . Setting τ∞ 

= lim k →∞ 

with τ e ≥ τ∞ 

a.s.

pon showing τ∞ 

= ∞ a.s., we will declare that τe = ∞ and hence

 S ( t ), I ( t ), Q ( t )) will lies in R 3 + a.s. ∀ t ≥ 0. Thus, it is suffice to prove

hat τe = ∞ a.s. In otherwise case, there must exists two positive

onstants ε from (0,1) and T such that 

 { T ≥ τ∞ 

} > ε. (4)

Hence there is an integer k 1 ≥ k 0 , such that 

 { T ≥ τk } ≥ ε, ∀ k 1 ≤ k. 

ext, we will define a C 2 -function H : R 3 + → R + in such a way that

(S, I, Q ) = S + I + Q − 3 − log S − log I − log Q . (5)

t is to be noted that the H is a nonnegative function, and it can be

erified from the fact that 0 ≤ y − logy − 1 , ∀ 0 < y . Assume that

 0 ≤ K and 0 < T are arbitrary. Upon applying It ̂  o formula to

q. (5) gives us 

H(S, I, Q ) = LH(S, I, Q ) + η1 (S − 1) B 1 (t) + η2 (I − 1) B 2 (t) 

+ η3 (Q − 1) B 3 (t) (6) 

In Eq. (6) , LH : R 3 + → R + is defined by the following equation 

H ( S, I, Q ) = 

(
1 − 1 

S 

)(
� − βS ( t ) I ( t ) 

N 

− μ0 S ( t ) 

)
+ 

η1 
2 

2 

 

(
1 − 1 

I 

)(
βS ( t ) I ( t ) 

N 

− ( μ0 + γ1 + μ1 ) I ( t ) + σQ ( t ) 

)
+ 

η2 
2 

2 

 

(
1 − 1 

Q 

)
( γ1 I ( t ) − ( μ0 + μ + σ ) Q ( t ) ) + 

η3 
2 

2 

, 

 � − μ0 S − �

S 
+ 

βI 

N 

+ μ0 

( μ0 + μ1 ) I − βS + ( μ0 + γ1 + μ1 ) − σ
Q ( t ) 

I ( t ) 

( μ0 + μ) Q ( t ) − γ1 
I ( t ) 

Q ( t ) 
+ ( μ0 + μ + σ ) + 

η1 
2 + η2 

2 + η3 
2 

2 

, 

� + β + 3 μ0 + μ1 + γ1 + μ + σ + 

η1 
2 + η2 

2 + η3 
2 

:= K. 

2 
(7) 

hus, 

 [ H ( S ( τk ∧ T ) , I ( τk ∧ T ) , Q ( τk ∧ T ) ) ] 

≤ H ( S ( 0 ) , I ( 0 ) , Q ( 0 ) ) + E 

[∫ τk ∧ T 

0 

Kdt 

]
, 

H ( S ( 0 ) , I ( 0 ) , Q ( 0 ) ) + KT . 

(8) 

etting �k = { τk ≤ T } for k ≥ k 1 and by Eq. (4) , P ( �k ) ≥ ε. Note

hat for each ω from �k there must exist one or more than one

 ( τ k , ω), I ( τ k , ω), Q ( τ k , ω) which equals 1 
k 

or k . As a result H ( S ( τ k ),

 ( τ k ), Q ( τ k )) is no less then 

1 
k 

− 1 + log k or k − 1 − log k . Therefore,

(S(τk ) , I(τk ) , Q(τk )) ≥
(

1 

k 
− 1 + log k 

)
∧ E 

(
k − 1 − log k 

)
. (9)

y using Eqs. (4) and (8) , we can write 

(S(0) , I(0) , Q(0)) + KT ≥ E 

[ 
1 �(ω) H 

(
S(τk ) , I(τk , Q(τk )) 

)] 
≥ ε

[ (
1 
k 

− 1 + log k 

)
∧ (k − 1 − log k ) 

]
(10) 

ere 1 �( ω) represent the indicator function of �. Approaching k

o ∞ will lead us to the contradiction ∞ > H 

(
S(0) , I(0) , Q(0) 

)
+

T = ∞ showing that τ∞ 

= ∞ a.s. 

heorem 2. For any initial data ( S (0), I (0), Q (0)) in R 3 + , the solution

f the developed model (1) will remains in R 3 + with unit probability,

hat is, (S(t) , I(t) , Q(t)) ∈ R 3 + for all t ≥ 0 almost surely. 

Proof: Letting I ⊂ [0 , + ∞ ) and assuming that a solution of the

roposed stochastic COVID-19 pandemic model (1) exists in I , then

or each time t ∈ I , solution of the first equation of the model

1) becomes 

 ( t ) = e 
−μ0 t−

∫ t 
0 

(
βI ( u ) 

N + 1 2 η
2 
1 I 

2 ( u ) 

)
du −η1 

∫ t 
0 I ( u ) dB 1 ( u ) [

S ( 0 ) + �

∫ t 

0 

e 
μ0 u + 

∫ u 
0 

(
βI ( u ) 

N + 1 2 η
2 
1 I 

2 ( u ) 

)
du + η1 

∫ u 
0 I ( u ) dB 1 ( u ) 

]
du , 

(11) 

hich implies that S ( t ) > 0. Solving the second equation of the

odel (1) gives us 

 ( t ) = I ( 0 ) e 
−( μ0 + μ1 + γ1 −γ1 S ( u ) ) t+ 

∫ t 
0 

(
βS ( u ) 

N 
+ σQ ( u ) + 1 

2 
η2 

2 
S 2 ( u ) 

)
du + η2 

∫ t 
0 

S ( u ) dB 2 ( u ) 

+ e −( μ0 + μ1 + γ1 −γ1 S ( u ) ) t+ 
∫ t 
0 

(
βS ( u ) 

N 
+ σQ ( u ) + 1 

2 
η2 

2 
S 2 ( u ) 

)
du + η2 

∫ t 
0 

S ( u ) dB 2 ( u ) 

