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ARTICLE INFO ABSTRACT

Quantification of hazard-induced losses plays a significant role in risk assessment and management of civil
infrastructure subjected to hazards in a life-cycle context. A rational approach to assess long-term loss is of vital
importance. The loss assessment associated with stationary hazard models and low-order moments (i.e., ex-
pectation and variance) has been widely investigated in previous studies. This paper proposes a novel approach
for the higher-order analysis of long-term loss under both stationary and nonstationary hazards. An analytical
approach based on the moment generating function is developed to assess the first four statistical moments of
long-term loss under different stochastic models (e.g., homogeneous Poisson process, non-homogeneous Poisson
process, renewal process). Based on the law of total expectation, the developed approach expands the application
scope of the moment generating function to nonstationary models and higher-order moments (i.e., skewness and
kurtosis). Furthermore, by employing the convolution technique, the proposed approach effectively addresses
the difficulty of assessing higher-order moments in a renewal process. Besides the loss analysis, the mixed
Poisson process, a relatively new stochastic model, is introduced to consider uncertainty springing from the
stochastic occurrence rate. Two illustrative examples are presented to demonstrate practical implementations of
the developed approach. Ultimately, the proposed framework could aid the decision-maker to select the optimal
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option by incorporating higher-order moments of long-term loss within the decision-making process.

Introduction

In recent decades, the devastating effects that hazards have on so-
cieties worldwide have intermittently raised the attention of govern-
ments and the public to hazard risk assessment and management. For
civil infrastructure, various hazards (e.g., earthquakes, hurricanes, and
progressive deterioration) may impair structural functionality, thus
resulting in severe consequences. The hazard-induced consequences are
commonly measured in terms of financial losses (e.g., repair cost), so-
cial losses (e.g., downtime, deaths), and environmental losses (e.g.,
carbon dioxide emissions). Due to various sources of uncertainty, the
accumulated losses can be aggravated over the service life of civil in-
frastructure. Hence, the quantification of long-term loss of civil infra-
structure subjected to hazards is of significant importance to aid the
decision-maker to mitigate potential losses and enhance preparedness
[1,2].

Uncertainty quantification plays a significant role in long-term loss
assessment. There are large uncertainties associated with the frequency
and magnitude of hazards [3,4]. In previous studies, stationary models
(e.g., homogeneous Poisson process) have been widely used to
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characterize the probabilistic behavior of hazards. Nowadays, studies
show strong evidence that hazard arrivals may follow nonstationary
behavior [5]. For instance, the renewal process is proposed to model
the earthquake arrivals, in order to incorporate the time-varying energy
accumulation of the fault [6,7]. Such time-dependent trends are also
identified in other hazards, such as more frequent hurricane landfalls
under climate change [8], increased wind speeds [9], extreme pre-
cipitation [10], and sea level rise [11]. In addition to natural hazards,
the progressive deterioration of structural systems is also stochastic and
time-variant [12]. Given the time-dependent trend of hazards, a general
framework is needed to evaluate the long-term loss of civil infra-
structure under both stationary and nonstationary models. This concern
is discussed and addressed in this paper.

The analytical formulation of long-term loss is essential for risk
assessment and management. Although numerical modeling is acces-
sible, simulations are usually computationally expensive and time-
consuming. Low-order moments (i.e., expectation and variance) of
long-term loss based on stationary stochastic models have been in-
vestigated by previous studies [13,14]. Based on the homogeneous
Poisson process, an analytical formulation of the expected life-cycle
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cost of buildings under single and multiple hazards was presented by
Wen and Kang [15]. Recently, several studies assessed the long-term
loss (e.g., mean and variance) of civil infrastructure under nonsta-
tionary processes. For instance, Yeo and Cornell [16] proposed analy-
tical expressions for the expected loss caused by earthquakes using
homogeneous and non-homogeneous Poisson models. Wang et al. [17]
computed the mean and variance of hurricane-induced damage loss
using the non-homogeneous Poisson process. Lin and Shullman [18]
assessed the risk of New York City being damaged by hurricanes and
surge flooding in a nonstationary environment. To simplify the com-
putational process, the nonstationary Poisson model was converted into
a stationary one in these studies. Additionally, the long-term loss is
limited to Poisson models and the first two moments.

In addition to Poisson processes, recent studies proposed some new
nonstationary models for the loss assessment. For instance, Pandey and
Van Der Weide [19] used a stochastic renewal process with Brownian
Passage Time distribution to formulate the expectation and variance of
the discounted damage cost of a structure under earthquakes. The de-
rivations were based on the renewal decomposition properties of re-
newal processes. The renewal model was also used to evaluate the
lifetime resilience and cost of structural systems considering pro-
gressive deterioration [12]. Although the renewal approach provides an
alternative option to assess the loss under nonstationary hazards, it
cannot be applied to other stochastic models, such as the non-homo-
geneous Poisson process. Meanwhile, higher-order moments are not
taken into account in previous studies.

Though the minimum expected loss has been widely used as a
standard decision criterion, it is only suitable for risk-neutral decision
makers. This criterion cannot cope with different attitudes [20]. Goda
and Hong [21] indicated the structural design based on the expected
life-cycle cost may not be optimal, and stated the need for statistical
moments (e.g., variance, skewness, and kurtosis) of the cost. Further-
more, the mean-variance criterion is sufficient only when the utility
function within the decision-making process is quadratic or the in-
vestment return (e.g., loss represents a negative return) follows a
normal distribution [22].

