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Background. Single nucleotide polymorphism (SNP) of complement component 2 (C2) has been found to be significantly
associated with hepatocellular carcinoma (HCC). However, little is known about the role and mechanism of C2 in HCC. In the
present study, we aimed to explore the prognostic value of C2 and its correlation with tumor-infiltrating immune cells in HCC.
Materials and Methods. mRNA expression was downloaded from TCGA (365 HCC patients and 50 healthy controls),
GSE14520 (220 HCC patients and 220 adjacent normal tissues), and ICGC HCC (232 HCC patients) cohorts. Unpaired
Student’s t-tests or ANOVA tests were used to evaluate differences of C2 expression. Univariate and multivariate analyses were
used to analyze the prognostic value of C2. CIBERSORT was used to calculate the proportion of 22 kinds of tumor-infiltrating
immune cells. Results. Significantly lower C2 expression was found at HCC compared to healthy controls, and C2 was associated
with TNM stages. Higher C2 expression was significantly associated with better prognosis, and multivariate analysis showed that
C2 was also an independent factor for the prognosis of HCC. Moreover, elevated CD4 T cells were found at HCC patients with
higher C2 expression while the higher proportion of macrophage M0 cells was found in HCC patients with lower C2 expression.
KEGG analysis showed that “cell cycle,” “AMPK signaling pathway,” and “PPAR signaling pathway” were enriched in HCC
patients with higher C2 expression. Conclusion. C2 is a prognostic factor for HCC and may be used as a therapeutic target for
future treatment of HCC.

1. Introduction

As one of the most common cancers and a leading cause of
cancer-related death worldwide, hepatocellular carcinoma
(HCC) continues to be a tremendous public burden on soci-
ety [1]. Up to 50% of HCC patients are estimated to develop
recurrence after resection partly due to limited amenable
curative treatment options and rapid development of resis-
tance [2]. A growing number of studies have indicated that
tumor microenvironment (TME) plays important roles in
almost every key aspect of HCC tumorigenesis, such as
tumor initiation, progression, immune invasion, metastasis,
recurrence, and resistance to therapy [3–5]. Therefore,
understanding the interactions of stromal cells with cancer
cells will help to develop effective strategies to conquer resis-
tance and improve the therapeutic effect for HCC [6].

The complement system is a fundamental branch of
innate immunity and could rapidly respond to invading
pathogens by promoting cell lysis [7]. Remarkably, studies
carried out over the last decade have shed new light on com-
plement activation in the TME, which contributes to tumor-
promoting and tumor-suppressing immune responses [8].
For example, complement component 7 (C7) and comple-
ment factor H (CFH) are found to be necessary for maintain-
ing stemness of HCC cells as silence of C7 and CFH inhibits
tumor-sphere formation and promotes cell differentiation
while overexpression of them elevates stemness factor
expression and cell growth in vivo [9]. C3 is required for
the local and systemic immune responses against tumor in
mice with G422 gliomas generated by photodynamic therapy
(PDT), because knockout of C3 reduces the infiltration of
immune cells and release of TNF-α and IFN-γ, which
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indicates a crucial role played by C3 in mediating antitumor
immunity [10]. Interestingly, bilateral effect of complement
component 5a (C5a) on tumor progression has also been
observed. High levels of C5a are related to tumorigenesis
accompanied by reduced IFN-γ-producing CD8 and CD4
cells, while a low level of C5a is associated with decreased
tumor burden with increased IFN-γ-producing CD4 and
CD8 T cells in mice with lymphoma [11]. These studies
indicate entirely different roles played by each complement
component on cancer development.

Complement component 2 (C2) is an important part of
the complement system, and single nucleotide polymorphism
(SNP) of C2 has been found to be significantly associated with
HCC [12, 13]. For example, C2 SNP rs9267665 is associated
with the risk of developingHCCwhile rs10947223 shows pro-
tective effects against HCC, indicating an important role
played by C2 in HCC. However, up to now, little is known
about the role andmechanism of C2 inHCC, so in the present
study, we aimed to explore the prognostic value of C2 and its
correlation with tumor-infiltrating immune cells of TME in
HCC patients.

