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Abstract

Background: The human gut microbiome has been suggested to affect human health and thus has received
considerable attention. To clarify the structure of the human gut microbiome, clustering methods are frequently
applied to human gut taxonomic profiles. Enterotypes, i.e., clusters of individuals with similar microbiome
composition, are well-studied and characterized. However, only a few detailed studies on assemblages, i.e., clusters of
co-occurring bacterial taxa, have been conducted. Particularly, the relationship between the enterotype and
assemblage is not well-understood.

Results: In this study, we detected gut microbiome assemblages using a latent Dirichlet allocation (LDA) method. We
applied LDA to a large-scale human gut metagenome dataset and found that a 4-assemblage LDA model could
represent relationships between enterotypes and assemblages with high interpretability. This model indicated that
each individual tends to have several assemblages, three of which corresponded to the three classically recognized
enterotypes. Conversely, the fourth assemblage corresponded to no enterotypes and emerged in all enterotypes.
Interestingly, the dominant genera of this assemblage (Clostridium, Eubacterium, Faecalibacterium, Roseburia,
Coprococcus, and Butyrivibrio) included butyrate-producing species such as Faecalibacterium prausnitzii. Indeed, the
fourth assemblage significantly positively correlated with three butyrate-producing functions.

Conclusions: We conducted an assemblage analysis on a large-scale human gut metagenome dataset using LDA.
The present study revealed that there is an enterotype-independent assemblage.

Keywords: Metagenomics, Latent Dirichlet allocation, Human gut microbiome, Enterotype, Microbial assemblage,
Bayesian model, Machine learning

Introduction
The human gut microbiome varies greatly from person
to person depending on differences among human pop-
ulations [1] and dietary habits [2]. The differences in gut
microbial compositions affect host health and physiology
[3], and in some cases, altered microbial compositions are
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associated with diseases, such as inflammatory bowel dis-
ease (IBD) [4], type 1 diabetes [5], colorectal cancer [6],
and autism [7, 8]. Recent developments in metagenome
sequencing technologies have enabled investigations of
gut microbial compositions of individuals with ease and
rapidity, and many large-scale research projects focused
on the human gutmicrobiome have been conducted [1, 9–
11]. At present, by applying various data mining methods
to these massive metagenomic datasets, the structure of
the human gut microbiome and the relationship between
a hosts phenotype and its gut microbial profile can be
revealed.
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Cluster analysis of samples is one of the widely used
data-mining methods in metagenomic research. With
this approach, individuals are clustered into groups
based on similarities in their microbial profiles, that is,
each sample is assigned to one cluster by this method.
For example, Arumugam et al. discovered that the gut
microbial profiles of individuals could be classified into
three types known as enterotypes using the partition-
ing around medoids (PAM) clustering method [12]. In
another example, Ding and Schloss reported, employ-
ing the Dirichlet multinomial mixture (DMM) cluster-
ing method, that the human gut microbiome has con-
siderable inter-individual variation and that the cluster
type of an individual was almost unchanged during the
sampling period [13, 14]. Although cluster analysis is a
powerful approach for uncovering the overall structure
of the human gut microbiome, this analysis is strongly
affected by the dominant microbes in each individual.
Therefore, cluster analyses of samples may ignore the
existence of non-dominant but shared microbes among
individuals (Fig. 1).
An alternative data-mining method is microbial assem-

blage analysis, which clusters microbes into certain
assemblages, instead of clustering samples into groups.
Here, following Shafiei et al. [15], we define microbial
assemblages as groups of microbes that are expected to
co-occur. The existence of microbial assemblages can
be reasonably expected from the interactions between
microbes [16]. Several microbial assemblages can exist
in one individual, and microbial assemblage analysis
can capture assemblages consisting of non-dominant
microbes, unlike a cluster analysis of samples (Fig. 1).
Shafiei et al. developed BioMiCo, which is a Bayesian
probabilistic model for microbial assemblage analysis,
and discovered host-specific assemblages in human gut
metagenomic time-series data [15]. Cai et al. also explored