Higher-order moments, i.e., skewness and kurtosis, measure asym-
metry and tail conditions of the distribution with respect to the long-
term loss. In risk management, large skewness and kurtosis of loss imply
heavy tail risks. Such undesired risks are associated with low-prob-
ability events with disastrous consequences, e.g., credit risk crisis [23]
and COVID-19 pandemic [24]. Higher-order moments are required
when risk preferences of decision makers are considered, e.g., in the
stochastic dominance criteria [20,25]. For instance, a decision maker
with the absolute risk-averse attitude prefers positive skewness and
small kurtosis of the investment return, as highly skewed data with
large kurtosis indicate an increased likelihood of extreme losses [26].
Different decision results may be obtained due to the exclusion of these
moments. Therefore, the assessment of higher-order moments of long-
term loss is necessary. These moments can be used to aid the decision-
making and optimal structural design of civil infrastructure by con-
sidering different attitudes.

To the best knowledge of the authors, mathematical expressions of
higher-order moments of long-term loss have not been developed for
Poisson and renewal models. In this paper, a novel approach based on
the moment generating function is developed to formulate the higher-
order moments of long-term loss of civil infrastructure subjected to
hazards. In this context, the long-term loss refers to hazard-induced
financial losses in a long time interval. In addition to the loss analysis, a
new stochastic model of the mixed Poisson process is presented to take
the uncertainty springing from stochastic occurrence rate into con-
sideration. This new model has been recently introduced in hurricane
landfall simulations [27] and rainfall occurrence models [28] to con-
sider environmental variability.

Overall, this paper develops an integrated framework to assess the
probabilistic long-term loss under stationary and nonstationary
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hazards. Higher-order moments of the loss are formulated based on
moment generating functions for the homogeneous Poisson, non-
homogeneous Poisson, mixed Poisson, and renewal processes. The
merits, application scope, and limitations of the proposed method are
explained and discussed. Two illustrative examples are presented to
demonstrate implementations of the approach. The remainder of the
paper is organized as follows. The subsequent two sections introduce
the model setup for long-term loss and the moment generating function-
based approach. Then, two case studies are presented to interpret the
applications. The last section summarizes major outcomes and conclu-
sions.

Stochastic models of hazards and long-term loss

Hazard arrivals are commonly modeled as a stochastic process using
historical observations. For instance, the homogeneous Poisson process
is widely used to model the earthquake recurrence [29,30]. The oc-
currence of hurricanes could also be represented by the homogeneous
Poisson process based on historical records [31,32]. In addition to using
historical data, the future projection of hazard arrivals requires the
consideration of variability in hazard characteristics [4,33]. Various
non-stationary models are developed to capture such variability. For
instance, the renewal process is used to incorporate the time-dependent
characteristics of ground motion activities for long-term seismic fore-
casting [34]. The non-homogeneous and mixed Poisson processes are
utilized to model the occurrence of hurricanes in a changing climate
[35,36]. In this section, theoretical descriptions and notations of four
typical stochastic models (i.e., homogeneous Poisson process, renewal
process, non-homogeneous Poisson process, and mixed Poisson process)
are presented. Based on stochastic models, the long-term loss is for-
mulated.

Stationary arrival process

As one of the most classical stationary models, the homogeneous
Poisson process is adopted for stationary hazard arrivals and illustrated
by using two different models: the homogenous Poisson and renewal
processes.

Homogeneous Poisson process

A homogeneous Poisson process is an arrival process with stationary
increments. It has a constant occurrence rate A. The occurrence rate is
defined as the number of hazard events within the time unit (e.g., per
year), which is also known as the intensity function. A homogeneous
Poisson process can be denoted by the number of occurrence {N(t;,,),
tine > 0} with the time interval (0, t;, ]. The expected number of hazard
arrivals can be expressed as E[N(ti,)] = Aty with N(O) = 0. The
probability of having n number of arrivals within the time interval t;, is

_ (ltim)n exp(_/ltint)

P[N (tine) = n] = =0,1,2, -

n! - (@)

Poisson renewal process

The homogeneous Poisson process can be alternatively described as
a renewal process. A renewal process is a counting process, in which the
inter-arrival times are independently identically distributed. For in-
stance, over the period (0, t;,.], arriving times of hazards are a series of
non-negative random variables {T;, Ts, ..., Tx}. Inter-arrival times can
be denoted as {W;, Wa, ..., Wi}. By the definition, the arriving time is
the summation of inter-arrival times, Ty = W; + W, + ... + Wi. When
the inter-arrival time follows an exponential distribution, a renewal
process becomes a homogeneous Poisson process, also known as a
Poisson renewal process. The probability density function of the inter-
arrival time W gives

Jiw () = Aexp(—Ax) (2)
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Nonstationary arrival process

The stationary occurrence rate is an idealized assumption and a
realistic rate can be time-dependent and stochastic. Herein, three ty-
pical examples of nonstationary processes are provided: the non-
Poisson renewal process, non-homogeneous Poisson process, and mixed
Poisson process. In this context, a process is considered as ‘nonsta-
tionary’ when the occurrence rate is not constant.