2. Materials and Methods

2.1. Ethics Statement. All the data analyzed in the present
study were attained from The Cancer Genome Atlas (TCGA)
dataset, Gene Expression Omnibus (GEO) dataset, and the
International Cancer Genome Consortium (ICGC) dataset,
and informed consents had been gained from each patient
before our study.

2.2. Acquisition of mRNA Expression and Corresponding
Clinical-Pathological Parameters from TCGA, GEO, and
ICGC. In the present study, a total of three cohorts, including
the TCGA HCC cohort, GSE14520 HCC cohort, and ICGC
HCC cohort, were employed. mRNA expression and corre-
sponding clinical-pathological parameters of the TCGA
HCC cohort were downloaded from TCGA (https://
cancergenome.nih.gov/). In the TCGA HCC cohort, clinical-
pathological parameters of 377 HCC patients, including
gender, age, histologic grades, cirrhosis, TNM stage, status,
and time of overall survival (OS), were attained. Meanwhile,
mRNA expression of 374 HCC patients and 50 healthy
controls was also downloaded. The GSE14520 HCC cohort
was downloaded from GEO (https://www.ncbi.nlm.nih.gov/
geo/). In the GSE14520 HCC cohort, clinical-pathological
parameters of 220HCCpatients, including gender, age, tumor
size, cirrhosis, TNM staging, status, and time of OS, and
mRNA expression of 220HCCpatients and their correspond-
ing adjacent normal tissues were available. mRNA expression
and corresponding clinical-pathological parameters of the
ICGC HCC cohort were got from the ICGC portal (https://
dcc.icgc.org/projects/LIRI-JP). In the ICGC HCC cohort,
mRNA expression and clinical-pathological parameters of
232 HCC patients, including gender, age, TNM staging,
status, and time of OS, were available. Basic demographic
characteristics of TCGA, GSE14520, and ICGC HCC cohorts
are summarized in Table 1.

2.3. CIBORSORT. An online tool, CIBERSORT, was used to
calculate the proportion of 22 kinds of tumor-infiltrating
immune cells with transcriptomic data (https://cibersort
.stanford.edu). In CIBERSORT, relative fractions of 22 kinds
of immune cells were deconvolved from the transcriptional
expression of tumor samples basing on a referenced signature
matrix by linear support vector regression.

2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Analysis. The underlying mechanism of C2 in hepatocarcino-
genesis was analyzed by KEGG analysis in the Database for
Annotation,Visualization, and IntegratedDiscovery (DAVID)
(https://david.ncifcrf.gov/summary.jsp). First, HCCpatients of
TCGA or GSE14520 or ICGC HCC cohort were divided into
highC2 and lowC2groups according to themedianC2 expres-
sion. Then, differentially expressed genes (DEGs) between the
two groupswere foundwith a cut-off value of p < 0:05. Finally,
KEGG pathways enriched by these DEGs were identified in
DAVID, and a cut-off value of p < 0:05was considered as sta-
tistically significant.

2.5. Statistical Analysis. GraphPad Prism 6 (GraphPad Soft-
ware, La Jolla, CA, USA) was used to carry out the statistical
analyses. Data were presented as the median. Unpaired
Student’s t-tests or ANOVA tests were performed to com-
pare the difference of C2 expression between HCC patients
and healthy controls/adjacent normal tissues or among
HCC patients with different histologic grades or TNM stages.
Univariate and multivariate Cox regression analyses were
carried out to analyze the prognostic value of C2 expression,
and Kaplan-Meier analysis with a two-sided log-rank test was
also performed to compare the OS of HCC patients with high
or low C2 expression. Additional statistical analysis was
performed with STAMP [14]. p < 0:05 was considered as
statistically significant.

3. Results

3.1. C2 Expression between HCC Patients and Healthy
Controls/Adjacent Normal Tissues. We first analyzed the C2
expression between HCC patients and healthy controls/adja-
cent normal tissues of TCGA and GSE14520 HCC cohorts.
As is shown in Figure 1, in the TCGA cohort, significantly
lower C2 expression was found at HCC patients compared
to healthy controls (p < 0:01, Figure 1(a)). Similar results were
also found in the GSE14520 cohort, in which significantly
lower C2 expression was also found at HCC tissues compared
to adjacent normal tissues (p < 0:001, Figure 1(b)). In short,
the above results suggested that C2 expression of HCC was
lower than that of healthy controls.

