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The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that

ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have

matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in

comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and

orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The

ability to generate large panels of peptides and subsequently large bodies of peptide–MHC-II interaction data are key to the

solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on

the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and

HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates.

We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the

HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human

EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA

technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the

benefit of generating peptide–MHC-II binding data as well as improving MHC-II prediction tools. The Journal of Immunology,

2020, 205: 290–299.

T
he binding of peptides to MHC class II (MHC-II) mole-
cules is one of themost selective events in Ag presentation.
Expressed by professional APC and presenting exogenous

peptides to CD4+ T cells, MHC-II is central to adaptive immunity.
Because CD4+ T cells, restricted to MHC-II, are recognized for
their orchestrating role in shaping both humoral and cellular im-
mune responses, much effort has been put into understanding the
specificity of MHC-II. The human MHC HLA loci is one of the
most polymorphic gene families known (1), and as of September

2019, the number of HLA class II (HLA-II) alleles amounts to
7065 according to hla.alleles.org, not considering the addi-
tional diversity created by the combinatorial HLA-DPA/DPB and
HLA-DQA/DQB pairing. Furthermore, considering the number of
peptides that can be presented and the huge diversity of TCRs that
can recognize peptide–HLA-II (pHLAII) complexes, the combi-
nations of peptides, HLA-I,I and TCRs that should be evaluated to
characterize this interaction system are staggering. This calls for
high-throughput and bioinformatics-based approaches. Indeed, bio-
informatics has been a driving force in describing MHC-II speci-
ficity. Based on binding and affinity data, several different algorithms
have been developed capable of predicting peptide–MHC-II inter-
actions (e.g., the NetMHC suite) as an efficient approach to address
the vast number of peptides and MHC allotypes. Prediction algo-
rithms powered by artificial neural networks (ANNs) are dependent
on large bodies of data which are costly to generate because each
peptide conventionally needs to be individually synthesized and
handled before conducting binding experiments. More recently,
proteomics-driven, high-throughput identification of peptides eluted
off MHC-II molecules has become possible and used to improve the
performance of MHC-II prediction algorithms (2).
Although the prediction tools available today have improved

significantly over the years, they are still impaired by a high false
positive rate (3), making it difficult to select true T cell epitopes.
This is recognized as a major current problem in the development
of personalized medicine and immunotherapies, in particular those
modes that are based on real-time discovery of tumor neoantigens
(4, 5). The recent advances within the field of cancer immuno-
therapy have suggested that immunization with tumor-derived
neoantigens is a very promising strategy, and growing evidence
suggests that MHC-I–-restricted neoantigens should be included
(4, 6, 7). Hence, there is an increasing demand for more accurate
and efficient predictors of peptide–MHC-II interactions, underscored
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by the pharmaceutical industry now focusing on developing MHC-II
prediction tools (8).
We have for years chosen a biochemical approach to study

peptide-MHC interactions (9). This has resulted in the generation

of a large collection of rHLA molecules, which have been used to

generate tens of thousands of data points subsequently used

to develop the NetMHC suite of prediction algorithms (10–12),

which continues to be updated. Whereas high-throughput assays

have been developed to study peptide-MHC interactions, classical

orthogonal peptide synthesis remains a very costly and time-

consuming bottleneck. However, within the last decade, high-

density peptide microarray platforms, potentially containing up to

millions of individual peptides/array, have become available at a cost

as low as a few cents per peptide. We have recently developed and

used high-density peptide microarrays to characterize linear sequence

motifs such as enzyme cleavage sites and B cell epitopes in great

detail (13–18). Such peptide microarrays containing C-terminally

anchored 15-mer peptides should, in theory, be able to interact with

MHC-II molecules because of its open-ended peptide-binding cleft

allowing peptides to protrude through the ends of the cleft; something

that should allow C-terminal tethering.
The ability to acquire millions of peptide–MHC-II binding data

in a single experiment could potentially transform CD4+ T cell

epitope discovery. In particular, the combination of such data with
machine-learning methods has the potential to transform the devel-
opment of peptide–MHC-II predictors. We have previously produced
rHLA-DRA1*01:01/HLA-DRB1*01:01 and HLA-DRA1*01:01/
HLA-DRB1*03:01 and successfully used these molecules to
demonstrate specific staining of CD4+ T cells with peptide–HLA-
II tetramers (19). In this study, we have investigated the binding of
HLA-DRA1*01:01/HLA-DRB1*01:01 and HLA-DRA1*01:01/
HLA-DRB1*03:01 to high-density peptide microarrays containing
∼70,000 random peptides in triplicate, used the binding data to
train ANNs, validated these against peptides eluted off HLA-
DRA1*01:01/HLA-DRB1*01:01 and HLA-DRA1*01:01/HLA-
DRB1*03:01, and compared the prediction power to ANNs
trained on publicly available binding affinity data from the Im-
mune Epitope Database (IEDB) (20).