Non-Poisson renewal process

The occurrence of hazards could be time-dependent. For instance,
after an earthquake, there can be a long period before the next earth-
quake, in which the accumulated elastic strain energy is released by the
fault. By considering such time-dependent characteristics, a non-
Poisson process can be used to model the occurrence of earthquakes
over a long period of time [37,34]. In the nonstationary renewal pro-
cesses, different probabilistic models of inter-arrival times are used to
quantify the time-dependent characteristics. For instance, several dis-
tributions of the inter-arrival time are provided in earthquake en-
gineering, including lognormal [38], gamma [39], and Brownian Pas-
sage Time distribution [34].

Non-homogeneous Poisson process

Another nonstationary model used for the long-term loss assessment
is the non-homogeneous Poisson process, with a time-dependent oc-
currence rate. A renewal process is not necessarily limited to the ex-
ponentially distributed inter-arrival times, while the Poisson process is
not subjected to the time-independent occurrence rate. For instance, the
non-homogeneous Poisson process can be used to model hurricane
landfalls in a changing climate [18,35]. The frequency of hurricanes
may increase due to the impact of the warming climate. For this pro-
cess, the occurrence rate is time-varying, e.g., A(t). The expected
number of hazard arrivals over the time interval (0, t;,;] can be com-
puted as

EIN@m)l = [ At @)

The probability of having n number of arrivals within the time in-
terval (0, ti,] is computed as

L™ A@dn) exp(— ™ A(t)dr)

n!

P[N(tint) = Vl] =

4

Mixed Poisson process

In the homogeneous and non-homogenous Poisson processes, the
occurrence rate is restricted to a deterministic intensity function (i.e.,
either a constant A or the time-dependent A(t)). However, the de-
terministic function may not be sufficient to capture the uncertainty in
a long-term trend. The mixed Poisson process, which covers the

Long-term loss
A

LTL(ti)

Loss severity

Di
IScount fo Present valye
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uncertainty within intensity function, is receiving increased attention in
the hazard model and should also be evaluated. For instance, Xiao et al.
[27] suggested using a stochastic intensity function to model hurricane
occurrence when considering seasonal variability, based on the re-
corded hurricane activities along the U.S. Gulf and Atlantic coasts be-
tween 1900 and 2010.

The mixed Poisson process is known as a special case of the cox
process. A cox process is a Poisson process, in which the occurrence rate
is a stochastic process (denoted as {G(tiny), tine > 0}). A cox process
becomes a mixed Poisson process when the rate is a random variable,
e.g., {G(tin)} = A. Given the rate A, increments in the mixed Poisson
process stay stationary [40]. However, these increments are no longer
independent, as the number of arrivals relies on the distribution of A.
Herein, the stochastic rate A is assigned to follow a gamma distribution
with shape parameter a and rate parameter . The rate A is continuous
with a probability density function g(x). Hence, the probability density
function of the gamma distributed rate A ~ I'(a, ) can be assessed as

5axoz—1

gl = e

I'(a) %)
Consequently, the probability of having n number of arrivals within
the time interval (0, tiy] is

o Gl BT
P(N (tn) = 1) = j(; e T dx ©

Long-term loss model

Based on the stochastic models, the long-term loss of civil infra-
structure subjected to hazards can be formulated. The time interval (0,
tine] is defined as the service life of civil infrastructure. During the time
interval, hazard arrivals are modeled as a stochastic process and the
total number of hazard events is N(t;,) = n with N(0) = 0. The arriving
time and inter-arrival time of the kth event can be defined as T and Wy,
respectively. The arriving time Tj equals the sum of inter-arrival times,
ie, Ty = W; + Wy + ... + W,, as described previously. L is the loss
severity. L, refers to the financial loss due to structural damage/failure
under the kth hazard event. The loss severity Ly and the inter-arrival
time W, are assumed to be independent. The long-term loss, denoted as
LTL(t;,y), is the hazard-induced financial loss of civil infrastructure
subjected to hazards within the investigated period t, The loss is
discounted to the present value using a monetary discount rate r, as
indicated in Fig. 1. The long-term loss LTL(t;,,) gives

N (tint)
LTL(tn) = Y, Lie"k
k=1 @)
The long-term loss LTL(t;,,) is related to the stochastic models of the
hazard. For instance, if a homogeneous Poisson process is implemented
for loss assessment, the inter-arriving time Wy follows an exponential
distribution and the number of arrivals N(t,) has a Poisson

Ly

Fig. 1. Long-term loss model by considering discounting and hazard arrival process.
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distribution. These parameters are different under different models.
Analytical analysis of long-term loss

This section introduces the theoretical fundamentals of the pro-
posed moment generating function-based approach. Analytical deriva-
tions of moment generating functions and statistical moments of long-
term loss under the homogeneous Poisson process, non-homogeneous
Poisson process, mixed Poisson process, and renewal process are pre-
sented. The merit, capability, and limitations of the developed ap-
proach are also discussed.

Higher-order analysis using moment generating function

The moment generating function uniquely dictates the probability
distribution of a random variable. This property can be adopted to
formulate probability distributions of random variables. For instance,
random variables will have the same probability distributions if they
have identical moment generating functions. Another property of the
moment generating function is that raw moments (e.g., mean, second
moment) can be obtained by taking derivatives [40,41]. This property
is utilized to formulate statistical moments of long-term loss in this
paper.