3.2. Association of C2 Expression with Clinical-Pathological
Parameters of HCC Patients. After reduced C2 expression
was found in HCC patients, we next analyzed the association
of C2 expression with clinical-pathological parameters. As is
shown in Figure 2, in the TCGA cohort, C2 expression was
remarkably correlated with TNM stages. HCC patients who
were in more advanced TNM stages expressed lower C2
expression (p = 0:02, Figure 2(a)). Besides, HCC patients
who were in more decreased differentiation tended to express

2 BioMed Research International

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/projects/LIRI-JP
https://dcc.icgc.org/projects/LIRI-JP
https://cibersort.stanford.edu
https://cibersort.stanford.edu
https://david.ncifcrf.gov/summary.jsp


lower C2 expression too, but the difference was not signifi-
cant (p = 0:18, Figure 2(b)). Similar results were also found
at ICGC and GSE14520 HCC cohorts. In the ICGC cohort,
HCC patients who were in more advanced TNM stages
expressed lower C2 expression (p = 0:004, Figure 2(c)). In
the GSE14520 cohort, HCC patients who were in more
advanced TNM stages expressed lower C2 expression
(p < 0:0001, Figure 2(d)). Moreover, C2 expression of HCC
patients with tumor size ≥ 5 cm was lower than that of HCC
patients with tumor size ≤ 5 cm (p = 0:002, Figure 2(e)).
Taken together, C2 expression was significantly associated
with TNM stages in HCC patients, and the higher the
TNM stages, the lower the C2 expression.

3.3. Prognostic Value of C2 in HCC Patients. Having found
that C2 expression was significantly associated with
clinical-pathological parameters in HCC patients, we next
analyzed the prognostic value of C2 in HCC patients. As is
shown in Figure 3, C2 expression was significantly associated
with the prognosis of HCC patients. In the TCGA cohort,
univariate Cox analysis showed that higher C2 expression
was significantly associated with better OS of HCC patients
(HR = 0:66, 95% CI: 0.47-0.93, p = 0:02, Figure 3(a)). More-
over, multivariate analysis also showed that C2 expression
was independently associated with OS of HCC patients after
adjusting for gender, age, cirrhosis, histologic grade, and
TNM stage (HR = 0:68, 95% CI: 0.47-0.99, p = 0:04,
Table 2). In the GSE14520 cohort, univariate Cox indicated

that higher C2 expression was also significantly associated
with better OS of HCC patients (HR = 0:56, 95% CI: 0.36-
0.87, p = 0:01, Figure 3(b)), but multivariate analysis showed
that C2 expression was not independently associated with OS
of HCC patients after adjusting for gender, age, cirrhosis,
main tumor size, and TNM stage (HR = 0:73, 95% CI: 0.47-
1.16, p = 0:18, Table 3). In the ICGC cohort, univariate Cox
suggested that higher C2 expression was significantly related
with better OS (HR = 0:46, 95% CI: 0.25-0.86, p = 0:02,
Figure 3(c)), and multivariate analysis also showed that C2
expression was independently associated with OS of HCC
patients after adjusting for gender, age, and TNM stage
(HR = 0:73, 95% CI: 0.27-0.96, p = 0:04, Table 4). In a word,
C2 may play an important role in HCC suppression.

3.4. Correlation of C2 Expression with Tumor-Infiltrating
Immune Cells in HCC Patients. Increasing studies had proved
an immunoregulatory effect of complement on TME, and
interactions between complement and tumor-infiltrating
immune cells contribute to the development and progression
of many kinds of cancers [8]. So, we further analyzed the cor-
relation of C2 expression with tumor-infiltrating immune
cells in HCC patients. As is shown in Figure 4, C2 expression
was significantly associated with tumor-infiltrating immune
cells in HCC patients. In the TCGA cohort, significantly
higher proportions of resting CD4 memory T cells and
macrophage M1 cells were found in HCC patients with
higher C2 expression, while significantly higher proportions

Table 1: Basic characteristics of HCC patients from the TCGA, GSE14520, and ICGC HCC cohorts.