×
∫ t 

0 

βS ( u ) 

N 
e 
( μ0 + μ1 + γ1 −γ1 S ( u ) ) du −∫ t 

0 

(
βS ( u ) 

N 
+ σQ ( u ) + 1 

2 
η2 

2 
S 2 ( u ) 

)
du −η2 

∫ t 
0 

S ( u ) dB 2 ( u ) 

× du , 

hich simply means that 0 ≤ I ( t ). It is handy to shown that

 < Q ( t ). Hence (S(t) , I(t) , Q(t)) ∈ R 3 + , for all t ≥ 0, which proves

he conclusion. 

emark 1. Clearly, Theorems 1 and 2 guarantees that for the initial

ata (S(0) , I(0) , Q(0)) ∈ R 3 + , there is a unique global solution ( S ( t ),

 ( t ), Q ( t )) of the model (1) in R 3 + almost surely. Thus 

N(t) ≤ � − μ0 N(t) . (12) 

y solving the differential inequality Eq. (12) yields 

(t) ≤ �

μ0 

+ e −μ0 t 
(
� − μ0 N(t) 

)(
N(0) − �

μ0 

)
. (13)

f �
μ0 

≥ N(0) , then 

�
μ0 

≥ N(t) , a.s. Thus the desired region for the

roblem becomes 

∗ = 

{ 
(S, I, Q ) : S > 0 , I ≥ 0 , Q > 0 , N ≤ �

μ0 

} 
. (14)

In upcoming study, we shall always assume that ( S (0), I (0),

 (0)) ∈ �∗ unless otherwise stated. 
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5. The Extinction and Stationary Distribution of COVID-19 

model 

As for as the stochastic systems are concerned, they have no

endemic equlibria. Thus, the stability analysis cannot be used as

a tool for studying the disease’ persistence. As a result, one must

turn his/her attention to the existence/uniqueness theory of the

stationary distribution which in some sense, will work for persis-

tence of the disease. For this purpose, we will cite a famous result

from Hasminskii [23] . 

Let 〈
X (t) 

〉
= 

1 

t 

∫ t 

0 

x (r) dr. (15)

Lemma 1. [16 , 17] (Strong Law of Large Number) Let M = { M} t≥0 be a

continuous real valued local martingale and vanishing at t = 0 , then 

lim 

→∞ 

〈
M, M 

〉
t 
= ∞ , a.s., implies that lim 

t→∞ 

M t 〈
M , M 

〉
t 

= 0 , a.s. , and also , 

lim 

→∞ 

sup 

〈
M, M 

〉
t 

t 
< 0 , a.s., implies that lim 

t→∞ 

M t 

t 
= 0 , a.s. (16)

Lemma 2. [16 , 17] Assume that f ∈ C [[0, ∞ ) × �(0, ∞ )] and F ( t ) is

in C ([0, ∞ ) × �, R ) . If there exist three positive constant λ, λ0 and T,

such that 

log f (t) ≤ λt − λ0 

∫ t 
0 f (s ) ds + F (t) a.s., ∀ t ≥ T and 

lim t→∞ 

F (t) 
t 

= 0 a.s., then lim t→∞ 

sup 1 
t 

∫ t 
0 f (s ) ds ≤ λ

λ0 
a.s. 

(17)

5.1. Stationary distribution 

Suppose that X ( t ) is a regular Markov process (time-

homogeneous) in R n + whose dynamics is given by 

dX (t) = b(X ) d t + 

k ∑ 

r 

σr d B r (t) . 

The diffusion matrix is of the form 

A (X ) = [ a i j (x )] , a i j (x ) = 

k ∑ 

r=1 

σ i 
r (x ) σ r 

j (x ) . 

Lemma 3. ( [16 , 17] ).The process X ( t ) has the unique stationary dis-

tribution m (.) if there exist a bounded domain with regular boundary

such that U, Ū ∈ R d Ū closure Ū ∈ R d , having the following properties 

1. In the open domain U and in its neighborhood, the least eigenvalue

of A(t) is bounded away from zero. 

2. If x ∈ R d U, the mean time τ (at which a path starting from x reach

the set U) is finite, and Sup x ∈ k E x τ < ∞ for each compact subset

K ⊂ R n . Further, if f (.) is an integrable function having measure π ,

then 

P 
(

lim 

T →∞ 

1 

T 

∫ T 

0 

f (X x (t)) dt = 

∫ 
R d 

f (x ) π(dx ) 
)

= 1 

for all x ∈ R d . 

Define a parameter 

R 

s 
0 = 

dργ

(d + 

σ 2 
1 

2 
)(γ + δ + d + α + 

σ 2 
2 

2 
) 
. (18)

Theorem 3. The solution ( S ( t ), I ( t ), Q ( t )) of the model (1) is ergodic

as well as there is a unique stationary distribution π (.) whenever

R S > 1 . 

0 
roof. In order to verify condition (2) of Lemma 3 , we need to

evelop a non-negative C 2 −function V : R 3 + → R + . For this, we will

rst define 

 1 = S + I + Q − c 1 lnS − c 2 lnI, 

here c 1 , c 2 are the positive constant and need to be determined

ater on. By using the Ito’s formula and the proposed model (1) ,

e obtain 

 (S + I + Q ) = � − μ0 (S + I + Q ) − μ1 I − μQ, 

 (−lnS) = −�
S 

+ 

βI(t) 
N 

+ μ0 + 

η2 
1 

2 
, 

 (−lnI) = −βS(t) 
N 

+ (μ0 + μ1 + γ1 ) − σ Q 
I 

+ 

η2 
2 

2 
, 

 (−lnQ ) = − γ1 I 
Q 

+ (μ0 + μ + σ ) + 

η2 
3 

2 
. 

(19)

herefore, we have 

 V 1 = 

(
1 − c 1 

S 

)(
� − βSI 

N 

− μ0 S 

)
+ 

1 c 1 
2 S 2 

η2 
1 S 

2 

 

(
1 − c 2 

S 

)(
βS ( t ) I ( t ) 

N 

− ( μ0 + μ1 + γ1 ) I ( t ) + σQ ( t ) 

)
 

1 c 2 
2 S 2 

η2 
2 I 

2 + ( γ1 I ( t ) − ( μ0 + μ + σ ) Q ( t ) ) . 