For a random variable X, its moment generating function about (5
€ R) is defined as ®x(1)

Ox (1) = E[e™¥] ®)

The first two raw moments of X can be obtained by taking the first
and second derivatives of the moment generating function at zero

Oy’ () = dinE [] = E [dinen’f] — E[Xe™] = y'(0) = E[X] o

d
Oy = —E[Xe™] = E[X?%™] = &x"(0) = E[X?
x" (1) dr)[ 1=E[ 1= @x"(0) = E[X?] 10)
Similarly, the mth-order moment can be assessed by taking the mth
derivative at zero

oM (0) = E[X"], m>1 an

Based on this concept, the key to derive higher-order moments of
long-term loss LTL(t;,,) is to compute its moment generating function

DLIL (tin0)-

Moment generating function for homogeneous Poisson case

With respect to the homogeneous Poisson case, the moment gen-
erating function of long-term loss can be derived in terms of a com-
pound Poisson process. By conditioning on the number of arrivals (i.e.,
N(tin) = n) with the Poisson distribution, the moment generating
function of long-term loss ®; ;) can be evaluated using the law of
total expectation

N (tint)
D10 () = E [entm@m] = E | exp| Z Lee Tk |IN (tin) = 1
k=1
(o) n ) n
= e~ AMint 4 Z E | exp|7n H LieTk) [Me—/lﬁm]
n=1 k=1 n!
S _ Atin)"
= exp(~Aling) + exp(~Aint) D, [@L(nese) ] [;17‘:‘
n=1 :

tint
= exp /lf [®r(ne™™) — 1]ds
0 12)
in which ®; refers to the moment generating function of loss severity L.
The derivation of ®; requires the information with respect to the
probabilistic distribution of loss severity. Previous studies indicated
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that the probabilistic loss severity can be modeled by the exponential
distribution [42,43]. Herein, the loss severity L is assumed to follow an
exponential distribution L ~ EXP(6), with the mean E[L] = 1/6. By
substituting @, into Eq. (12), the moment generating function of long-
term loss @1y (;;,,) under the homogeneous Poisson process gives

i
ting 6 6 — ne~Mtint \©
Prrr = A —  —1llds|=| ———
LTL (tin0) () eXP[ ‘/(; [6 p— ] S] ( a7 ] 13

By taking the first and second derivatives at zero, the expectation
and variance of long-term loss can be obtained as

, A e
E[LTL(tind)] = ®pyy (5,0 (0) = a(l —e [‘“‘) 14)

" / A _om
Var [LTL(tind) ] = @71y, (5,0 (0) — (q) LTL(tim)(O))2 = E(l —e 2”‘“‘)

(15)

Likewise, the mth order moment can be assessed using Eq. (11). The
expressions of skewness and kurtosis are associated with the third and
fourth-order raw moments. For instance, the skewness uz and kurtosis
u, are

_ E[LT(tin)] — 3u0? — i
B ol (16)

Uz

_ E[LTL*(tin)] — 4uE [LTL*(tin)] + 64°E [LTL? (tin)] — 3u*

e ot 17)

in which p refers to the expected long-term loss E[LTL(t;,,)] and o is the
standard deviation of LTL(t;,;). Consequently, skewness and kurtosis of
long-term loss can be obtained

2Art/2 (1 — e~3tint)
mw= 2%
T (A = Ae2t)32 a18)

_(6r + 31) + (6r — 31)e~*int
¢ A(1 — e~ 2rtint) (19)

From Egs. (18) and (19), it shows that for the investigated case the
skewness and kurtosis of long-term loss are not affected by 6. Hence,
the skewness and kurtosis under the homogeneous Poisson process are
independent of the exponentially distributed loss severity. When other
distributions are used for the loss severity, the higher-order moments
may be affected.

Moment generating function for non-homogeneous Poisson case

The same technique can be used for the non-homogeneous model by
applying the law of total expectation. For the non-homogeneous
Poisson process, the expected number of arrivals Q(t;,) becomes

tint
Qi) = EIN ()] = [ A(0dt 20)

Given the number of arrivals, the moment generating function of
long-term loss can be derived as

Dr 11 (100 (M) = €Xp(—Q (tin))

+ 2 E| T @.(ne™)IN (ti) = n | POV (tin) = 1)

n=1 k=1
= exp(—Q (fint))

+ exp(—Q(tinr)) z ‘/o-tim ‘/:im
n=1
‘/S‘}:ij H [)L(Sk)q)L(T](f’Sk)]dsn...ds1

k=1

=ep| [ )DL (e ) — 1]ds o



Y. Li, et al.

The detailed derivations of Eqgs. (12) and (21) are shown in
Appendix A. If a linear function is used for the increasing occurrence
rate, e.g., Altin) = Ao(1 + ctiny), the moment generating function be-
comes

Lini
Dr 11 (600 () = €XP J; [ Ao(1 + cs)[®r(me™™) — 1]ds 22)

in which A is the initial stationary occurrence rate and c refers to an
annual increase rate of hazard occurrence. For the given linear rate
function, the moment generating function may not be differentiable at
zero. Under this circumstance, the moments can be computed by taking
derivatives and finding limits by approaching zero. Accordingly, the
raw moments can be computed as