Materials and Methods
Production of rHLA-DR molecules HLA-DRA1*01:01,
-DRB1*01:01, and -DRB1*03:01

HLA-DR molecules were produced and purified according to (21). Briefly,
this entailed separate Escherichia coli expressions of each rHLA-DR chain
followed by multiple liquid chromatography purification steps. The puri-
fied HLA-DR molecules were stored in 8 M urea, 25 mM Tris, and 15 mM
NaCl at 280˚C.

FIGURE 1. Peptide microarray incubated with HLA-DRA1*01:01/HLA-DRB1*03:01 stained with monoclonal anti–HLA-DR (L243) and Cy3-conjugated

goat anti-mouse in combinations indicated in the figure heading. A fluorescent signal was only detectable in presence of HLA-DRA, HLA-DRB, mouse anti

HLA-DR, and Cy3-goat anti-mouse, suggesting that the binding assay reveals HLA-DR molecules bound to specific peptides.

FIGURE 2. A full view of a high-density peptide array with 217,000 individual peptides (area 203 11 mm) divided in 12 virtual sectors. Zoomed inserts

of sector 6 and a further zoom of a subsection of sector 6 with individual peptide fields visible. The size of each peptide field is 20 3 20 mm with a 10-mm

pitch scanned with a resolution of 1 mm per pixel.
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High-density peptide arrays

The conformational propensity of amino acids extending out of the
peptide-binding groove of MHC-II is known to affect their peptide
binding drastically (22). To ensure a hydrophilic peptide-binding en-
vironment. Nexterion-E microscope slides (Schott, Jena, Germany)
were amino-functionalized with amino-dextran 250 (Fina Biosolutions,
Rockville, MD) and used as substrate for solid-phase peptide synthesis.
The ε-amino-caproic acid was inserted between the dextran-coat and
the synthetic peptide as a spacer of a nonamino acid nature. High-
density peptide arrays were then synthesized on the surface of the
amino-functionalized microscope glass slides using a principle of
maskless photolithographic synthesis (17, 23) combined with standard
Fmoc peptide synthesis modified with the photolabile NPPOC (2-(2-
nitrophenyl)propyl oxycarbonyl). A detailed description of the peptide
synthesis has been described elsewhere (13).

High-density peptide array design

The array designs were all made with a proprietary software (PepArray,
Schafer-N, Denmark) by importing peptide sequences and randomly dis-
tributing the sequences across 12 virtual sectors. A design to analyze the
effect of peptide length on MHC-II binding ∼2300 15-mer peptides with
random sequences were generated in silico and subsequently chopped into
overlapping 8–14 mers and randomly distributed across the peptide array.

For the generation of peptide–MHC-II binding data, 500,000 13-mer
peptides were generated from a list of pathogen proteins from which
72,000 peptide sequences were randomly sampled and distributed across
the peptide array in triplicates.

Binding of HLA-II molecules to peptide microarray

The peptide arrays synthesized on microscope glass slides were hydrated in
Lockmailer microscope jars containing 15 ml of PBS prior to incubation
with HLA-DR molecules.

HLA-DR molecules (DRA1*01:01, DRB1*01:01, DRB1*03:01;
immunAware, Copenhagen, Denmark) dissolved in storage buffer (8 M
urea, 25 mM Tris [pH 8], 25 mM NaCl) were diluted in 12 ml of refolding
buffer (PBS [pH 7.4] supplemented with 0.01% Lutrol F68, glycerol 20%

[v/v], TPCK, TLCK, PMSF, TCEP) to a final concentration of 500 nM
HLA-DRA and HLA-DRB and transferred to the incubation jar containing
the hydrated peptide array and allowed to (de novo) refold at 18˚C for 48 h.
Following incubation, the incubation jars were drained, and the peptide
arrays washed five times in PBS-T (PBS [pH 7.4], 1% Tween-20) followed
by incubation with 1 mg/ml of monoclonal mouse anti–HLA-DR Ab (clone
#L243) in PBS-T for 2 h. The peptide arrays were washed five times in
15 ml of PBS-T before a final incubation with 1 mg/ml Cy3-conjugated
goat anti-mouse IgG (Bethyl Laboratory, Montgomery, Texas) in PBS-T. A
final wash (five times) with PBS-T was conducted before transferring the
peptide array to PBS for 20–30 min before drying the microscope slide in a
spin centrifuge dryer.

Data acquisition

The peptide arrays were scanned in a microscope slides laser scanner
(INNOSCAN 900; Innopsys, Carbonne, France) at 534 nm, resolution
1 mm and stored as TIFF-format images. Prior to qualification of the
image scans, each image was cropped to include only the peptide
array area surrounded by a thin border; subsequently, the cropped
images were rescaled to (10,000 3 6,000 pixels) and saved in PNG
format.