Variables TCGA cohort (N = 377) GSE14520 cohort (N = 220) ICGC cohort (N = 232)
Gender (male/female) 255/122 190/30 171/61

Age (years, median) 60 (16-90) 50 (21-77) 69 (31-89)

Cirrhosis (yes/no/NA) 81/137/159 202/18 NA

Histologic grade (G1/G2/G3/G4/NA) 55/180/124/13/5 NA NA

TNM stage (I/II/III/IV/NA) 175/87/86/5/24 93/77/48/-/2 36/106/71/76

Main tumor size (>/≤5 cm) NA 80/140 NA

Overall survival status (alive/dead) 245/132 136/84 189/43

Overall survival time (months, median) 19.67 (0-120.73) 51.65 (1.8-67.4) 26.0 (0.3-72)
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Figure 1: C2 expression between HCC patients and healthy controls/adjacent normal tissues. Expression of C2 in HCC patients and healthy
controls of the TCGA cohort (a); expression of C2 in HCC patients and adjacent normal tissues of the GSE14520 cohort (b).
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Figure 2: Association of C2 expression of HCC patients with clinical-pathological parameters. Association of C2 expression with TNM stages
and histologic grades of TCGA cohort (a, b); association of C2 expression with TNM stages of ICGC cohort (c); association of C2 expression
with TNM stages and main tumor size of cohort (d, e).
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of macrophage M0 cells, activated CD4 memory cells, and
plasma cells were found at HCC patients with lower C2
expression (all p < 0:05, Figure 4(a)). In the GSE14520
cohort, significantly higher proportions of resting mast cells,
follicular helper T cells, and resting CD4memory T cells were
found in HCC patients with higher C2 expression, while
significantly higher proportions of macrophageM0 cells, acti-

vated mast cells, and plasma cells were found at HCC patients
with lower C2 expression (all p < 0:05, Figure 4(b)). In the
ICGC cohort, significantly higher proportions of resting
CD4memory T cells were found in HCC patients with higher
C2 expression, while significantly higher proportions of
macrophage M0 cells, activated CD4 memory T cells, and
Treg cells were found at HCC patients with lower C2
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Figure 3: Prognostic value of C2 in HCC patients. Kaplan-Meier analysis of overall survival time of HCC patients with high C2 and low C2
expression in the TCGA cohort (a); Kaplan-Meier analysis of overall survival time of HCC patients with high C2 and low C2 expression in
the GSE14520 cohort (b); Kaplan-Meier analysis of overall survival time of HCC patients with high C2 and low C2 expression in the ICGC
cohort (c).

Table 2: Univariate and multivariate analyses of C2 expression for overall survival in HCC patients of the TCGA cohort.

Variables
Univariate analysis Multivariate analysis

Hazard ratio 95% CI p value Hazard ratio 95% CI p value

Gender (male vs. female) 0.82 0.57-1.16 0.26

Age (>60 vs. ≤60) 1.25 0.88-1.77 0.21

Cirrhosis (yes vs. no) 0.83 0.48-1.42 0.49

Histologic grade (G3+G4 vs. G1+G2) 1.12 0.78-1.61 0.54

TNM stage (III+IV vs. I+II) 2.43 1.69-3.55 0.000∗ 2.38 1.64-3.46 0.000∗

C2 (high vs. low) 0.66 0.47-0.93 0.02∗ 0.68 0.47-0.99 0.04∗
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expression (all p < 0:05, Figure 4(c)). Taken together, C2
expression was significantly associated with CD4 memory T
cells and macrophage M0 cells in HCC patients from all these
three HCC cohorts.