microbial assemblages using non-negative matrix factor-
ization methods and identified a shift of microbial assem-
blages through time in one individual [17]. Higashi et al.
developed Latent Environment Allocation, a web appli-
cation for visualization of metagenomic data based on
a microbial assemblage analysis method, and found that
microbial assemblages can represent continuous varia-
tions of the human gut microbiome [18]. Meanwhile, Yan
et al. created MetaTopics, an R package for microbial
assemblage analysis [19]. Further, Sankaran and Holmes
conducted a simulation study to compare several methods
of microbial assemblage analyses [20]. Microbial assem-
blage analysis of the human gut microbiome has also been
applied to track sources of contamination inmetagenomic
research [21] and detect assemblage-level metabolic
interactions [22]. Although many microbial assemblage
analyses of the human gut microbiome have been per-
formed, a comparison between classical enterotypes
and the assemblages of co-occurring taxa has not yet
been conducted. Consequently, the large-scale assem-
blage structure of the human gutmicrobiome and the rela-
tionship between microbial assemblages and enterotypes
are still unclear.
In this study, we carried out a microbial assemblage

analysis of a large-scale human gut metagenomic dataset
to establish the relationship between microbial assem-
blages and enterotypes. To detect assemblages, we used
the latent Dirichlet allocation (LDA) method, which is
an unsupervised probabilistic model [23]; LDA was first
proposed for the classification of documents in natural-
language processing, and this method is now widely
applied in bioinformatics fields, such as transcriptome
analysis [24], pharmacology [25], gene function predic-
tion [26], and metagenomic analyses [18–20, 27]. We
first investigated the number of microbial assemblages
based on the relationship between microbial assemblages

Fig. 1 Schematic illustration of microbial assemblages and cluster analysis for the human gut microbiome, where A, B, and C indicate microbial
assemblages, with circle size indicating abundance. The cluster of each individual is determined by the dominant assemblage. However, a cluster
analysis cannot capture the non-dominant but shared microbes among samples, such as those comprising assemblage C
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and enterotypes. We found that a 4-assemblage model
has high interpretability in the context of a large-scale
human gut microbiome dataset and discovered that an
individual might have not just one microbial assemblage
but several assemblages in many cases. We investigated
the relationships between enterotypes and microbial
assemblages and revealed that three of the assemblages
could be matched to the three enterotypes; however, the
fourth assemblage could exist in all enterotypes. In addi-
tion, the dominant genera of this assemblage included
butyrate-producing species, and this assemblage is signifi-
cantly positively correlated with three butyrate-producing
functions. We also estimated the functions of each
assemblage by applying LDA to the functional pro-
files of the same samples and found that the fourth
assemblage has some specific functional categories,
such as the immune system and translation, with high
abundance.

Materials andmethods
We used our own implementation of the LDA and PAM
algorithms. The detailed information is described in
“Availability of data and material.”

Metagenomic dataset and preprocessing methods
We used the large-scale human gut metagenome dataset
constructed by Nishijima et al. [28]. This dataset con-
sisted of gut metagenomic data from 861 healthy adults
from 12 countries. Each individual corresponds to one
sample. The taxon of each sequencing read was assigned
by mapping the read to a reference genome dataset con-
sisting of 6149 microbial genomes. We used genus as
the taxonomic rank for each sequencing read, as com-
monly performed in previous studies on enterotypes
[12–14, 29].
The read count of each genus of each individual was

divided by the total read count of each individual, then
multiplied by 10,000 and rounded down to the nearest
integer. This is because the estimation results of LDA
are strongly affected by samples with high read counts
when using read count data directly. Therefore, we nor-
malized each sample to sum to the same constant (that
is, 10,000) to remove the bias caused by the differences of
read counts among samples. We confirmed that the esti-
mated parameters do not depend on the constant (Addi-
tional File 1: Figure S1). After these preprocessing steps,
the number of different genera included in the dataset
became 252.
To calculate correlation coefficients between microbial

assemblages and functions across individuals, we used the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [30]
orthology-based annotated data as functional profiles.
These functional profiles are of the same samples as the
genus data.

PAM clustering method
To assign enterotypes, we applied the PAM clustering
method to the dataset according to the methods of Aru-
mugam et al. [12]. This algorithm clusters samples by iter-
atively updating each cluster’s medoid, which is defined
as the sample in a cluster for which the sum of a dis-
similarity to the other samples in the same cluster is the
smallest. The algorithm consists of the following three
steps: ( i ) choose the initial value of the medoid randomly
from the samples, ( ii) assign each sample to the cluster
with the smallest Jensen–Shannon divergence (JSD) to its
medoid, and (iii) update the medoids using the JSD as the
dissimilarity. Repeat steps ( ii) and (iii) until the medoids
no longer change. In the present study, we conducted 10
trials and used the result that had the highest silhouette
coefficient [31].