Quantification of signals (proprietary software, Schafer-N)

The processed images were quantified with a proprietary software
(PepArray) by positioning a virtual grid corresponding to the peptide fields
on top of the scanned images and quantifying each peptide field. The
quantified signals (eight-bit) were stored in a text-file format containing
corresponding peptide sequence information, peptide field identification,
and quantified signal, row, column, and sector information [deposited at
https://doi.org/10.5061/dryad.tqjq2bvvv (24)]. The PepArray software can
be obtained from Schafer-N upon reasonable request. The quantified data
were prepared for ANN (NNAlign) training by calculating the mean value
SD and coefficient of variance (cv) (based on triplicate measurements).
Inclusion criteria for ANN training were set at a threshold of cv , 0.5.
The NNAlign server (2.1) https://services.healthtech.dtu.dk/service.php?
NNAlign-2.1 accepts columns of a text strings and corresponding numerical

FIGURE 3. (A) Raw data, mean signal versus cv cal-

culated from triplicate signal values. (B) Signal distribution

of the calculated mean signal. (C) Signal distribution after

log transformation of the mean signal calculated after opti-

mization with a BoxCox transformation (R package EnvStats

Version 2.3.1).
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values [0–1] with a limit of 50,000 inputs, hence the datasets were reduced
to 50,000 by selecting, based on signal strength, the top 2000 peptides and
random sampling of the remaining peptides.

Data transformation

The data were transformed from the eight-bit format [0–255] to [0–1] using
a log transformation optimized by a BoxCox algorithm written in R using
the EnvStats package (25).

ANN training

Log-transformed data with corresponding peptide sequences (one letter
code) were uploaded to the NNAling 2.1 server and trained with the pa-
rameters indicated in Table I.

ANN model evaluation

Peptide sequences used to evaluate the ANN models were obtained by
selecting IEDB epitopes restricted to HLA-DRB1*01:01 or HLA-
DRB1*03:01 and selecting only peptide sequences with a positive
multimer/tetramer (MMR/TMR) assay (see list of filters applied in
Table III Evaluation data). The remaining epitopes were further filtered
for inconsistencies between the peptides sequence and reported source
Ag and subsequent in silico digested into 13-mer peptide sequences.
The source Ag for each epitope were also retrieved based on the
Genbank identification and in silico chopped into peptides with the
length of the relevant epitope in question; each of these peptides were
further digested into 13-mer peptides where the highest predicted score
of each derived overlapping 13-mer were assigned to the epitope or
source Ag peptide. The applied filters and number of epitopes and Ags
are summarized in Table III.

Isolation of HLA-DR–bound peptides

Cell pellets from International Histocompatibility Workshop B-LCLs
9022 (COX: DRA*01:02-DRB1*03:01:01) and 9087 (STEINLEN:
HLA-DRA*01:02-DRB1*03:01:01) (26) were lysed in a mild detergent.
Following lysis, peptide-HLA complexes were affinity purified by anti–
HLA-DR Ab (LB3.1). Affinity-purified HLA molecules and their peptide
cargo were separated using reversed-phase chromatography, and peptides
were subsequently analyzed using mass spectrometry as described (27).
In brief, cells were expanded in RPMI 1640–10% FCS, and pellets of 109

cells were snap frozen in liquid nitrogen. Cells were ground under
cryogenic conditions and resuspended in lysis buffer (0.5% IGEPAL,
50 mM Tris [pH 8], 150 mM NaCl, and protease inhibitors) and cleared
lysates passed over a protein A precolumn followed by an affinity col-
umn cross-linked with a mAb specific for HLA-DR (LB3.1). Peptide-
MHC complexes were eluted from the column by acidification with
10% acetic acid. Peptides were isolated using reversed-phase HPLC

(Chromolith C18 Speed Rod; Merck) on an Akta Ettan HPLC system
(GE Healthcare). Fractions were concentrated and run on an AB SCIEX
5600+ TripleTOF High-Resolution Mass Spectrometer. Acquired data
were searched against the human proteome (Uniprot/Swissprot v2012_7)
using ProteinPilot (v5; SCIEX) using the following parameters: data-
base, human proteins from UniProt/SwissProt v2016_12; no cysteine
alkylation; no enzyme digestion (considers all peptide bond cleavages);
instrument-specific settings for TripleTOF 5600+ (mass spectrometry
tolerance, 0.05 Da; tandem mass spectrometry tolerance, 0.1 Da; charge
state, +2 to +5); biological modification probabilistic features on; thor-
ough ID algorithm; detected protein threshold, 0.05. The resulting pep-
tide identities were subject to strict bioinformatic criteria, including
the use of a decoy database to calculate the false discovery rate. A 5%
false discovery rate cut-off was applied, and the filtered dataset was
further analyzed manually to exclude redundant peptides and known
contaminants.