−3 

(
μ0 ( S + I + Q ) 

c 1 �

S 

c 2 βS 

N 

) 1 
3 

− μ1 I − μQ ( t ) + � + 

c 1 βI 

N 

 μ0 c 1 + 

c 1 
2 

η2 
1 + c 2 ( μ0 + μ1 + γ1 ) + 

c 2 
I 
σQ + 

c 2 
2 

η2 
2 . 

The above implies that 

 V 1 ≤ −3(c 1 c 2 μ0 β�) 
1 
3 + c 1 

(
μ0 + 

η2 
1 

2 

)
 c 2 

(
μ0 + μ1 + γ1 + 

η2 
2 

2 

)
+ c 1 

βI(t) 
N 

+ c 2 

(
σQ(t) 

I 

)
� − μ1 I − μQ . 

et 

 1 

(
μ0 + 

η2 
1 

2 

)
= c 2 

(
μ0 + μ1 + γ1 + 

η2 
2 

2 

)
= �. 

Namely 

 1 = 

�(
μ0 + 

η2 
1 

2 

) , c 2 = 

�(
μ0 + μ1 + γ1 + 

η2 
2 

2 

) . 
(20)

onsequently 

 V 1 ≤ −3 

(
�3 μ0 β

(μ0 + 
η2 

1 
2 )(μ0 + μ1 + γ1 + 

η2 
2 
2 ) 

− �
)

 c 1 
βI(t) 

N 
+ c 2 

σQ(t) 
I 

− μ1 I − μQ . 

(21)

 V 1 ≤ −3�
[
(R 

S 
0 ) 

1 / 3 − 1 

]
+ 

c 1 βI 

N 

+ c 2 
σQ 

I 
. 

n addition, we can obtain 

 2 = c 3 (S + I + Q − c 1 ln S − c 2 ln I) − ( ln S + ln Q ) + S(t) 

+ I(t) + Q(t) 

= (c 3 + 1)(S(t) + I(t) + Q(t)) −(c 3 c 1 + 1) ln S − c 3 c 2 ln I − ln Q, 

here the constant c 3 > 0 to be determined at later stages. It is

andy to show that 

lim inf 
(S,I,Q ) ∈ R 3 + \ U k 

V 2 (S, I, Q ) = + ∞ , as k → ∞ , (22)

here U k = ( 1 
k 
, k ) × ( 1 

k 
, k ) × ( 1 

k 
, k ) . The next step is to prove that

 2 ( S, I, Q ) has one and only one minimum value V 2 ( S 0 , I 0 , Q 0 ). 

The partial derivative of V 2 ( S, I, Q ) with respect to S, I, Q is as

ollow 

∂V 2 (S,I,Q ) 
∂S 

= 1 + c 3 − 1+ c 1 c 3 
S 

, 
∂V 2 (S,I,Q ) 

∂ I 
= 1 + c 3 − c 3 c 2 

I 
, 

∂V 2 (S,I,Q ) 
∂Q 

= 1 + c 3 − c 3 
Q 

. 
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t could be easily obtain that V 2 have unique stagnation point

(S 0 , I 0 , Q 0 ) = 

(
1+ c 1 c 3 

1+ c 3 , 
c 3 c 2 
1+ c 3 , 

1 
1+ c 3 

)
. Moreover, the Hesse matrix of

 2 ( S, I, R ) at ( S 0 , I 0 , Q 0 ) is 

 = 

⎡ 

⎢ ⎣ 

1+ c 3 c 1 
S 2 

0 

0 0 

0 

c 3 c 2 
I 2 
0 

0 

0 0 

1 
Q 2 

0 

⎤ 

⎥ ⎦ 

. 

bviously, the Hesse matrix is positive definite. Thus, V 2 ( S, I, Q ) has

 minimum value V 2 ( S 0 , I 0 , Q 0 ). According to Eq. (22) and from the

ontinuity of V 2 ( S, I, Q ), we can say that V 2 ( S, I, Q ) has one and

nly one minimum value V 2 ( S 0 , I 0 , Q 0 ) inside R 3 + . 
Next, we will define a non-negative C 2 −function V : R 

3 + → R + 
s follows 

 (S, I, Q ) = V 2 (S, I, Q ) − V 2 (S 0 , I 0 , Q 0 ) . 

Applying the Itô’s formula and using the proposed model, we

et 

 (V ) ≤ c 3 

{ 
− 3�

[ 
(R 

S 
0 ) 

1 / 3 − 1 

] 
+ 

c 1 βI 
N 

+ c 2 
σQ 

I 

} 
�
S 

+ 

βI 
N 

+ μ0 + 

η2 
1 

2 
− γ1 I 

Q 
+ μ0 + μ + σ + 

η2 
3 

2 

� − μ0 (S + Q + I) − μ1 I − μQ, 

(23) 

hich leads to the following assertion 

L V ≤ −c 3 c 4 + c 1 c 3 
βI 
N 

+ c 2 c 3 
σQ 

I 
− �

S 
+ β + 2 μ0 + 

η2 
2 + η2 

3 

2 
+ 

μ + σ + � − μo (S + I + Q ) − γ1 I 
Q 

, 
(24) 

here 

 4 = 3�
[
(R 

S 
0 ) 

1 / 3 − 1 

]
> 0 . 