LDA for modeling the human gut microbiome
The probabilistic LDA model [23] can be utilized to esti-
mate K microbial assemblages from a human gut metage-
nomic dataset, where K is a given parameter. Let the
numbers of individuals (samples) and genera be denoted
by N and D, respectively. In the LDA model, the ith
metagenome sample (i ∈ {1, ...,N}) has a categorical dis-
tribution with parameter θi = {θi,k}Kk=1 over microbial
assemblages where θi,k is the occurrence probability of
the kth assemblage in the ith sample. The kth microbial
assemblage has a categorical distribution with parameter
φk = {φk,j}Dj=1 over genera, where φk,j is the occurrence
probability of the jth genus in the kth assemblage.
Amicrobial assemblage with high probability in an indi-

vidual implies that the individual tends to have that par-
ticular microbial assemblage in the gut microbiome, and
a genus with high probability in a microbial assemblage
indicates that the microbial assemblage tends to have that
particular genus. In addition, the LDA model has prior
distributions on θi and φk provided by the Dirichlet dis-
tribution with hyperparameters α and β , respectively. In
this study, we used 0.1 and 0.05 as initial values for all the
elements in α and β , respectively.
The LDA parameters (θ and φ) can be learned from

the dataset in an unsupervisedmanner. Various parameter
inference methods for the LDA model have been pro-
posed, and we used the variational Bayes (VB) method
[23]. The VB method maximizes an approximation of the
marginal likelihood, called the variational lower bound
(VLB) score, by updating the parameters iteratively from
random initial values. We finished the iteration of the
parameter update when the change in the VLB score
between the previous and the current step was less than
10−6. Finally, we estimated each θi and φk as the expecta-
tion values of the posterior distribution estimated by the
VB method. This parameter estimation method has been
previously described by Asuncion et al. [32]. In addition,
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we updated the hyperparameters α and β from the initial
values using a fixed-point iterationmethod in the parame-
ter learning step [33]. Based on previous research on LDA
hyperparameter settings [34], we estimated the parame-
ters such that each element of α differed from the others
but all elements of β had the same value.We conducted 10
trials for each K =2, 3, 4, and 5 and adopted the estimated
set of parameters with the highest VLB score among all
trials for each K.

Functional assemblage analysis
We estimated the functions of each assemblage by apply-
ing LDA to the functional profiles. We refer to the
resulting assemblages as functional assemblages. Details
surrounding the method are described in Section S1
(Additional File 1).

Entropy scores of genera and individuals
To quantify whether the estimated distributions are
skewed toward some assemblages, we calculated the
entropy scores of each sample and each genus over assem-
blages. In a categorical distribution, a high entropy score
means that the distribution is similar to the uniform distri-
bution, and a low score means that the distribution tends
to take a specific value. The entropy score H(i) of the ith
sample over assemblages was calculated as follows:

H(i) = −
K∑

k=1
P(k|i) logP(k|i). (1)

As P(k|i) is equal to θi,k , we can directly calculate this
score using the estimated LDA parameters. The entropy
score, H(j), of the jth genus over assemblages was calcu-
lated as follows:

H(j) = −
K∑

k=1
P(k|j) logP(k|j), (2)

P(k|j) = P(j|k)P(k)∑
k P(j|k)P(k)

(3)

where P(j|k) is equal to φk,j and P(k)was computed as the
average of all θi,k across samples.

Results
Cluster analysis of the human gut microbiome enterotypes
To investigate the relationship between enterotypes and
assemblages, we classified individual samples into three
clusters using the PAM clustering method. We observed
that the dominant genera in each identified cluster were
Bacteroides, Prevotella, and Blautia and that these gen-
era were specific to each cluster (Additional File 1: Figure
S2). These results were consistent with those of pre-
vious enterotype studies, in which the following three
enterotypes were identified in the human gutmicrobiome:
Bacteroides dominant type, Prevotella dominant type, and

Ruminococcus and Blautia dominant type [12]. Hence, we
referred to these clusters as B-type, P-type, and R-type.
These results were consistent across trials (Additional
File 1: Figure S3)