3.5. Molecular Mechanisms of C2 in HCC.KEGG analysis was
performed to explore the underlying biological mechanism
by which C2 influenced the prognosis of HCC. As is shown
in Figure 5, in the TCGA cohort, KEGG pathways, such as
“cell cycle,” “ubiquitin-mediated proteolysis,” “complement
and coagulation cascades,” “spliceosome,” and “RNA trans-
port,” were most significantly enriched in HCC patients with
higher C2 expression compared to HCC patients with lower
C2 expression (all p < 0:001, Figure 5(a)). In the GSE14520
cohort, KEGG pathways, such as “complement and coagula-
tion cascades,” “carbon metabolism,” “biosynthesis of amino
acids,” “peroxisome,” and “ribosome,” were most signifi-
cantly enriched in HCC patients with higher C2 expression
(all p < 0:001, Figure 5(b)). In the ICGC cohort, KEGG path-
ways, such as “ribosome,” “cell cycle,” “complement and
coagulation cascades,” “spliceosome,” and “RNA transport,”
were most significantly enriched in HCC patients with higher
C2 expression (all p < 0:001, Figure 5(c)). In total, as is shown
in Table 5, 17 significant KEGG pathways, such as “cell
cycle,” “complement and coagulation cascades,” “AMPK sig-
naling pathway,” and “PPAR signaling pathway,” overlapped
in the three HCC cohorts, indicating that C2 may influence
the prognosis of HCC by regulation of these 17 overlapped
KEGG pathways.

4. Discussion

HCC is one of the most malignant kinds of cancer world-
wide, and TME has been found to play important roles of

recurrence and resistance to therapy of HCC [8, 15]. Increas-
ing studies have proved an immunoregulatory effect of
complement on TME, and interactions between complement
and TME contribute to the development and progression of
many kinds of cancers [8]. C2 is an important part of the
complement system, and SNP of C2 has been found to be sig-
nificantly associated with HCC [12, 13]. In the present study,
we found that C2 was associated with the prognosis of HCC
and explored the relevant underlying mechanism.

Previously, Imamura et al. have found that higher expres-
sion of the C5a receptor from breast cancer tissues is signifi-
cantly associated with clinical parameters, such as larger
tumor size, advanced histologic grade, lymph node metasta-
sis, higher TNM stages, and poorer prognosis [16]. Lin
et al. have also observed that higher tissue C3 expression is
significantly associated with better prognosis of non-small-
cell lung cancer (NSCLC) patients, indicating an important
role played by C3 in NSCLC suppression [17]. Similarly, in
our study, lower expression of C2 was found at HCC patients,
and C2 expression was significantly associated with TNM
stages and better OS. Besides, C2 expression was indepen-
dently associated with OS of HCC patients in TCGA and
ICGC HCC cohorts, but it was not in the GSE14520 cohort.
The reason for the difference in the predictive value of C2
expression in different HCC cohorts may be that some path-
ological parameters among the three HCC cohorts were
different. For example, in the TCGA HCC cohort, cirrhosis
was not associated with OS, but in the GSE14520 HCC
cohort, cirrhosis and main tumor size were significantly asso-
ciated with OS. Moreover, in the TCGA and GSE1420 HCC
cohorts, gender was not associated with OS, but in the ICGC
HCC cohort, gender was associated with OS. The difference
of cirrhosis, main tumor size, and gender among the three
HCC cohorts may result in the difference of factors used

Table 3: Univariate and multivariate analysis of C2 expression for overall survival in HCC patients of the GSE14520 cohort.

Variables
Univariate analysis Multivariate analysis

Hazard ratio 95% CI p value Hazard ratio 95% CI p value

Gender (male vs. female) 1.68 0.81-3.49 0.16

Age (>50 vs. ≤50) 1.0 0.65-1.53 0.99

Cirrhosis (yes vs. no) 4.57 1.13-18.62 0.03∗ 3.66 0.89-14.98 0.07

Main tumor size (>5 cm vs. ≤5 cm) 1.97 1.28-3.30 0.002∗ 1.18 0.69-2.01 0.56

TNM stage (III+IV vs. I+II) 3.43 2.20-6.11 0.000∗ 2.38 1.64-3.46 0.000∗

C2 (high vs. low) 0.56 0.36-0.87 0.01∗ 0.73 0.47-1.16 0.18

Table 4: Univariate and multivariate analyses of C2 expression for overall survival in HCC patients of the ICGC cohort.