The next step is to define the set 

 = { δ1 < S < 

1 

δ4 

, δ2 < I < 

1 

δ5 

, δ3 < Q < 

1 

δ6 

} , 
here δi > 0 for (i = 1 , · · · , 6) are infinitesimally small constants

o be determined later. For the sake of simplicity, we will divide

he whole R 

3 + \ D into the following regions 

 1 = 

{
(S, I, Q ) ∈ R 

3 
+ , 0 < S ≤δ1 

}
, D 2 = 

{
(S, I, Q ) ∈ R 

3 
+ , 0 < I ≤δ2 , S > δ1 

}
, 

 3 = 

{
(S, I, Q ) ∈ R 

3 
+ , 0 < Q ≤ δ3 , I > δ2 

}
, D 4 = 

{
(S, I, Q ) ∈ R 

3 
+ , S ≥ 1 

δ4 

}
, 

 5 = 

{
(S, I, Q ) ∈ R 

3 
+ , I ≥ 1 

δ5 

}
, D 6 = 

{
(S, I, Q ) ∈ R 

3 
+ , Q ≥ 1 

δ6 

}
. 

ext, we shall prove that LV ( S, I, Q ) < 0 on R 

3 + \ D which is the

ame as displaying it on the above-mentioned six regions. 

Case 1. If ( S, I, Q ) ∈ D 1 , then by Eq. (24) , we get 

 V ≤ −c 3 c 4 + c 1 c 3 
βI 

N 

+ c 2 c 3 
σQ 

I 
− �

S 
+ β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ

+ σ + � − μ0 ( S + I + Q ) − γ1 I 

Q 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − �

S 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − �

δ1 

e can choose a small constant δ1 > 0 in such a way that

 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 
+ η2 

3 
2 + μ + σ + � − �

δ1 
≤ 0 so we can

et L V < 0 for each ( S, I, Q ) ∈ D 1 . 

Case 2. If ( S, I, Q ) ∈ D 2 , then from Eq. (24) , we can obtain 

 V ≤ −c 3 c 4 + c 1 c 3 
βI 

N 

+ c 2 c 3 
σQ 

I 
− �

S 
+ β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ

+ σ + � − μ0 ( S + I + Q ) − γ1 I 
Q 

c 1 c 3 β
I 

S 
+ c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − c 3 c 4 

c 1 c 3 β
δ2 

δ
+ c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − c 3 c 4 . 

1 
et δ2 
1 

= δ2 , we can select enough large c 3 > 0 and as small as

ossible δ1 > 0 such that c 1 c 3 βδ1 + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 
+ η2 

3 
2 +

+ σ + � − c 3 c 4 ≤ 0 , so we can get L V < 0 for any ( S, I, Q ) ∈ D 2 . 

Case 3. If ( S, I, Q ) ∈ D 3 , then from Eq. (24) , we can obtain 

 V ≤ −c 3 c 4 + c 1 c 3 
βI 

N 

+ c 2 c 3 
σQ 

I 
− �

S 
+ β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 ( S + I + Q ) − γ1 I 

Q 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − γ1 I 

Q 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − γ1 δ2 

δ3 

. 

y choosing small δ3 > 0 such that c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 +
η2 

2 
+ η2 

3 
2 + μ + σ + � − γ1 δ2 

δ3 
≤ 0 , so we can get L V < 0 for each ( S,

, Q ) ∈ D 3 . 

Case 4. If ( S, I, Q ) ∈ D 4 , from Eq. (24) , we can obtain 

 V ≤ −c 3 c 4 + c 1 c 3 
βI 

N 

+ c 2 c 3 
σQ 

I 
− �

S 
+ β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 ( S + I + Q ) − γ1 I 

Q 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 S 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 

δ4 

. 

e can select enough small δ4 > 0 such that c 1 c 3 βδ1 + c 2 c 3 σ +
+ 2 μ0 + 

η2 
2 
+ η2 

3 
2 + μ + σ + � − μ0 

δ4 
≤ 0 , so we can get L V < 0 for

ach ( S, I, Q ) ∈ D 4 . 

Case 5. If ( S, I, Q ) ∈ D 5 , from Eq. (24) , we can obtain 

 V ≤ −c 3 c 4 + c 1 c 3 
βI 

N 

+ c 2 c 3 
σQ 

I 
− �

S 
+ β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 ( S + I + Q ) − γ1 I 

Q 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 I 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 

δ5 

. 

e can choose sufficiently small δ5 > 0 such that c 1 c 3 βδ1 +
 2 c 3 σ + β + 2 μ0 + 

η2 
2 
+ η2 

3 
2 + μ + σ + � − μ0 

δ5 
≤ 0 , so we can get

 V < 0 for any ( S, I, Q ) ∈ D 5 . 

Case 6. If ( S, I, Q ) ∈ D 6 , from Eq. (24) , we can obtain 

 V ≤ −c 3 c 4 + c 1 c 3 
βI 

N 

+ c 2 c 3 
σQ 

I 
− �

S 
+ β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 ( S + I + Q ) − γ1 I 

Q 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 Q 

c 1 c 3 β + c 2 c 3 σ + β + 2 μ0 + 

η2 
2 + η2 

3 

2 

+ μ + σ + � − μ0 

δ6 

. 

We can choose sufficiently small δ6 > 0 such that c 1 c 3 βδ1 +
 2 c 3 σ + β + 2 μ0 + 

η2 
2 
+ η2 

3 
2 + μ + σ + � − μ0 

δ6 
≤ 0 , so we can get

 V < 0 for any ( S, I, Q ) ∈ D 6 . 

Thus, we reach to the conclusion that there exist a constant

 > 0 such that 

V (S, I, Q ) < −W < 0 for all (S, I, Q ) ∈ R 

3 
+ \ D. 

ence 

V ( S, I, Q ) < −Wdt + [ ( c 3 + 1 ) S − ( c 3 c 1 + 1 ) σ1 ] dB 1 ( t ) 

 [ ( c 3 + 1 ) I − c 3 c 2 σ2 ] d B 2 ( t ) + [ ( c 3 + 1 ) R − σ3 ] d B 3 ( t ) . 
(25) 
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Assume that (S(0) , I(0) , Q(0)) = (x 1 , x 2 , x 3 ) = x ∈ R 

3 + \ D, and τ x is

that time at which a path starting from x reach to the set D , 

τn = in f { t : | X (t) | = n } and τ (n ) (t) = min { τ x , t, τn } . 
Upon integration of both sides of the inequality (25) from zero to

τ ( n ) ( t ), taking expectation, and then by applying Dynkin’s formula,

we obtain 

EV 

(
S 
(
τ ( n ) ( t ) 

)
, I 
(
τ ( n ) ( t ) 

)
, Q 

(
τ ( n ) ( t ) 

))
V ( x ) 

= E 

∫ τ ( n ) ( t ) 

0 

LV ( S ( u ) , I ( u ) , Q ( u ) ) du 

≤ E 

∫ τ ( n ) ( t ) 

0 

−Wdu = −WE τ ( n ) ( t ) . 