Analysis of the human gut microbial assemblage profiles
estimated by LDA
We estimated the K-assemblage LDA model parameters
for K = 2, 3, 4, and 5 to identify the model with the high-
est interpretability of relationships between enterotypes
and assemblages. Figure 2 shows the assemblage distri-
butions for each enterotype obtained by each model for
each assemblage (the standard deviations of the distri-
bution across individuals are shown in Additional File 1:
Figure S4). The 2-assemblage model identified a B-type
specific assemblage and a P- and R-type specific assem-
blage (IDs 1 and 2 in Fig. 2a). The 3-assemblage model
estimated assemblages corresponding to each enterotype
(Fig. 2b). In addition to these enterotype-specific assem-
blages, the 4- and 5-assemblage models inferred general
assemblages that appear in all the enterotypes (Fig. 2cd).
The strength of LDA is that it is possible to obtain such
an assemblage. Adding a fifth assemblage is not infor-
mative because it yields two general assemblages (IDs
4 and 5 in Fig. 2d) that have the same abundance pat-
tern for enterotypes. Therefore, we used the 4-assemblage
model in this study. We emphasize that the existence of
a general assemblage is not trivial in models with four
or more assemblages because there are not always genera
that appear in all enterotypes. These results are consistent
across trials (Additional File 1: Figure S5)
In the following analysis, we call the assemblages with

IDs 1, 2, and 3 the “B-assemblage,” “P-assemblage,” and
“R-assemblage,” respectively, because these assemblages
appeared specifically in the B-, P-, and R-type individ-
uals, respectively (Fig. 2c). In addition, we refer to the
assemblage with ID 4 as the “C-assemblage” owing to
the high proportion of Clostridium. Next, we investigated
the taxonomic composition of each microbial assemblage.
Figure 3 depicts the genus distribution of each microbial
assemblage estimated by LDA (i.e., φk = {φk,j}Dj=1 in the
previous section). B- and P-assemblages mainly consisted
of one dominant genus, Bacteroides and Prevotella, with
relative frequencies of 71% and 66%, respectively. Con-
versely , R- and C-assemblages consisted of genera with
moderate abundance. The genera that constituted the R-
assemblage were Blautia (22%), Bifidobacterium (20%),
and Ruminococcus (8.6%). The C-assemblage consisted of
Clostridium (18%), Eubacterium (15%), and unclassified
Firmicutes (13%).
[In the LDA model, a genus can appear in several

microbial assemblages. We investigated whether gen-
era occurred in just one specific assemblage or not
using the entropy scores of genera over assemblages
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Fig. 2 Assemblage distributions for each enterotype. Each row shows a distribution obtained by averaging the estimated assemblage distributions
across individuals of each enterotype. The x- and y-axes represent the microbial assemblages and enterotypes, respectively. Darker colors indicate
higher probabilities, and each number inside the partition indicates a different probability, where the sum of the values over each row is 1. a, b, c,
and d indicate K-assemblage LDA models with K = 2, 3, 4, and 5, respectively

Fig. 3 Estimated genus distribution of each microbial assemblage. The x- and y-axes represent genera and assemblages, respectively. We displayed
only the three genera with the highest probability in each assemblage
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(Eq. 2). Figure 4a shows a histogram of the entropy
scores for all genera, and two peaks at 0.00–0.125 and
0.50–0.75 can be observed within the distribution. The
former peak represents assemblage-specific genera, and
Bacteroides and Prevotella belonged to this group
(Additional File 1: Table S1). The latter peak represents
a genus appearing in several, but not all, assemblages,
and Ruminococcus and Blautia belonged to this group
(Additional File 1: Table S1). Several genera had high
entropy scores, thereby indicating that they are univer-
sal genera among assemblages (Additional File 1: Figure
S6).
Next, we calculated the entropy score of individuals over

assemblages (Eq. 1). The distribution of the entropy scores
was unimodal (Fig. 4b), and the median was 0.7805. These
results suggest that most individuals have multiple, but
not all, microbial assemblages. In addition, we examined
the distribution of assemblages within individuals (Addi-
tional File 1: Figure S7) and found that the co-abundance
tendencies between microbial assemblages were not uni-
form. Individuals with B-assemblage, P-assemblage, R-
assemblage, and C-assemblage dominance tend to have
neither the P- nor R-assemblage, not the R-assemblage,
not the P-assemblage, and possess any other assem-
blages, respectively. All the individuals tend to have the
C-assemblage. These co-abundance tendencies can occur
in the case that there are actually four enterotypes and
one corresponding assemblage for each. To investigate
such a possibility, we performed 4-type PAM clustering,
but no such one-to-one relationship was observed (Addi-
tional File 1: Figure S8). Therefore, the C-assemblage can
be regarded as an assemblage that appears in all three
enterotypes.