FIGURE 4. Left, Log-transformed signals of DRB1*01:01 plotted against DRB1*03:01 by peptide sequence show a weak correlation (PCC = 0.48).

Considering only peptides with a predicted score .0.5 returns a Spearman rank correlation (SRC) = 0.11, suggesting HLA-DR specificity. Middle and

right, Log-transformed signals obtained by replica experiments of DRB1*03:01 and DRB1*01:01, respectively, correlate well (PCC = 0.92), conferring an

acceptable reproducibility.

Table I. ANN summary

Neural Network Architecture

Motif length 9
Peptide flanking region size 3
Peptide flanking region length encoding type 0
Peptide flanking region encoding SPARSE OR

BLOSUM
Number of hidden neurons 2, 10, 20
Burn-in period without insertions or

deletions
10

Impose amino acid preference during burn-in ILVMFYW
Amino acid numerical encoding SPARSE OR

BLOSUM
Number of training cycles 500
Number of random seeds 10
Number of networks in final ensemble 150

Cross-Validation

Folds for cross-validation 5
Method to create subsets Common motif

with maximum
overlap of 9 aa

Cross-validation setup Simple
Stop training on best test-set performance No

Summary of NNAlign architecture and encoding applied to all four models.
Datasets were reduced to 50,000 peptide sequences according to the maximum
accepted number of inputs by the server.

The Journal of Immunology 293



Results
We investigated the binding of HLA-DR molecules to peptides,
synthesized in situ on microscope glass slides (17) by de novo
folding of rHLA-DR molecules (21) followed by staining with a
monoclonal mouse anti–HLA-DR Ab known to react with a
conformational HLA-DR a epitope, exclusively expressed by
correctly folded HLA-DR a-b heterodimers (28), and finally
stained with Cy3-labeled polyclonal goat anti-mouse IgG. Only in
the presence of both HLA-DRA and HLA-DRB did we obtain a
staining pattern corresponding to the location, geometry, and size

of relevant peptides synthesized in situ (Fig. 1), confirming that
conformationally intact peptide–HLA-DR complexes were ob-

tained. We found no binding of the Cy3-goat anti-mouse IgG to

the peptide arrays in absence of HLA-DRA, HLA-DRB, or L243

(Fig. 1), showing that the signals obtained was dependent on the

presence of on chip–generated peptide–HLA-DR complexes.
We determined the optimal peptide length to be synthesized on

these peptide microarrays by synthesizing peptides with lengths

from 9–15 aa residues and using the binding data to train ANN.

Initially, NNAlign-1.4, was used to evaluate the effect of peptide

FIGURE 5. Scatter plots of predicted versus observed values (log-transformed signals) of NNAlign-2.1 models trained on ∼50,000 peptide sequences

obtained from peptide microarrays with SPARSE encoding. IEDB train sets (downloaded as pairs of peptide sequences and log-transformed binding data

from https://services.healthtech.dtu.dk/service.php?NetMHCII-2.3) encoded with SPARSE. The internal model performances are listed in Table II.

BLOSUM encoding rendered network ensembles with comparable performances (data not shown). The neural network architecture is disseminated in

Table I.
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length on network performance expressed as Pearson correlation
coefficient (PCC) and root mean square error (RMSE) with an
optimal performance identified as maximizing the PCC in com-
bination with the lowest RMSE. This identified a peptide length of
13 aa being optimal for developing efficient predictors with a
combination of high PPC and low RMSE. It should be noted that
later versions of the algorithm such as NNAlign-2.1, which allows
the incorporation of insertions and deletions in the analysis, can
handle longer length (at least up to 15 aa) without loss of per-
formance (Supplemental Fig. 1).
A list containing 63,802 peptides was generated from randomly

sampling 13-mer peptides originating from an in-house database of
human pathogens and synthesized in triplicate on a microscope
slide with a randomly distributed localization. The microscope
slide was incubated with HLA-DRA1*01:01/HLA-DRB1*03:01
and stained with L243/Cy3-goat anti-mouse IgG before obtaining
a laser-scanning image at 1 mm resolution (Fig. 2). The individual
peptide fields (20 3 20 mm) are clearly distinct in the zoomed
section (Fig. 2, insert) and present themselves with varying in-
tensities reflecting the amounts of peptide–HLA-DR complexes
present on each field.
Each individual peptide field was quantified with a proprietary

software (PepArray), and the mean signal and the cv based on
triplicate values was calculated for each peptide. For both
HLA-DRB1*01:01 and HLA-DRB1*03:01, we found a high
concordance between triplicate signal values generally showing cv
, 0.25 for peptides with mean signal values.50% of the maximal
signal. Peptides with mean signal in the lower 10% of maximal
value showed a marked increase in cv, suggesting that these lower
signals approached the noise level of detection (Fig. 3A). Inclusion
criteria for downstream ANN training was chosen at cv , 0.5,