A" ®r 11 (15,0 (1) )

E[LTL™ ()] = lim(
n—0 d?’]m

(23)

Moment generating function for mixed Poisson case

As mentioned before, the mixed Poisson process has a stochastic
occurrence rate A. Though the random variable A affects the prob-
ability of the number of arrivals, the inter-arrival times are not influ-
enced by time. Hence, the derivation of the moment generating func-
tion for the mixed Poisson case is similar to that for the homogeneous
case, as shown in Eq. (12). The deterministic rate in the homogeneous
model is switched to the stochastic random variable, e.g., . = E[A] and
A% = E[A?]. Therefore, the moment generating function of long-term
loss under the mixed Poisson model gives

Lint
D1z (13 (M) = ‘DA[‘/O‘ [@r(ne™™) — 1]ds 24)

For the illustrative purpose, the random variable A follows a gamma
distribution A ~ I'(a, 8), as shown in Eq. (5). The loss severity L remains
the exponential distribution L ~ EXP(0). The moment generating
function of the gamma distributed rate is

(B Y
e = (ﬁ —x] 25)

Substituting Eq. (25) into Eq. (24), the moment generating function
of long-term loss gives

1 6 — neint —*
DL1L (1 (M) = B [ﬁ - ln(n—)]

-7 (26)
According to Eq. (26), the moments of long-term loss under a mixed
Poisson process can be assessed.

Higher-order moments for renewal case

For some stochastic models, properties of the models can be used to
formulate the moment generating functions. In this section, statistical
moments of long-term loss under a renewal process are assessed by
incorporating the renewal function and convolution technique. Under
this scenario, the provided derivations are based on a general renewal
process and the probability distribution of the inter-arrival time W is
not specified. The formulation of moment generating function of long-
term loss remains the same as presented before

N (tint)
1 o (o)
k=1 (27)

Op11 () = E [ertTL0m)] = E

According to the renewal theorem [40],Eq. (27) can be written as

P ( ) f dFW S) it D, (776 )P nt—s) (7)€ s dFW S)
LTL (tin)\7) = fint ( 0 L ) LTL (tint s)( ) (
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where Fy, indicates the cumulative distribution function of the inter-
arrival time. Consequently, the moments of long-term loss under the
renewal process can be obtained by taking derivatives of Eq. (28) at
zero. The mth-order derivative of the moment generating function gives

A" @71 (15,0 (1)
dn™

CD(LTL (tint) (77)

m—1
m tint (m—k) _ _
z (k ) ‘/0‘ mrScI>m (ne rs)q)LTL(t,m S)(ne VS)

k=0
dFW (S)

tint
+ ‘/O' ey (e ) DT (o (e~")dFyy (s)
(29)

When 7 equals zero, the mth-order moments of long-term loss is

E[LTL" (t)] = [ )E[Lm 6y e o O)dFi (s)

fint
+ el o (0)dFy(s)

(30)

The convolution technique and the renewal function are used to

solve Eq. (30). The renewal function refers to the expected number of

events in a renewal process. Based on the cumulative distribution

function of the inter-arrival time Fy,, a defective distribution function
can be defined as [44]

tint
D(ti) = Dy () = ) €™ dFyy (s) @1

The convolution power of Eq. (31) can be rewritten using the re-
newal function ©. The summed i-fold convolution power gives

Z D¥ (b)) = ‘/O‘lim e-mrsd Z Flit/i (s) = ‘/Oatim O (s)
i=1 i=1

(32)

where * is a convolution operator. Substituting Eqgs. (31) and (32) into
Eq. (30), the mth-order moment can be formulated as follows

E[LTL™ (tin)]

m—1
(PI?]E (L 199, (0)*D (tne) + @Y7} (0)*D (tine)

T EL 98, 0 Y D (tn)

i=1

= E (’:)E [Lm—k] ‘/O‘lin 7mrS(D( O S)(O)d@(s)
(V;f) A

e™™SE [LTLK (tin; — 5)]dO(s)

(33)

The first four moments of long-term loss can be effectively obtained
by using this recursive equation, i.e., Eq. (33). This recursive equation is
validated by comparing the first two moments with the results provided
by Pandey and Van Der Weide [19], in which the analytical expressions
of the mean and variance using the regenerative property were pro-
vided. The moments of long-term loss assessed by Eq. (33) are based on
a general renewal process. The loss under renewal processes with dif-
ferent probabilistic models of the inter-arrival times can be computed
by employing different renewal functions. The implementation of re-
newal function circumvents complicated derivations starting from a
stochastic process.

The homogeneous Poisson process, as a typical renewal process, has
a renewal function defined as dO(s)/ds = A. Consequently, the mth-
order moment of long-term loss under the homogeneous Poisson model
is
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m—1 3
E[LTL" (t)] = 4 k}_‘g [']’:)E[mek] j; " =mIE [LTLF (ti, — 5)]ds

(€2)]
The expectation and variance of the long-term loss are assessed
— E [L]/I —Ttini
E[LTL ()] = =5 (1 = ¢ 35
— E[Lz]/l —2rtin;
Var [LTL (tn)] = T(1 — g~ 2rtin) (36)

The third and fourth-order moments obtained from the renewal
function are also validated by comparing with the values computed
using the moment generating function, as shown in Egs. (14) and (15).

