Skip to main content
. 2019 Aug 20;71(1):53–62. doi: 10.1093/cid/ciz786

Table 3.

Analysis of Anti-Interferon-γ Autoantibody Levels in the Thai and US Cohorts

A. Model Results for the Thai Cohort B. Model Results for the US Cohort
Model 1 Value SE P Value Model 1 Value SE P Value
Intercept 7.29 0.35 <.001 Intercept 7.26 0.29 <.001
Annual change −0.07 0.02 <.001 Annual change −0.04 0.02 .02
Infection 0.26 0.08 <.001 Infection 0.29 0.12 .02
Age at enrollment 0.01 0.01 .19 Age at enrollment 0.01 0.01 .31
Male 0.21 0.14 .15 Male 0.49 0.31 .13
Model 2 Value SE P Value Model 2 Value SE P Value
Intercept 7.26 0.35 <.001 Intercept 7.31 0.32 <.001
Annual change −0.06 0.02 <.001 Annual change −0.04 0.02 .02
Infection 0.25 0.09 <.001 Infection 0.30 0.12 .02
Age at enrollment 0.01 0.01 .19 Age at enrollment 0.01 0.01 .31
Male 0.21 0.14 .15 Male 0.48 0.32 .15
Antibiotics 0.03 0.10 .79 Antibiotics 0.06 0.15 .68
Model 3 Value SE P Value Model 3 Value SE P Value
Intercept 7.45 0.36 <.001 Intercept 7.39 0.30 <.001
Annual change −0.07 0.02 <.001 Annual change −0.04 0.01 <.001
Infection 0.23 0.08 <.001 Infection 0.18 0.11 .10
Age at enrollment 0.01 0.01 .10 Age at enrollment 0.01 0.01 .31
Male 0.23 0.15 .13 Male 0.46 0.32 .17
Cyclophosphamide −0.43 0.17 .01 Rituximab −0.37 0.11 .001

Longitudinal trajectories of anti-interferon-γ autoantibody levels were assessed by fitting a linear mixed model adjusting for age, sex, and the presence of infection (model 1), antibiotic use alone (model 2), and cyclophosphamide or rituximab use (model 3).

Abbreviation: SE, standard error.