which almost exclusively filtered away weak and nonbinding
signals. The mean signal of the remaining (cv , 0.5) peptides
were, for both HLA-DR allotypes, displaying a log-normal dis-
tribution (Fig. 3B); for ANN training, signal values were log-
transformed to bring the signal in the range [0–1] and reduce
the distribution skewness Fig. 3C.
By comparing the log-transformed signals of HLA-DRB1*01:01

against HLA-DRB1*03:01 peptide by peptide, we found, as ex-
pected, the two molecules to bind to very different peptides
(Fig. 4, left), confirming that a particular HLA-DR molecule has
preference toward a different subset of peptides. This is further
confirmed when considering only subsets of data with log-
transformed signal .0.5 (Fig. 4, left black dashed square). In
this study, the Spearman rank correlation (SRC) = 0.11, suggest-
ing a very limited specificity overlap between the two molecules
for strong binding peptides. The reproducibility of the HLA-II/
peptide microarray binding assay was examined by repeating the
peptide array synthesis (i.e., the peptide design and layout was
identical to the first peptide microarray) and repeating the binding
of DRA/HLA-DRB1*01:01 and DRA/HLA-DRB1*03:01. Plot-
ting the log-transformed signals from duplicate binding experi-
ments against each other by HLA, we found a PCC (PCC = 0.92)
for both HLA-DRB1*01:01 and HLA-DRB1*03:01(Fig. 4, mid-
dle and right), suggesting that the binding of each HLA-DR
molecule was highly reproducible. To assess whether the bind-
ing data possessed peptide sequence-based information of a
quality sufficient to support the development of ANN predictors,
we submitted the datasets from HLA-DRB1*01:01 and HLA-
DRB1*03:01 to the publicly available NNAlign server with the
network architecture parameters specified in Table I. As a refer-
ence and comparison with the peptide microarray data, we used

FIGURE 6. LOGO representation of the final NNAlign network ensemble based on the peptide microarray dataset and IEDB datasets trained with the

neural network architecture listed in Table I.

Table II. Prediction performances

Peptide Microarray Data IEDB Data

Allotype

ANN
Performance

TMR+

Evaluation
Eluted Peptides

Evaluation
ANN

Performance
TMR+

Evaluation
Eluted Peptides

Evaluation

No. of Data
Points PCC RMSE AUC AUC

No. of Data
Points PCC RMSE AUC AUC

DRB1*01:01 49,507 0.954 0.065 0.722 0.832 5166 0.671 0.199 0.821 0.923
DRB1*03:01 49,508 0.952 0.086 0.817 0.835 1020 0.511 0.204 0.753 0.845

Summary of the final network ensemble for all models listing the number of data points and prediction performance reported as PCC and RMSE. The mean area under the
curve (AUC) values are reported by a receiver-operating characteristic analysis of predicted scores of IEDB epitopes versus epitope source Ags.
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the original datasets (originating from IEDB binding data) used to
train the NetMHCII prediction algorithms (available at https://
services.healthtech.dtu.dk/service.php?NetMHCII-2.3) and sub-
jected them to NNAlign with the exact same network architecture
as the peptide array datasets (Table I). For both HLA-DRB1*01:
01 and HLA-DRB1*03:01, ANN training with the relevant pep-
tide microarray datasets returned prediction models with a very
high internal correlation (PCC . 0.95) between predicted and ob-
served data (Fig. 5). The results summarized in Table II suggests
that the peptide microarray dataset of the respective HLA-DR
molecules contains a distinct and recognizable pattern that can be
extracted by the NNAlign algorithm.
The sequence logo representations of the final NNAlign network

ensembles trained on peptide microarray datasets revealed motifs
with distinct anchor residues in positions P1, P4, P6, and P9 for
both HLA-DRB1*01:01 and HLA-DRB1*03:01 (Fig. 6). Al-
though P1 in HLA-DRB1*01:01 did not appear to be as prominent
an anchor position (reflected by a relatively low bit score) as
normally observed for P1 in many HLA-II motifs, we found the
motifs and anchor positions to be comparable to the commonly
accepted motifs of the respective molecules. A head to head
comparison of the final DRB1*01:01 ANN network ensembles
trained on peptide microarray versus network ensembles trained
on IEDB data, showed overall that the peptide microarray generated
motif appeared more blurred with less distinct anchor positions
(P1 in particular). In contrast, the motif for HLA-DRB1*03:01 as
derived from the microarray data appeared sharper and with higher
information context compared with the motif derived from the
IEDB data. It should be noted that the P1 anchor is the one most
sensitive to the peptide quality, which affects in particular the N
terminus because of the accumulation of errors in the peptide
elongation process as synthesis proceeds toward the N terminus.
To benchmark the prediction power of the final network en-