Variables
Univariate analysis Multivariate analysis

Hazard ratio 95% CI p value Hazard ratio 95% CI p value

Gender (male vs. female) 0.51 0.28-0.97 0.04∗ 0.43 0.23-0.81 0.01∗

Age (>70 vs. ≤70) 1.06 0.58-1.94 0.84

TNM stage (III+IV vs. I+II) 2.38 1.30-4.36 0.004∗ 2.59 1.39-4.80 0.003∗

C2 (high vs. low) 0.46 0.25-0.86 0.02∗ 0.73 0.27-0.96 0.04∗
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Figure 4: Continued.

7BioMed Research International



for multivariate analysis, thus leading to the difference of the
predictive value of C2 expression for OS. In a word, C2
expression was associated with OS of HCC patients, but it
still needed external and multicenter prospective cohorts
with large sample sizes to validate whether C2 expression
could be an independent prognostic factor for OS.

A series of studies have proved that the complement sys-
tem takes part in the regulation of TME, and interaction of
complement with tumor-infiltrating immune cells plays an
important role in the development and progression of many
kinds of cancers [8]. Tumor cell-derived C5a can recruit and
differentiate myeloid-derived suppressor cells (MDSCs) in
TME, which could protect tumor cells against the immune
system and immunotherapy and promote tumor progression
by inhibiting T cell responses and promoting the generation
of Tregs [18]. Moreover, blockade of C5aR can reduce the
number of MDSCs [19]. Lin et al. have also showed that
higher tissue C3 expression was positively correlated with
higher numbers of tumor-infiltrating CD4 T cells and CD8
T cells, which may also contribute to tumor suppression by
C3, as higher C3 expression predicts better prognosis in
NSCLC patients [17]. In the present study, elevated CD4 T
cells were found at HCC patients with higher C2 expression
while a higher proportion of macrophage M0 cells was found
in HCC patients with lower C2 expression in all three HCC
cohorts. Garnelo et al. have showed that the degree of infil-

trated T cells and B cells of tumor tissues significantly relates
to the improved prognosis of HCC patients [20]. CD4+ T
cells can improve antitumor immune responses by produc-
ing cytokines which are important for the activation of
CD8+ T cells and B cells. Imai et al. have found that CD4+
T cells are important for the formation and maintenance of
polyfunctionality of cytotoxic CD8+ T cells, which is a key
determinant of the success of immunological control of
tumor growth [21]. Moreover, the important role of virus
control and antitumor immunity played by CD4+ T cell-
mediated cytotoxicity is being increasingly recognized. Fu
et al. have found that circulating and tumor-infiltrating
CD4+ cytotoxic T cells decrease in HCC patients with
advanced stages, and loss of CD4+ cytotoxic T cells is associ-
ated with a high mortality rate and reduced survival time
[22]. Hsiao et al. have observed that the higher number of
macrophage M0 cells is significantly associated with poorer
prognosis of HCC patients [23]. Macrophages can be
recruited into HCC tissue to become tumor-associated mac-
rophages (TAMs) by upregulation of HMGB1 and then take
part in the cancer progression and metastasis [24]. TAMs
locate in the stroma of HCC tissue and are polarized toward
the M2 phenotype. A lot of studies have showed that TAMs
can promote tumor proliferation, angiogenesis, invasion,
and metastasis [25]. For example, Yeung et al. have showed
that M2 macrophages are associated with a poor prognosis
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Figure 4: Correlation of C2 expression with tumor-infiltrating immune cells in HCC patients of the TCGA cohort (a), GSE14520 cohort (b),
and ICGC cohort (c).
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Table 5: Overlap of significant KEGG pathways enriched in HCC patients with higher C2 expression from the TCGA, GSE14520, and ICGC
HCC cohorts.