Since V ( x ) is non-negative, therefore 

Eτ (n ) (t) ≤ V (x ) 

W 

. 

Following the proof of Theorem 3 we have P { τe = ∞} = 1 . Alterna-

tively, one can say that the system (1) is regular. Thus, if we let

t → ∞ and n → ∞ then we have τ ( n )( t ) → τ x almost surely. 

Accordingly, with the help of Fatou’s lemma we get 

Eτ (n ) (t) ≤ V (x ) 

W 

< ∞ 

Obviously, sup x ∈ K E τ x < ∞ , where K being a compact subset of R 

3 + .
It directly proves the condition (ii) of Lemma 3. 

Moreover, the diffusion matrix for system (1) is given by 

B = 

[ 

η2 
1 S 

2 0 0 

0 η2 
2 I 

2 0 

0 0 η2 
3 Q 

2 

] 

Choosing M = min (S,I,Q ) ∈ D ∈ R 3 + { η2 
1 

S 2 , η2 
2 

I 2 , η2 
3 

Q 

2 } , we can obtain

that 

3 ∑ 

i, j=1 

a i j (S, I, Q ) ξi ξ j = η2 
1 S 

2 ξ 2 
1 + η2 

2 I 
2 ξ 2 

2 + η2 
3 Q 

2 ξ 2 
3 ≥ M| ξ | 2 , (S, I, Q ) ∈ D , 

ξ = (ξ1 , ξ2 , ξ3 ) ∈ R 

3 + . 
It means, condition (1) of Lemma 3 also holds. 

Concluding the above discussion, we can say that

Lemma 3 guarantees that system (1) is ergodic as well as it

has one and only one stationary distribution. Hence the proof,

( Figs. 1 , 2 , 3 ). �

5.2. Extinction 

Theorem 4. Assume that ( S ( t ), I ( t ), Q ( t )) be a solution of the devel-

oped COVID-19 model (1) along with initial data (S(0) , I(0) , Q(0)) ∈
R 

3 + , then lim sup t→∞ 

(S(t) + I(t) + Q(t)) < ∞ a.s. Further 

lim 

→∞ 

S(t) 

t 
= 0 , lim 

t→∞ 

I(t) 

t 
= 0 , lim 

t→∞ 

Q(t) 

t 
= 0 a.s , 

lim 

→∞ 

ln S ( t ) 

t 
= 0 , lim 

t→∞ 

ln I ( t ) 

t 
= 0 , 

lim 

t→∞ 

ln Q ( t ) 

t 
= 0 a.s . 

and 

lim 

→∞ 

1 

t 

∫ t 

0 

S ( u ) d B 1 ( u ) = 0 , lim 

t→∞ 

∫ t 
0 I ( u ) d B 2 ( u ) 

t 
= 0 , 

lim 

t→∞ 

∫ t 
0 Q ( u ) dB 3 ( u ) 

t 
= 0 a.s . (26)

Proof. From the proposed model (1) we can write 

d ( S + I + Q ) = � − μ0 ( S ( t ) + I ( t ) + Q ( t ) ) 

−μ1 I − μQ + η1 Sd B 1 ( t ) + η2 Id B 2 ( t ) + η3 Qd B 3 ( t ) . 
(27)
he integration of both sides yields 

 ( t ) + I ( t ) + Q ( t ) = 

�

μ0 

+ 

(
S ( 0 ) + Q ( 0 ) + I ( 0 ) − �

μ0 

)
e −μ0 t 

μ1 

∫ t 

0 

I ( u ) e −μ0 ( t−u ) dt + η1 

∫ t 

0 

S ( u ) e −μ0 ( t−u ) dB 1 ( u ) 

 η2 

∫ t 

0 

I ( u ) e −μ0 ( t−u ) dB 2 ( u ) + η3 

∫ t 

0 

Q ( u ) e −μ0 ( t−u ) dB 3 ( u ) 

μ0 

∫ t 

0 

Q ( u ) e −μ0 ( t−u ) dt ≤ �

μ0 

+ 

(
S ( 0 ) + Q ( 0 ) + I ( 0 ) − �

μ0 

)
e −μ0 t 

 η1 

∫ t 

0 

S ( u ) e −μ0 ( t−u ) dB 1 ( u ) + η2 

∫ t 

0 

I ( u ) e −μ0 ( t−u ) dB 2 ( u ) 

 η3 

∫ t 

0 

Q ( u ) e −μ0 ( t−u ) dB 3 ( u ) . 

(28)

e define 

 (t) = A (t) + M(t) − Q(t) + X (0) , (29)

here 

 ( 0 ) = S ( 0 ) + Q ( 0 ) + I ( 0 ) , 

 ( t ) = 

�

μ

(
1 − e −μ0 t 

)
, 

 ( t ) = ( S ( 0 ) + Q ( 0 ) + I ( 0 ) ) 
(
1 − e −μ0 t 

)
, 

 ( t ) = η1 

∫ 
S ( u ) e −μ0 ( t−u ) dB 1 ( u ) + η2 

∫ t 

0 

S ( u ) e −μ0 ( t−u ) dB 2 ( u ) 

 η3 

∫ t 

0 

Q ( u ) e −μ0 ( t−u ) dB 3 ( u ) . 