sembles, we evaluated the prediction of HLA-DRB1*01:01 and
HLA-DRB1*03:01 epitopes extracted from IEDB with selection
criteria outlined in Table III (note that epitopes were curated for
cases in which the epitope sequence not being present in the
corresponding source Ag). To benchmark the peptide microarray–
driven models, which operate in a 13-mer peptide space, each
source Ag was in silico digested into overlapping peptides with
the length of the epitope; within each of these peptides, the highest
predicted score of the underlying overlapping 13-mers was
assigned to the peptide. Similarly, for each epitope, the highest
predicted 13-mer within each epitope was assigned to the epitope.
The IEDB dataset–driven models were trained on peptides with
varying lengths, hence predictions were made on the epitope se-
quence, and overlapping peptides from the source Ag with same
lengths of the epitope. By comparing the prediction of each epi-
tope against the predictions of the overlapping source Ag peptides,

an area under the curve (AUC) was calculated for each epitope;
AUC values of each epitope and models are shown in Fig. 7. The
overall performance (mean AUC values) of each model, summa-
rized in Table II, shows that the prediction power of IEDB data–
driven networks is higher (p , 0.05), AUC = 0.821, as compared
with AUC = 0.722 of peptide microarray–driven networks, with
respect to predicting HLA-DRB1*01:01 epitopes. In contrast was
the power to predict HLA-DRB1*03:01 higher epitopes (p , 0.05)
by the peptide microarray–driven networks AUC = 0.817 compared
with IEDB-driven networks predicting with an AUC = 0.753. As a
further validation, we evaluated the prediction of peptides eluted
off HLA-DRB1*01:01 or HLA-DRB1*03:01 and sequenced by
mass spectrometry (29), as described in this study (eluted peptide
sequences provided in Supplemental Table I). Peptides (5515) of
different lengths eluted off HLA-DRB1*01:01 were in silico
digested to a length of 13 aa and subjected to prediction, the
highest predicted 13-mer within each eluted peptide were used in
the evaluation against 5000 randomly generated 13-mer peptides.
An identical strategy was applied for the (5713) eluted HLA-
DRB1*03:01 peptides evaluated against the same 5000 randomly
generated peptides. Density plots (Fig. 8) of the predicted scores
confirmed that all four network ensembles are assigning higher
scores to peptides eluted off relevant MHC-II allotypes than to
random peptides, resulting in a clear skewness of the score distri-
bution. The AUC values, summarized in Table II, of the evaluation
of eluted peptides against random peptides were comparable to
AUC values obtained for the evaluation of epitopes. Using a Student
t test to compare the performances of the peptide microarray–
driven models against the IEDB-driven models, we found no
statistical difference (p = 0.17, p = 0.31, HLA-DRB1*01:01 and
HLA-B1*03:01, respectively) of the combined mean AUC of
epitopes and eluted peptides. A direct comparison of the prediction
scores of eluted peptides between the peptide microarray–driven
models and IEDB models (Fig. 9) reveals that the peptide micro-
array and IEDB model performances are comparable, with SRC =
0.66 (HLA-DRB1*01:01) and SRC = 0.71 (HLA-DRB1*03:01).
There is a tendency toward agreement between the models in par-
ticular for peptides with high prediction scores. It is possible that the
nature of the binding data, which is obtained from two different
assays, chip binding and traditional affinity data (IEDB), contributes
to the differences. For all datasets, the peptide with the strongest
measured binding is transformed to a value of 1 in the training
sets. Hence, the differences in distribution of the transformed
data originating from the different datasets may, in part, explain
some of the differences observed for prediction scores ,0.8,
which, in any case, translates into weak to nonbinders, and thus
less relevant.
Collectively, the high internal performance of the peptide

microarray–driven models and a prediction power comparable to

Table III. Evaluation data

Source HLA-DRB1 Applied Filters No. of Epitopes No. of Epitopes Curated No. of Source Ags

IEDB 01:01 Positive assays only 266 235 80
Qualitative binding (MMR/TMR)

No B cell assays
No MHC ligand assays

MHC restriction-MRO_0001279 HLA-DRB1*01:01
IEDB 03:01 Positive assays only 114 105 49