Summary of the moment generating function-based approach

In summary, the developed moment generating function-based
analytical approach can effectively evaluate the higher-order moments
of long-term loss under different stochastic models. Based on the law of
total expectation, the proposed approach expands the application scope
of the moment approach, which was formerly used for the homo-
geneous Poisson model only. Using the convolution technique, the
higher-order moments of loss under a renewal process are successfully
derived from the developed approach. Identifying the distribution type
of loss severity is not necessary under the renewal condition. During the
computational process, if the limit function of the moment generating
function is difficult to solve, the raw moments can be assessed using
Eq. (23). The developed approach is validated by Monte Carlo simu-
lation and more details are shown in illustrative examples. Some of the
derivations may not be applicable to stochastic processes without
Poisson properties, e.g., when inter-arrival times are not independent
identically distributed. Additionally, by considering the mathematical
definition, the moment generating function may not exist due to di-
vergent integrals. These issues should be carefully considered during
the application process.

Apart from the loss assessment, higher-order moments can be used
to compute the long-term reliability [45]. For instance, skewness was
involved in the third-order moment method to assess the long-term
reliability of reinforced concrete structures under chloride-induced
corrosion [46]. Reliability analysis involving skewness and kurtosis was
also conducted in Lu et al. [47]. Another application of the moment
generating function is that statistical moments can be used if there is
insufficient information. For instance, Zhao and Lu [48] used statistical
moments to describe probabilistic characteristics of random variables.

Applications: illustrative examples

Two illustrative examples are presented to demonstrate the feasi-
bility and applicability of the developed framework. The first example
focuses on the computation of loss severity. The long-term seismic loss
of the investigated bridge under seismic hazard is computed using the
renewal model. The second example aims to identify the impact of
climate variability on the hurricane-induced loss by using different
stochastic processes. The homogeneous, non-homogeneous, and mixed
Poisson processes are used to model the hurricane arrivals.

Seismic loss evaluation under renewal process

According to the mathematical derivations provided in the previous
section, there need several inputs for the long-term loss assessment,
including the occurrence rate of hazard, monetary discount rate, time
interval, and the statistical moments of loss severity under the in-
vestigated hazard scenario. Generally, the loss assessment of civil in-
frastructure under seismic hazards consists of four components, as
shown in Fig. 2, including hazard analysis, vulnerability analysis,
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damage loss estimation, and long-term loss assessment. The loss se-
verity is an essential element. This example aims to compute the loss
severity of a reinforced concrete bridge under the seismic hazard. The
recurrence of earthquakes is modeled as a renewal process.

Based on the Gutenberg-Richter law, the occurrence rate of earth-
quakes can be assessed by the recurrence relationship between earth-
quake frequency and intensity, as follows [49]

log,;Am = A — Buim (37)

in which A, is the annual rate of earthquakes greater than magnitude m
in the given region and A,, and B,, are coefficients based on analysis of
historical records. In this model, a minimum magnitude is considered as
5.5 for the fault. Given this minimum magnitude, coefficients A,, and
B, in Eq. (37) are 3.94 and 0.89, respectively [50]. The annual oc-
currence rate of earthquakes exceeding a magnitude of 5.5 is computed
as 0.1109.

Subsequently, vulnerability analysis is performed to quantify the
performance of the bridge under seismic hazard. The distance and the
shear wave velocity over the top 30 m at the investigated site are
specified as 5 km and 480 m/s, respectively. The exceedance prob-
ability of peak ground acceleration is obtained by adopting a ground
motion prediction model provided by Boore et al. [51]. The peak
ground acceleration follows a lognormal distribution with the ex-
pectation of 0.417 and the standard deviation of 0.282.

A finite element model of a typical two-span continuous reinforced
concrete bridge is established using the software OpenSees [52] to as-
sess the structural performance, as shown in Fig. 3. This 58 m bridge
has a box girder with a height of 1.2 m and a width of 10 m and two
circular 10 m high columns with a diameter of 1.6 m. The compressive
strength of the concrete is 26 MPa and the yield strength of the re-
inforcement is 470 MPa. The longitudinal reinforcement ratio for the
concrete columns is 1.01%.

Five damage states of the bridge are specified as no damage, slight,
moderate, major, and complete, according to HAZUS [53]. The seismic
demand is the curvature ductility of the bridge column obtained from
the finite element model. For each damage state, the limit of curvature
ductility y has been classified as p < 1.29, 1.29 < p < 2.10, 2.10 < pu
< 3.52,3.52 = u < 5.24, and u = 5.24, respectively [54]. The re-
quired curvature ductility can be attained through a nonlinear time
history analysis. A total of 80 ground motion records are used for the
regression analysis to assess the response of the bridge [55,56]. The
fragility curve provides the probability of the seismic demand D ex-
ceeding the capacity C. The fragility function can be expressed as

In(Sp/Sc)

VB + B

In(PGA) — [In(S¢) — In(A)]/B

By + B /B (38)

P[D > CIPGA] = Z¢[

:Z¢

where Z; refers to the standard normal cumulative distribution func-
tion; Sp and S represent the median of seismic demand and capacity,
respectively; and 8 and fB¢ refer to the logarithmic standard deviation
of demand and capacity, respectively. From the regression relationship,
the value of A is 2.8869 and the value of B is 1.0702. Accordingly, the
seismic fragility curves of four different damage states considering
curvature ductility are obtained, as shown in Fig. 4.