Relationships betweenmicrobial assemblages and
countries
We investigated the relationship between microbial
assemblages and host countries. Figure 5 shows the aver-
age assemblage distributions of individuals for each coun-
try (the standard deviations of the distribution across
individuals are shown in Additional File 1: Figure S9). We
discovered that the occurrence distributions of microbial
assemblages vary from country to county; for example,
Japan and Austria tend to have R-assemblages while Peru,
Malawi, and Venezuela tend to have P-assemblages. Con-
versely, the C-assemblage was frequently found in all
countries except Japan.

Correlations betweenmicrobial assemblages and
butyrate-producing functions
Dominant genera in the C-assemblage included butyrate-
producing bacteria (Table 1). Thus, we examined cor-
relations between microbial assemblages and butyrate-
producing functions (K00929: butyrate kinase, K01034:
acetate CoA/acetoacetate CoA-transferase alpha subunit,
and K01035: acetate CoA/acetoacetate CoA-transferase
beta subunit). Figure 6 indicates the Pearson’s corre-
lation coefficients between microbial assemblages and
butyrate-producing functions across individuals, show-
ing that the C-assemblage is significantly positively cor-
related with all three functions (p < 0.01, two-sided
test, after Benjamini–Hochberg correction). The P- and
R-assemblages were negatively correlated with some func-
tions, and the B-assemblage was significantly positively
correlated with only K00929, concurrent with the find-
ing that Bacteroides fragilis has only K00929 among these
three functions [35].

Fig. 4 Histograms of the entropy scores over assemblages a for all genera (Eq. 2) and b for all individuals (Eq. 1). The x- and y-axes represent entropy
and the number of samples, respectively
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Fig. 5 Average assemblage distributions for each country. Each row shows a distribution obtained by averaging the estimated assemblage
distributions across individuals of each country. The x- and y-axes represent the microbial assemblage and country of the individual, respectively

Functional profiles of each microbial assemblage
To discuss the functional profiles of the microbial assem-
blages, we applied LDA to the functional profiles of
individuals using the same K number as for the taxo-
nomic profiles. We regarded functional assemblages as
functional profiles of the microbial assemblages. More
information on this experiment is described in the sup-
plementary section (Additional File 1: Section S1). We

Table 1 Dominant genera of the C-assemblage an their
probabilities as estimated by LDA

Genus Probability in C-assemblage

Clostridium 0.179865

Eubacterium 0.150802

Unclassified Firmicutes 0.129783

Faecalibacterium 0.093720

Ruminococcus 0.085272

Roseburia 0.074214

Alistipes 0.072359

Coprococcus 0.029497

Butyrivibrio 0.021738

obtained functional assemblages with a one-to-one cor-
respondence with the estimated microbial assemblages
(Additional File 1: Figure S10). These results justify
regarding functional assemblages as functional profiles
of the microbial assemblages. Next, we determined the
abundances of functional categories for each assem-
blage (Additional File 1: Figure S11) and assessed the
assemblages with the largest relative abundance for each
functional category (Table 2). This table shows that
metabolic functions of glycan/lipid are abundant in the B-
assemblage and that some specific functional categories,
such as the immune system and translation, are abundant
in the C-assemblage. However, Supplementary Figure S11
demonstrates that differences between assemblages are
rather small.

Discussion
In this study, we used LDA for the detection of microbial
assemblages in population-scale human gut microbiome
data and discovered four microbial assemblages. While
three assemblages (B-, P-, and R-assemblages) specifi-
cally emerged in the corresponding enterotypes (B-, P-,
and R-types), the C-assemblage was frequently observed
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Fig. 6 The Pearson’s correlation coefficients among the four assemblages and three butyrate-producing functions. The x- and y-axes represent the
assemblages and Pearson’s correlation coefficients, respectively. Each bar of each assemblage indicates, from left to right, K01034, K00929, and
K01035, respectively. Asterisks indicate significant differences. Significance was determined at p < 0.01 (two-sided test, after Benjamini–Hochberg
correction)

in every enterotype. As conventional cluster analysis of
the samples focuses on the dominant genus of a clus-
ter and the differences among clusters, the existence of
non-dominant but shared microbial assemblages among
individuals may have been overlooked. The detection
of the C-assemblage suggested that LDA is a powerful
approach for revealing the assemblage structure in large
metagenomic datasets.
We chose K, i.e., the number of assemblages, based