Qualitative binding (MMR/TMR)
No B cell assays

No MHC ligand assays
MHC restriction-MRO_0001284 HLA-DRB1*03:01

Evaluation datasets (epitopes) extracted from IEDB after selecting positive assays (tetramer/multimer staining).
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prediction models based on traditional binding data (IEDB) sug-
gests that high-density peptide microarrays can be used to gen-
erate relevant pHLAII binding data. As a final examination of the
prediction models, we calculated the distance between the models
one by one and their individual distances to NetMHC-2.3, sum-
marized in Table IV. Briefly, the distance is calculated as 1-SRC2,
where SRC is found by comparing prediction scores of 100,000
random peptides from two prediction models. We found the
distances of network ensembles to be closer within allotypes
(HLA-DRB1*01:01 distance = 0.31 and HLA-DRB1*03:01
distance = 0.43) than between allotypes (0.49 , distance , 0.85),
underscoring that the training data contains allotype-specific bind-
ing data.
In conclusion, the binding data obtained from HLA-II–peptide

microarray assays produced comparable HLA-II–peptide predic-
tion models compared with models trained on pHLAII affinity
data available at IEDB, and as such, represents an attractive way
forward to generate large amounts of peptide–MHC-II binding
data and to improve existing prediction models.

Discussion
CD4+ T cells arguably perform the most important function of the
immune system; by controlling and coordinating the responses of
most immune cells, they essentially orchestrate the overall speci-
ficity and reactivity of the immune system. To this end, they survey
peptide–MHC-II complexes and determine whether these peptides
are of self or nonself origin. This essential process of peptide
sampling and display is diversified immensely by the polymorphism
of the MHC system, which assures that no two individuals will
perform self-nonself–discrimination in an identical manner, thereby
avoiding the evolution of pathogen variants that can escape the
immune systems of the entire species. An in-depth understanding
of which peptides bind to MHC-II and how this interaction is
affected by MHC polymorphism is of paramount importance for
our ability to understand and manipulate the immune system.
Many autoimmune diseases (e.g., type I diabetes, multiple scle-
rosis, rheumatoid arthritis, narcolepsy, and many more) are tightly
associated with specific MHC-II allotypes, which obviously make
these allotypes interesting in their own right. More recently, the

field of personalized immunotherapy (emerging as promising
cancer treatments) increasingly rely on a better understanding and
prediction of immune specificities in a much broader representa-
tive coverage of the “MHC space” underscoring the relevance of
panspecific predictors.
The need for experimental coverage became apparent when

panspecific predictors were applied to MHC allotypes lacking
experimental data, and it could be shown that these pan-predictors
are more accurate when they have been trained on experimental
data from a closely related allotype rather than a more distant
allotype (30). The development of these bioinformatics methods
requires large bodies of data that are representative of peptide–
MHC-II interactions. In other words, it requires access to large

FIGURE 8. Predicted scores of peptides eluted off HLA-DRB1*01:01

and HLA-DRB1*03:01 and compared with random peptides. Top, the

peptide microarray model prediction of eluted peptides (gray density) are

clearly skewed toward high scores whereas random peptides (white den-

sity) are primarily skewed toward low scores for both HLA-DR allotypes.

Bottom, predicted scores by the models trained in IEDB data presents a

similar pattern of eluted peptides (gray density) and random peptides

(white density). The model performances are summarized in Table II,

showing that HLA-DRB1*03:01 models performed at par, whereas the

HLA-DRB1*01:01 model, based on IEDB datasets, had a better prediction

power compared with the model trained on peptide microarray data.

FIGURE 7. AUC values of HLA-DRB1*01:01 (light gray) and HLA-

DRB1*03:01 (white) epitopes based on predictions by network ensembles

trained on peptide microarray data (left) and IEDB binding data (right).

Neural network architecture is listed in Table I and the mean AUC values

are listed in Table II. In general, all four models assign high prediction

scores to peptide sequences that can be identified as HLA-II tetramer–

validated epitopes as expected if the input data reflects the peptide–HLA-

DR interaction. The prediction performances reported as AUC values are

comparable between the models with respect to allotype. This indicates

that the data obtained by peptide microarray binding studies contain spe-

cific peptide–HLA-DR information comparable to traditional binding data

and suitable to ANN training.
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panels of natural and/or synthetic peptides representing peptide–
MHC-II binding events. By combining recombinant MHC-II
molecules with high-density peptide array technology, it is be
possible to generate the large bodies of binding data representing
many different allotypes, and do so at significant cost reductions
compared with generating the same amount of data using more
traditional binding experiments.
In this study, we have demonstrated that MHC-II can interact

with in situ–synthesized peptides in a high-density array format;
that the peptide–MHC-II interaction is specific; that there is a
systematic binding pattern that is interpretable by ANNs, in this
study exemplified by NNAlign training (31, 32); furthermore, the
resulting prediction models are able to predict peptide–MHC-II
binding at a level comparable to that of models trained on tradi-
tional binding data deposited at the IEDB, which have been used
to develop NetMHCII models (32). We also found the binding
motifs revealed by the models trained on peptide microarray
data comparable with the motifs obtained by training on IEDB
binding data.
The capacity of this high-density peptide microarray technology