(30)

learly, M ( t ) is a continuous local martingale with M(0) = 0 .

rom relation (28) , we have S(t) + I(t) + Q(t) ≤ X(t) a.s. for all

ositive t . One can observe that Q ( t ) and A ( t ) are continuous

dapted increasing processes on t ≥ 0 with A (0) = Q(0) , we get

im t → ∞ 

X ( t ) ≤ ∞ a.s. Thus 

lim 

→∞ 

sup (S(t) + I(t) + Q(t)) < ∞ , a.s . (31)

hus, Eq. (4) holds. Keeping in view relation (31) , it is handy to

how that 

lim 

→∞ 

S(t) 

t 
= 0 , lim 

t→∞ 

I(t) 

t 
= 0 , lim 

t→∞ 

Q(t) 

t 
= 0 a.s , 

lim 

→∞ 

ln S ( t ) 

t 
= 0 , lim 

t→∞ 

ln I ( t ) 

t 
= 0 , 

lim 

t→∞ 

ln Q ( t ) 

t 
= 0 a.s . 

etting 

 1 (t) = 

∫ t 

0 

S(u ) dB 1 (u ) , M 2 (t) = 

∫ t 

0 

I(u ) dB 3 (u ) , 

 3 (t) = 

∫ t 

0 

Q(u ) dB 3 (u ) . 

Because of the quadratic variation, we can write 

M 1 (t) , M 2 (t) 
〉
= 

∫ t 

0 

S 2 (u ) du ≤
(

sup t≥0 S 
2 (t ) 

)
t . (32)

y using Lemma 1 (see for detail [16–18] ) and (31) , we get 

lim 

→∞ 

∫ t 
0 S(u ) dB 1 (u ) 

t 
= 0 , a.s . 

imilarly, we also get 

lim 

→∞ 

∫ t 
0 I(u ) dB 2 (u ) 

t 
= 0 , lim 

t→∞ 

∫ t 
0 Q(u ) dB 3 (u ) 

t 
= 0 , a.s , 

hich proves Eq. (26) and hence the Lemma 4.1. 

For the purpose of disease’ extinction, we have to state and

rove the following theorem. �
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Fig. 1. The incidence data of covid-19 from Khyber Pakhtunkhwa, Pakistan. 

Fig. 2. Covid-19 model comparison with real data of Khyber Pakhtunkhawa, Pakistan. 
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heorem 5. Suppose that ( S ( t ), I ( t ), Q ( t )) be a solution of the COVID-

9 model (1) along with subsidiary conditions (S(0) , I(0) , Q(0)) ∈
 

3 + . If a. ˜ R S 
0 

= 

(β+ σ ) 

(μ0 + μ1 + γ1 + 
η2 

2 
2 

) 

< 1 , then 

lim 

→∞ 

sup 

(
log I(t) 

t 

)
≤ (μ0 + μ1 + γ1 )( ̃  R 

S 
0 − 1) < 0 , 

.s., (I ( t ) approaches zero exponentially a.s., i.e., the COVID-19 infec-

ion will dies out from the community with unit probability). More-

ver 

lim 

→∞ 

〈 S(t) 〉 = 

�

μ0 

, lim 

t→∞ 

〈 Q(t) 〉 = 0 , a.s. (33)

roof. To prove the theorem, we shall apply direct integration to

he proposed stochastic COVID-19 model (1) . First of all, we will
pply the It ̂  o formula to the second equation of system (1) 

 ln I(t) = 

[ 
βSI 

N 

− (μ+ μ1 + γ1 ) I + σQ(t) 
] 

1 

I 
d t − 1 

2 

η2 
2 d t + η2 d B 2 (t) .

(34) 

 ln I(t) = 

[ 
βS 

N 

− (μ + μ1 + γ1 ) + 

σQ(t) 

I 
− 1 

2 

η2 
2 

] 
dt + η2 dB 2 (t) . 

(35) 

y integrating relation (35) from zero to t and dividing it by t leads

o 

n I(t) − ln I(0) ≤
∫ t 

0 

[ 
β − (μ0 + γ1 + μ1 + 

η2 
2 

2 

) + σ
] 

ds + η2 B 2 (t)

(36) 
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Fig. 3. The incidence data of covid-19 from Khyber Pakhtunkhwa, Pakistan. 
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ln I(t) − ln I(0) ≤
[ 
(β + σ ) − (μ0 + γ1 + μ1 + 

η2 
2 

2 

) 
] 

t + η2 B 2 (t) , 

(37)

ln I ( t ) − ln I ( 0 ) ≤
(

μ0 + γ1 + μ1 + 

η2 
2 

2 

)

×

⎡ 

⎣ 

( β + σ ) (
μ0 + μ1 + γ1 + 

η2 
2 

2 

) − 1 

⎤ 

⎦ t + η2 B 2 ( t ) , (38)

ln I(t) − ln I(0) ≤ (μ0 + γ1 + μ1 + 

η2 
2 

2 

) 
[ 

R 

s 
0 − 1 

] 
t + η2 B 2 (t) , (39)

By using the theorem related to large number for local martingales,

we obtain 

lim 

→∞ 

B 2 (t) 

t 
= 0 a.s. 

By taking the limit superior of both sides 

lim 

→∞ 

sup 
ln I ( t ) 

t 
≤
(

μ0 + γ1 + μ1 + 

η2 
2 

2 

)(
˜ R 

S 
0 − 1 

)
< 0 , a.s. 

It means that whenever ˜ R S 
0 

< 1 , then 

lim 

→∞ 

I(t) = 0 , a.s. 

and 

lim 

→∞ 

〈 I(t) 〉 = 0 , a.s. 

Now from the model (1) 

1 

t 
( S ( t ) − S ( 0 ) ) = � − β < 

S ( t ) I ( t ) 

N 

> −μ0 < S ( t ) > + 

η1 

t 

∫ t 

0 

Sd B 1 ( s ) , 

1 

t 
( I ( t ) − I ( 0 ) ) = β < 

S ( t ) I ( t ) 

N 

> −( μ0 + γ1 + μ1 ) < I ( t ) > 

+ σ < Q ( t ) > + 

η2 

t 

∫ t 

0 

Id B 2 ( s ) , 

1 

t 
( Q ( t ) − Q ( 0 ) ) = γ1 < I ( t ) > −( μ0 + μ+ σ ) < Q ( t ) > + 

η3 

t 

∫ t 

0 

Qd B 3 ( s ) . 