on assemblage interpretability after comparing models
with different numbers of assemblages. This task, called
"model selection," is typically difficult for mixture models.
Some methods for this task have been previously sug-
gested [36, 37]. Yan et al. used cross-validation, which is
a method that selects the model with the highest likeli-
hood against the test data [19]. However, these methods
tend to overestimate K, leading to difficulties in clarify-
ing the association between enterotypes and assemblages.
Indeed, Yan et al. estimated K = 60, although the number
of samples was less than in this study.
As the model we used is rather simple (that is, K is

small), it might fail to adequately capture the structure
of the data. Hence, we confirmed whether our results

were consistent with the data in two ways. First, we veri-
fied that the relative abundance (Additional File 1: Figure
S12) was consistent with the estimated assemblage dis-
tribution (Fig. 2c). Each genus was regarded as mainly
appearing in the assemblage with the highest P(k|j), as
defined by Eq. 3. These results were consistent with the
estimated parameters shown in Fig. 2c. Second, we ver-
ified that most genera within the same assemblage were
significantly positively correlated across samples based
on the Spearman’s correlation coefficients across sam-
ples between the major genera of the B-, P-, R-, and
C-assemblages (p < 0.01, two-sided test, after Benjamini–
Hochberg correction [38], Additional File 1: Figure S13).
Some genera (i.e., Eubacterium, Faecalibacterium, Dorea,
Ruminococcus, Streptococcus, and Catenibacterium) were
significantly positively correlated with many genera in
other assemblages. These results are in agreement with
the fact that their P(k|j) is high for multiple assemblages
(Additional File 1: Figure S14). For example, Ruminococ-
cus has a positive correlation with the genera mainly
appearing in the R-assemblage. Indeed, Ruminococcus has
a high association with the R-assemblage even though its
main assemblage is the C-assemblage.
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Table 2 Functional assemblage having the largest relative
abundance for each functional category

Functional category Functional assemblage

Biosynthesis of other secondary metabolites B-assemblage(ko)

Carbohydrate metabolism B-assemblage(ko)

Lipid metabolism B-assemblage(ko)

Transport and catabolism B-assemblage(ko)

Digestive system B-assemblage(ko)

Endocrine system B-assemblage(ko)

Glycan biosynthesis and metabolism B-assemblage(ko)

Environmental adaptation B-assemblage(ko)

Energy metabolism P-assemblage(ko)

Endocrine and metabolic diseases P-assemblage(ko)

Immune diseases P-assemblage(ko)

Infectious diseases P-assemblage(ko)

Metabolism of other amino acids P-assemblage(ko)

Metabolism of terpenoids and polyketides P-assemblage(ko)

Nervous system P-assemblage(ko)

Excretory system P-assemblage(ko)

Folding, sorting, and degradation P-assemblage(ko)

Transcription R-assemblage(ko)

Amino acid metabolism R-assemblage(ko)

Metabolism of cofactors and vitamins R-assemblage(ko)

Membrane transport R-assemblage(ko)

Cell communication R-assemblage(ko)

Signaling molecules and interaction R-assemblage(ko)

Xenobiotics biodegradation and metabolism R-assemblage(ko)

Immune system C-assemblage(ko)

Nucleotide metabolism C-assemblage(ko)

Neurodegenerative diseases C-assemblage(ko)

Substance dependence C-assemblage(ko)

Replication and repair C-assemblage(ko)

Signal transduction C-assemblage(ko)

Cell motility C-assemblage(ko)

Cell growth and death C-assemblage(ko)

Translation C-assemblage(ko)

Cardiovascular diseases C-assemblage(ko)

Cancers C-assemblage(ko)

Each functional assemblage is indicated by the name of the corresponding
microbial assemblage with (ko) appended

As mentioned earlier, the genera mainly appearing in
the B- and P-assemblages tend to occur in the B- and
P-types, respectively. The genera specifically appearing
in the B- and P-types were reported to have functions
for metabolizing protein/animal fat and carbohydrates,
respectively [29], and the genera mainly appearing in the