Given the structural vulnerability, the loss severity is the product of
the repair cost of the damaged bridge and the conditional probability
that the bridge is in a specified damage state under the given intensity
measure [57]. The cost of rebuilding equals the unit price times the
length and width of the bridge, in which the unit price of bridge re-
building is taken as 2306 USD/m? [58,59]. The repair cost of the bridge
being in different damage states can be evaluated as a fraction of the
rebuilding cost through repair ratios. Repair ratios of 0, 0.03, 0.25,
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Fig. 2. Framework of probabilistic long-term loss assessment of civil infrastructure.

0.75, and 1 are used for none, slight, moderate, major, and complete
damage, respectively [60]. Subsequently, the loss severity equals the
summation of loss associated with all possible damage states. The ex-
pectation, standard deviation, the third, and the fourth-order moments
of loss severity are sampled and computed as 1.5631 x 10° USD,
1.7790 x 10° USD, 2.9487 x 10'6, and 1.9239 x 10?2 respectively.

Given the loss severity, the long-term seismic loss under a Poisson
renewal model can be calculated by Eq. (34). The value of the occur-
rence rate is 0.1109. The monetary discount rate is defined as 3%. The
service life of the investigated bridge is assumed as 75 years. Conse-
quently, the expectation, standard deviation, coefficient of variation,
skewness, and kurtosis of the long-term loss of the bridge are
5.1692 x 10° USD, 3.2016 x 10° USD, 0.62, 1.11, and 4.69, respec-
tively.

Hurricane-induced long-term loss considering climate change

The occurrence of hurricanes can be modeled as a stochastic process
using the observation data [61,32]. For instance, a homogeneous
Poisson process can be used to model hurricane arrivals in a stationary
environment [61]. However, stochastic models using historical ob-
servations only may not be sufficient to project future scenarios, as the
variability in characteristics of hazards is not considered [33]. In recent
decades, hurricane arrivals in a changing environment considering the
effects of climate change and variability have been modeled by the non-
homogeneous and mixed Poisson models [18,31]. This example aims to
assess the impact of climate change and variability on the hurricane-
induced loss, from a long-term perspective.

The homogeneous Poisson process is widely used to model hurri-
cane arrivals in a stationary environment, which assumes a constant
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Fig. 4. Fragility curves associated with four damage states.

occurrence rate A based on historical observations [61,32]. This rate is
typically determined by dividing the total number of hurricane landfalls
by the observation period [61]. Recent studies observe the increasing
trend on hurricane frequency in the warming climate [62]. For such
scenarios, the non-homogeneous Poisson process with an increasing
occurrence rate, i.e., A(ti,), could be used to predict the increase in the
number of hurricane arrivals [35,18].

In a changing environment, in addition to the potential increasing
trend, the occurrence of hurricanes can be significantly influenced by
climate variability. Climate variability refers to variations in the mean
state and characteristics of climate [63]. Previous studies stated the
importance of considering the occurrence rate as a random variable in
the Poisson process (i.e., the mixed Poisson process) for future hurri-
cane predictions. For instance, Elsner and Bossak [31] projected the
occurrence rate of the U.S. hurricane landfalls using the mixed Poisson

Concrete
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1 1] 15
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Fig. 3. A three-dimensional bridge model (unit: meter).
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model. Villarini et al. [36] assessed changes in hurricane frequency
using the mixed Poisson process, by modeling the dependence of hur-
ricane occurrence on different climate indices. In this example, a
gamma distributed stochastic rate is utilized [31].

The long-term loss analysis is performed on a multi-span simply
supported girder bridge [64]. The bridge has six spans equally dis-
tributed with a length of 146 m. This type of bridge is most susceptible
to the deck unseating damage [65]. The given annual occurrence rate of
hurricane Ao is 0.245 for the investigated area in the stationary en-
vironment (i.e., with a homogeneous Poisson process). The rate is de-
termined by counting the total number of 27 hurricane landfalls in the
investigated region from 1900 to 2100, i.e., Ay = 27/110 per year [17].
The expected loss severity E[L] is 1.283 million USD [64]. The detailed
computation of A, and loss severity under hurricane hazards can be
performed according to the process shown in the earthquake example.
The monetary discount rate r is 2% for the long-term evaluation [66].
The loss severity follows an exponential distribution.

In a stationary environment, the occurrence of hurricanes is mod-
eled as a homogeneous Poisson process, with a rate of A = Ao
throughout the lifetime. In a changing climate, the non-homogeneous
Poisson process is adopted and the occurrence rate is assumed to follow
a linear increasing relationship A(ti,) = Ao(1 + ctiny), in which c refers
to an annual increase rate of hurricane landfalls [35]. The annual in-
crease rate of 0.2% indicates that the number of hurricanes is increased
by 20% in the next century [8,35]. The mixed Poisson process is also
adopted to compute the long-term loss of the bridge under hurricanes
considering climate variability. Herein, the parameters within the sto-
chastic occurrence rate A ~ I'(a, ) are based on the information pre-
sented in Elsner and Bossak [31]. The rate has a mean of E[A] = A (the
same value as the rate in the homogeneous model) and the gamma
parameters are assumed as A ~ I'(0.49, 2). Given more information
(e.g., climate information), the parameters used in the non-homogenous
and mixed Poisson processes can be upgraded and the relevant results
would be computed.