(40)

p  
dding respective sides of equations (40) , we get 

S(t) −S(0) 
t 

+ 

I (t) −I (0) 
t 

+ 

Q (t) −Q (0) 
t 

= � − μ0 

〈
S(t) 

〉
− (μ0 + μ1 ) 

〈
I(t) 

〉
− (μ0 + μ) 

〈
Q(t) 

〉
+ 

η1 

t 

∫ t 
0 Sd B 1 (s ) + 

η2 

t 

∫ t 
0 Id B 2 (s ) + 

η3 

t 

∫ t 
0 Qd B 3 (s ) . 

(41)

alculation leads to 

S(t) 
〉
= 

�

μ0 

− μ0 + μ1 

μ0 

〈
I(t) 

〉
− μ0 + μ

μ0 

〈
Q(t) 

〉
+ φ(t) , (42)

here 

φ(t) = 

1 
μ0 

[ 
− S(t) −S(0) 

t 
− I (t) −I (0) 

t 
− Q (t) −Q (0) 

t 

+ 

η1 

t 

∫ t 
0 Sd B 1 (s ) + 

η2 

t 

∫ t 
0 Id B 2 (s ) + 

η3 

t 

∫ t 
0 Qd B 3 (s ) 

] 
. 

(43)

From the last equation of system (40) we have 

Q(t) − Q(0) 

t 
= γ1 

〈
I(t) 

〉
− (μ0 + μ + σ ) 

〈
Q(t) 

〉
+ 

η3 

t 

∫ t 

0 

QdB 3 (s ) , 

(44)

hich implies 

Q(t) 
〉
= 

1 

(μ0 + μ + σ ) 
(γ1 

〈
I(t ) 

〉
− Q(t ) − Q(0) 

t 
+ 

η3 

t 

∫ t 

0 

QdB 3 (s )) , 

(45)

e thus obtain 

lim 

→∞ 

〈
Q(t) 

〉
= 0 a.s , 

onsequently, (42) implies 

lim 

→∞ 

〈
S(t) 

〉
= 

�

μ0 

a.s . 

hich proves the result. �

. Case Study and Numerical simulation 

.1. Case study of Khyber Pakhtunkhwa, Pakistan 

As other provinces of Pakistan, the Khyber Pakhtunkhawa

rovince is also effected by covid-19 virus. So we fit our model
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Fig. 4. The graphical results show the extinction and stationary distribution of the COVID-19 epidemic. 
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Table 1 

Parameters value 

Notation Value References 

� 0.028 [24] 

β 0.2 Estimated 

μ0 0.011 [24] 

μ1 0.2 Estimated 

γ 0.06 [24] 

σ 0.3 Estimated 

μ 0.5 [24] 
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7

 

a  

t  

i  

w  

c  

i  

s  

a  

t  

a  

t  

i  

s  
o the real data of Khyber Pakhtunkhawa (Pakistan) covid-19 cases

rom 9th April to 2nd June 2020. We use Matlab minimization

echnique and consider the following initial value in which E (0)

nd Q (0) are estimated while the remaining values are taken from

24] and Table 1 

S ( 0 ) = 35 , 525 , 047 , 

E ( 0 ) = 150 0 0 , 

I ( 0 ) = 10 , 485 , 

 ( 0 ) = 180 0 0 , 

R ( 0 ) = 2973 . 

In Figure 1 the total cases of covid-19 has been depicted from

th April to 2nd June 2020, which becomes one month and 24

ays. In Figure 2 we fitted the real data with the infected class

f our covid-19 model which clearly shows the appropriateness of

ehavior of the infected class. Figure 3 shows long time behavior

f the covid-19 cases vs time (months). We can see that the data

s accurately fit to the model curve and further, one can observe

hat the cases with time on long term behavior grows exponen-

ially. This case could be alarming that the incidence may increases

urther in the coming months if the government not applied the

roper optimal strategies. 

.2. Numerical Simulation 

In the current section, we shall perform the numerical sim-

lation of the developed coronavirus stochastic epidemic model.

he well know stochastic Runge-Kutta (RK) method for the pur-

oses of numerical findings will be used. This analysis will verify

ur derived analytical results and will show the influence and ef-

ect of noise intensity. We assume the numerical value of the pa-

ameters with biological feasibility to verify the extinction result

re as: � = 0 . 3 , β = 0 . 5 , μ0 = 0 . 2 , μ1 = 0 . 2 , γ1 = 0 . 3 , σ = 0 . 2 ,

= 0 . 1 , while the numerical values for the intensity of white

oise are supposed to be η1 = 0 . 5 , η2 = 0 . 4 and η3 = 0 . 2 . More-

ver, we also assume some initial sizes of populations densities

.e., (S(0) = 0 . 9 , I(0) = 0 . 7 , R (0) = 0 . 5) and units of time 0-10. The

ong-term predictions and behavior of the model is presented in

ig. 4 . More, precisely Fig. 4 a represent the dynamics of suscepti-

le, infected and quarantined population. The dynamics of suscep-

ible population is shown by red dashed line, while the infected

ith corona virus and quarantine are respectively represented by

reen dashed and blue dashed lines. Clearly we noted that the dis-

ase will extinct i.e., the infection of novel corona virus vanishes
xponentially with increasing the value of white noise intensity.

owever there will be always susceptible population in the case of

xtinction. In a similar fashion, we assume the following parameter

alue and the strong effect of white noise to show the permanence

r stationary distribution i.e., � = 0 . 5 , μ0 = 0 . 2 , β = 0 . 6 , γ1 = 0 . 3 ,

1 = 0 . 2 , σ = 0 . 1 , μ = 0 . 2 , η1 = 0 . 5 , η3 = 0 . 7 , and η2 = 0 . 6 while

he initial population sizes will be taken as above. The simulation

arried out for this are presented in Fig. 4 b. Again the three trajec-

ories in Fig. 4 b, which represent the dynamics of susceptible (red

ashed), infected (purple solid) and quarantined population (red

olid), which show that the model maintain the persistence i.e.,

here will be always susceptible, infected and quarantine individu-

ls. Hence it could be noted from the simulation analysis that the

hite noise intensity have a great influence on the dynamics of the

isease: as when the value of the white noise intensity increases

he infection will decreases, while on the other hand if the value

f the white noise intensity decrease, the infection will increases. 