B- and P-assemblages may consequently have the same
functions. We could confirm that lipid metabolism func-
tions were abundant in the B-assemblage through func-
tional assemblage analysis. This result suggests that the B-
assemblage in the human gut becomes dominant through
a fat-rich diet. Similarly, the genera mainly appearing in
the C-assemblage may have functions that do not corre-
spond with dietary habits because they appeared in all
enterotypes. This suggestion is concurrent with the find-
ing that functions related to immune cells and translation
are abundant in the C-assemblage. The assemblage dis-
tributions for each country also suggests a relationship
between dietary habits and assemblage. Peru, Malawi, and
Venezuela, where staple foods include corn, have high P-
assemblage abundance.We could not establish a similarity
in dietary habits between Japan and Austria though their
distributions are similar.
The noticeable characteristic of Japan, i.e., low C-

assemblage abundance, was observed. Nishijima et al.
reported that the Japanese gut microbiome is character-
ized by the low abundance ofClostridium and unclassified
Firmicutes, which are the main components of the C-
assemblage (Table 1) based on the same dataset [28].
Japan has the highest abundance of the R-assemblage,
which shares Ruminococcus and Eubacterium with the
C-assemblage. Hence, the two assemblages may have sim-
ilar metabolic functions. Incidentally, Eubacterium and
Faecalibacterium, which are the abundant genera in the C-
assemblage, were not less abundant in the Japanese pop-
ulation compared with that of other countries (Additional
File 1: Figure S15).
There are two interesting points regarding the C-

assemblage. First, it can coexist with all of the other
three assemblages, which were found in almost all coun-
tries. Therefore, the genera mainly appearing in the C-
assemblage are generalists in the human gut environment
[39, 40]. While generalists can adapt to diverse environ-
ments, they are not specialized to particular environments
unlike specialists. This difference in survival strategy may
be the reason why the genera mainly appearing in the C-
assemblage were not dominant in the human gut micro-
biome. It is therefore possible that the C-assemblage is
the core gut microbiome [9, 41]. However, C-assemblage
abundance is not consistent from person to person; as
such, what determines the existence of C-assemblages
in the gut microbiome is unclear. Second, the dominant
genera of the C-assemblage (such as Clostridium, Eubac-
terium, Faecalibacterium, Roseburia, Coprococcus, and
Butyrivibrio) include representative butyrate-producing
species (Table 1) [42, 43]. In addition, we found that the C-
assemblage correlates with the three butyrate-producing
functions. Butyrate is known to have anti-inflammatory
effects [44] and is associated with IBD, type-2 diabetes,
and colorectal cancer [45–47]. Therefore, C-assemblage
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abundance may indicate the health of its hosts, although
the dataset used in this study contained only healthy indi-
viduals. In addition, we found that the ages and body mass
indices (BMIs) of hosts did not relate to the presence of
the C-assemblage (Additional File 1: Figure S16). Further
research is accordingly required, such as via comparisons
of C-assemblage abundance between individuals with and
without a disease.
We envision two future directions for applications of

LDA to metagenomic data. The first is its application to
more diverse datasets. Metagenomic data have been sam-
pled from not only human guts but also various other
environments, such as the atmosphere [48], ocean [49, 50],
and soil [51]. Application of LDA to these data should
help reveal the structure of microbial assemblages on
a global scale [52]. For example, Sommeria-Klein et al.
recently applied LDA to taxonomic profiles of a tropi-
cal forest soil DNA dataset to reveal spatial structures
[53]. The second direction is the extension of the LDA
model—LDA has high model extensibility. Indeed, many
extended LDA models have been proposed for natural-
language processing [54–57]. The application of these
extended LDA models to metagenomic analysis is a fasci-
nating research focus for further elucidation of microbial
assemblage structure. For example, applying supervised
topic models [58], which utilize label information to esti-
mate assemblage structures, to patient metagenomic data
could detect microbial assemblages related to disease. The
pachinko allocation model [54], which models hierarchi-
cal assemblage structures, may be useful for revealing
sub-assemblages within an assemblage. A transition in
assemblage composition can be estimated from time-
series data from the human gut microbiome [59] using the
topic tracking model [57].

Conclusions
In this study, we conducted a microbial assemblage anal-
ysis on a large-scale human gut metagenome dataset
using LDA. We discovered that three assemblages specif-
ically emerged in the corresponding enterotypes, but
the C-assemblage was frequently observed in all three
enterotypes. In addition, we revealed that the domi-
nant genera of the C-assemblage include representative
butyrate-producing species. Further elucidation of the
function of the C-assemblage or investigation of the rela-
tionship between disease and the C-assemblage is an
important research direction.
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