should enable large-scale analyses of any MHC-II allotype of
interest, even including all posttranslational modifications that are
available for solid-phase peptide synthesis. Without the limitations
inherent to conventional solid-phase peptide synthesis, peptides
could be selected entirely based on the scientific and/or practical
merits of the question at hand. A completely random selection of
peptides, as applied in this study, would ensure a truly unbiased
approach to define MHC-II specificity. Alternatively, one could
randomly extract peptides from the proteomes of organism(s) of
interest (microbiomes for infectious diseases, the human proteome
for autoimmune disease, oncoproteomes for cancer, etc.). Other
“peptide-intensive” strategies could also be pursued (e.g., using an
initial random screen to generate a primary predictor and use that
to enrich for binders in a secondary experiment). In contrast, the
current cost of obtaining peptides for such mapping projects tend

to be prohibitive and may lead to the use of existing prediction
tools to downsize sampling with the inherent risk of introducing
bias leading to an incomplete representation of the relevant se-
quence space.
The prediction models developed using peptide microarray

binding data are at performance levels comparable to prediction
models trained on traditional binding (affinity) data. Thus, peptide
microarrays could be used to develop large bodies of peptide–
MHC-II binding data and/or to complement other methods capa-
ble of generating large amounts of binding data (e.g., peptide
elution and mass spectrometry) (2, 30). This could even include
nonstandard amino acids representing posttranslational modifica-
tions that otherwise are scarcer and/or more difficult to obtain. The
massive amounts of representative peptide–MHC-II data that
can be generated should allow an exhaustive scanning of both the
peptide and MHC spaces. This should support the generation of
improved pan–MHC-II predictors, which should allow peptide–
MHC-II interactions to be evaluated in silico cheaper, faster, and
at an even higher capacity than any experimental approach, even
one enabled by the high-density peptide microarray technology
could do. One area may always benefit from an experimental
approach: the binding of epitopes derived from cancer neoepitopes
identified by genomics or proteomics sequencing of tumor cells
versus normal cells. In this study, all mutations and corresponding
wildtype sequences could potentially be synthesized in multiple
length variants and tested experimentally against all of the
MHC-II allotypes of a given patient.
One current disadvantage of the present peptide microarray

technology is the inability (at least with current technologies) to
validate the identity and quality of the peptides. Thus, some of the
experimental peptide–MHC-II data points might be erroneous. We
surmise that as long as such errors are the exception rather than
the rule, then the predictors should ignore these experimental er-
rors. Notwithstanding, it would be a major advance if the quality
of the individual peptides on a microarray could be validated
through independent physical means (e.g., by mass spectrometry).
Other recent technologies have emerged as possible ways of

generating large-scale peptide–MHC-II data. One approach is
phage expression of peptide libraries followed by MHC-II selec-
tion and sequencing (33). This technology does not offer the same
degree of control of the peptides expressed; it requires DNA se-
quencing to identify the peptides involved rather than the simple
“identification by look-up” used by the peptide microarray tech-
nology; it does not readily allow the incorporation of posttrans-
lational modifications; nor does it allow the identification of
nonbinders, which are important for ANN training. Another recent
approach, “immunopeptidomics,” involves sequencing of natural

FIGURE 9. Scatter plots of eluted peptide scores

(left, HLA-DRB1*01:01; right, HLA-DRB1*03:01)

predicted by peptide microarray models versus IEDB

models. The SRC of the respective dataset are

inserted.

Table IV. Distances between prediction models

DRB1*01:01 DRB1*03:01

Model Microarray IEDB Microarray IEDB

DRB1*01:01 Microarray 0.00 0.31 0.49 0.85
IEDB — 0.00 0.68 0.68

DRB1*03:01 Microarray — — 0.00 0.43
IEDB — — — 0.00

Table of calculated distances between the models trained on peptide microarray
data, IEDB binding data, and NetMHC-2.3. The distance is calculated as 1-R2, with
SRC calculated by the prediction scores of 100,000 random peptides.
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peptides eluted of MHC-II by liquid chromatography followed by
mass spectrometry (34). Sequencing natural peptides has the huge
qualitative advantage that it includes events of Ag processing and
includes posttranslational modification. Otherwise, it shares some
of the same disadvantages of the phage display approach: lack of
control of which peptides and posttranslational modification are
interrogated and lack of nonbinders. Ideally, one should include
data obtained from both synthetic and natural peptide and gen-
erate immune-bioinformatics predictors incorporating both kinds
of input.
In conclusion, we have demonstrated that high-density peptide

microarrays can be used to generate very large numbers of discrete
peptide–MHC-II interaction data, something that represents a
major advance in the analysis of peptide–MHC-II interactions and
should become instrumental in developing improved bioinformatics
methods representing these important interactions.
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