. Conclusion 

The novel COVID-19 is one of the severe disease in the world

nd till today there is no proper treatment. It could be also noted

hat majority of real world phenomenon are not simply determin-

stic, and contain randomness. With the help of stochastic theory,

e developed a model for the novel COVID-19 keeping in view the

haracteristic of the disease to investigate the transmission dynam-

cs with changing population environment. By adopting the idea of

tochastic Lyapunov functions theory, the existence and positivity

re shown. We established a suitable stochastic Lyapunov function

o perform the above activity. The extinction as well as the station-

ry distribution have been further discussed to find the conditions

hat how to extinct the disease. It could be noted that the there

s a great influence of noise intensity on the COVID-19 transmis-

ion. Clearly it has been observed, that the extinction of COVID-19
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[  
infected individuals increases with increasing the noise strength,

while decreases disease persisting. All the above analytical findings

are supported graphically with the help of numerical simulation

and therefore concluded that the work reveals stochastic analysis is

a better approach to study the dynamics of infectious disease par-

ticularly novel COVID-19 etc, because there are many factor which

varies time to time and place to place. In future, the model can be

further extended by adding an exposed class. One can also frac-

tionalize the model by using Atangana-Baleanu, Caputo or Caputo-

Fabrizo operator. Not only this can but researcher may apply opti-

mal control technique to minimize the infected people by choosing

suitable optimal control variables. 

Declaration of Competing Interest 

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper. 

Acknowledgement 

This work was supported by the HEC . 

References 

[1] Lai , Chih-Cheng , Shih T-P , Ko W-C , Tang H-J , Hsueh P-R . Severe acute
respiratory syndrome coronavirus 2 (SARS-cov-2) and corona virus dis-

ease-2019 (COVID-19): the epidemic and the challenges. IntJAntimicrobAgents
2020:105924 . 

[2] Groot D , Raoul J , Baker SC , Baric RS , Brown CS , Drosten C , et al. Commentary:

middle east respiratory syndrome coronavirus (MERS-cov): announcement of
the coronavirus study group. JVirol 2013;87(14):7790–2 . 

[3] Group WM-CR . State of knowledge and data gaps of middle east respiratory
syndrome coronavirus (MERS-cov) in humans. PLoS Currents 2013;5 . 

[4] Chikungunya E.C.D. C. Factsheet for health professionals available from: http:
//ecdc.europa.eu/en/ 
[5] World Health O. Coronavirus disease 2019 (COVID-19): situation report. 2020.
67 

[6] Organization W.H. Coronavirus disease 2019 (COVID-19): situation report.
2020. 85 

[7] Perko , Lawrence . Differential equations and dynamical systems, 7. Springer Sci-
ence & Business Media; 2013 . 

[8] Arnold, Ludwig. Stochastic differential equations. 1974. New York. 
[9] Wu , Zunyou , McGoogan JM . Characteristics of and important lessons from the

coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report

of 72 314 cases from the chinese center for disease control and prevention.
Jama 2020 . 

[10] Din , Anwarud , Li Y , Liu Q . Viral dynamics and control of hepatitis b virus (HBV)
using an epidemic model. Alexandria Eng J 2020;59(2):667–79 . 

[11] Khan T , Zaman G . Classification of different hepatitis b infected individuals
with saturated incidence rate. Springerplus 2016;5 . 

[12] Atangana , Abdon . Modelling the spread of COVID-19 with new fractal-frac-

tional operators: can the lockdown save mankind before vaccination? Chaos
Solitons Fractals 2020;136:109860 . 

[13] Khan , Altaf M , Abdon A . Modeling the dynamics of novel coronavirus (2019-n-
cov) with fractional derivative. Alexandria Eng J 2020 . 

[14] Chen , Yu , Cheng J , Jiang Y , Liu K . A time delay dynamic system with external
source for the local outbreak of 2019-ncov. Appl Anal 2020:1–12 . 

[15] Gray A , Greenhalgh D , Hu L , Mao X , Pan J . A stochastic differential equation

SIS epidemic model. SIAM J Appl Math 2011;71(3):876–902 . 
[16] Zhou Y , Zhang W , Yuan S . Survival and stationary distribution of a

SIR epidemic model with stochastic perturbations. Appl Math Comput
2014;244:118–31 . 

[17] Lu Q . Stability of SIRS system with random perturbations. Physica A
2009;388(18):3677–86 . 

[18] Ji C , Jiang D . Threshold behaviour of a stochastic SIR model. Appl Math Model

2014;38(21):5067–79 . 
[19] Din , Anwarud , Liang J , Zhou T . Detecting critical transitions in the case of mod-

erate or strong noise by binomial moments. Phys Rev E 2018;98(1):12114 . 
[20] Liang , Junhao , Din A , Zhou T . Linear approximations of global behav-

iors in nonlinear systems with moderate or strong noise. JChemPhys
2018;148(10):104105 . 

[21] Dalal N , Greenhalgh D , Mao X . A stochastic model for internal HIV dynamics. J

Math Anal Appl 2008;341(2) . 
[22] Edmunds WJ , Medley GF , Nokes DJ . The transmission dynamics and control of

hepatitis b virus in the Gambia. Stat Med 1996;15(20):2215–33 . 
23] Khasminskii R . Stochastic stability of differential equations(book), 66. Springer

Science & Business Media; 2011 . 
[24] http://covid.gov.pk/ . 

https://doi.org/10.13039/501100010221
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0003
http://ecdc.europa.eu/en/
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30434-3/sbref0019
http://covid.gov.pk/