ID Description
TCGA cohort GSE14520 cohort ICGC cohort

Count p.adjust Count p.adjust Count p.adjust

hsa04110 Cell cycle 96 0.000 33 0.003 89 0.000

hsa04610 Complement and coagulation cascades 59 0.000 42 0.000 64 0.000

hsa04152 AMPK signaling pathway 61 0.023 34 0.001 58 0.031

hsa03320 PPAR signaling pathway 42 0.014 27 0.000 40 0.025

hsa04910 Insulin signaling pathway 80 0.000 28 0.008 66 0.026

hsa01200 Carbon metabolism 73 0.000 44 0.000 71 0.000

hsa00630 Glyoxylate and dicarboxylate metabolism 20 0.012 13 0.002 21 0.004

hsa00620 Pyruvate metabolism 27 0.001 13 0.017 25 0.006

hsa01230 Biosynthesis of amino acids 42 0.011 33 0.000 48 0.000

hsa00410 Beta-alanine metabolism 19 0.039 11 0.021 19 0.030

hsa00270 Cysteine and methionine metabolism 29 0.017 16 0.008 29 0.012

hsa05110 Vibrio cholerae infection 31 0.006 17 0.004 35 0.000

hsa00010 Glycolysis/gluconeogenesis 42 0.001 22 0.002 36 0.029

hsa04979 Cholesterol metabolism 36 0.000 19 0.001 37 0.000

hsa00280 Valine, leucine, and isoleucine degradation 27 0.042 19 0.000 27 0.029

hsa00640 Propanoate metabolism 21 0.027 54 0.000 20 0.041

hsa00260 Glycine, serine, and threonine metabolism 23 0.048 16 0.001 26 0.004
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in HCC by promoting tumor growth and invasiveness
through CCL22-induced epithelial-mesenchymal transition
(EMT) [26]. Besides, tumor-suppressive M1 macrophages
were found to be enriched in HCC patients with higher C2
expression in the TCGA cohort, which may contribute to
better prognosis of HCC patients as studies have showed that
M1 macrophages are involved in killing pathogens and
tumor cells by producing large amounts of proinflammatory
cytokines and expressing MHC molecules [27]. Moreover,
the higher proportion of Tregs was found at HCC patients
with lower C2 expression in the ICGC cohort, which may
also contribute to the unfavorable prognosis of HCC patients
as Treg cells are immunosuppressive cells and could promote
the occurrence and development of HCC by inhibiting the
function of T cells [28]. Taken together, the interaction of
C2 with tumor-infiltrating immune cells may influence the
prognosis of HCC.

In addition, to analyze the association of C2 expression
with tumor-infiltrating immune cells, we also explore the
underlying signaling pathways exploited by C2 to influence
prognosis by KEGG analysis. Signaling pathways, such as
“AMPK signaling pathway” and “PPAR signaling pathway,”
were found to be significantly enriched in HCC patients with
higher C2 expression from all three HCC cohorts, which have
been reported to take part in the development and progression
of HCC. For example, Han et al. have observed that hispidulin
could suppress the growth and metastasis of HCC through
AMPK signaling-mediated PPARγ activation both in vitro
and in vivo [29]. Tuo et al. have also found that phosphoenol-
pyruvate carboxykinase 1 (PCK1), one of the key enzymes of
gluconeogenesis, could inhibit the progression of cell cycle
and proliferation of hepatoma cells via the AMPK/p27Kip1

axis [30]. Basing on these studies, we speculated that C2 may
influence the prognosis of HCC by regulation of the AMPK
signaling pathway and/or PPAR signaling pathway.

Several limitations of the present study should also be
noted. First, complement is mainly synthesized in the liver
and then secreted into blood, but we do not analyze the dif-
ference of serum C2 between HCC and healthy controls
and the prognostic value of serum C2 in HCC. Second, C2
expression is found to be associated with tumor-infiltrating
cells, such as CD4 T cells and macrophage M0 cells, but we
do not explore how C2 regulate these immune cells to influ-
ence the prognosis of HCC patients. Finally, we do not
validate the KEGG pathways enriched in HCC patients with
higher C2 expression in in vitro studies.

In conclusion, higher C2 expression is associated with
better prognosis of HCC, and C2 may influence the progno-
sis of HCC by interaction with CD4 T cells and macrophage
M0 cells and regulation of pathways, such as the AMPK
signaling pathway and PPAR signaling pathway.
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