Using Egs. (13),(21), and (26), the expectation, standard deviation,
coefficient of variation, skewness, and kurtosis of the long-term loss
under the homogeneous, non-homogeneous, and mixed Poisson pro-
cesses are obtained for the investigated bridge, as shown in Table 1.
When the service life reaches 150 years, the expected long-term loss of
bridge under the non-homogeneous Poisson model is approximately
increased by 5.0% in the changing climate. As a relatively small in-
crease in the occurrence rate is assumed in this example, the loss results
with respect to the non-homogeneous model do not show large differ-
ences from those of the homogeneous model.

According to Table 1, all skewness values are positive (right
skewed), which indicates a longer tail on the right side of the dis-
tribution of long-term loss. Homogeneous and non-homogeneous
models are moderately skewed (skewness between 0.5 and 1), while the
mixed model is highly skewed (skewness greater than 1). Meanwhile,
all kurtosis values are greater than 3, indicating that all the tails are
heavier and longer than a normal distribution. For the case using the
mixed Poisson process, the expected loss is the same as that using the
homogeneous Poisson process, but the standard deviation, skewness,
and kurtosis are much larger, which indicated potential heavy tail risks.
Special attention should be paid to this aspect within the decision-
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making process.

The proposed analytical method is validated by the Monte Carlo
simulation. In the simulation approach, the homogeneous model is
generated using the exponentially distributed inter-arrival times, while
a non-homogeneous process is simulated using the thinning method
[67]. The mixed Poisson process is simulated based on the stochastic
occurrence rate [68]. The results of the mean and standard deviation of
the long-term loss under the homogenous and non-homogeneous
models are indicated in Fig. 5. Fig. 6 shows the standard deviation of
long-term loss of the investigated bridge under different hurricane oc-
currence models. The loss under the mixed Poisson process has the
largest dispersion, as the mixed model involves large uncertainties of
climate variability, compared with the other two Poisson models. In the
figures, the comparison between the analytical and simulation results is
also provided. A good agreement among the results indicates the ac-
curacy and effectiveness of the proposed analytical method. Compared
with the analytical approach, the simulation of a single run with respect
to an assigned lifetime takes about one to two hours. The simulation
was conducted on a computer with Intel Core i7-6700 CPU (4 core,
3.40 GHz, 16 GB RAM) and Intel HD Graphics 530 GPU. In this example,
the simulation approach is time-consuming and computationally ex-
pensive.

A parametric study is developed to measure the sensitivity of long-
term loss to the monetary discount rate and variability of loss severity.
A series of incremental monetary discount rates from 1% to 5% is
considered for the homogeneous Poisson model. Fig. 7(a) illustrates
that the expected long-term loss decreases rapidly with the increase of
the monetary discount rate. The same trend is also observed for the
standard deviation of long-term loss. However, the tendency is opposite
with respect to the skewness and kurtosis. Fig. 7(b) shows that skewness
increases with the discount rates. Hence, appropriate predictions of the
monetary discount rate are significant for long-term loss estimation.

The loss severity is another key input for the loss assessment, as its
mean E[L] and standard deviation SD[L] are associated with large un-
certainty in hazard characteristics and climate environments. The im-
pact of the variability of loss severity on the long-term loss is assessed.
The long-term loss with the initial standard deviation SD[L] is taken as
the reference value. The long-term loss under the other four cases with
triple, double, one-half, and one-third SD[L] is assessed. The associated
standard deviations are presented in Fig. 8(a). It shows that the dis-
persion of long-term loss is significantly enlarged with the increase of
loss severity. However, the skewness of long-term loss is not influenced,
as shown in Fig. 8(b). From Egs. (18) and (19), the skewness and
kurtosis are independent of the exponentially distributed loss severity.

In the illustrative examples, structures are assumed to be fully re-
stored to the pre-hazard stage. This assumption is commonly used in the
loss assessment [14,15,69]. The level of restoration usually depends on
many factors, e.g., the acceptable level of structural performance, in-
vestment, and tradeoffs between appropriate performance levels and
investment. Further studies are needed to incorporate different re-
storation models.

Conclusions

This paper develops a novel moment generating function-based

Table 1

Long-term loss of the bridge under homogeneous, non-homogeneous, and mixed Poisson processes.
Poisson model Lifetime (years) Mean (10° USD) Standard deviation (10° USD) Coefficient of variation Skewness Kurtosis
Homogeneous 75 12.2099 4.3773 0.36 0.61 3.54
Non-homogeneous 12.9048 4.4686 0.35 0.59 3.51
Mixed 12.2099 17.9835 1.47 2.86 15.27
Homogeneous 150 14.9343 4.4849 0.30 0.57 3.49
Non-homogeneous 16.1929 4.5941 0.28 0.55 3.46
Mixed 14.9343 21.8010 1.46 2.86 15.26
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analytical approach to assess the long-term loss under both stationary
and nonstationary hazards. Higher-order moments of long-term loss
under four stochastic models are assessed, including the homogeneous
Poisson process, non-homogeneous Poisson process, mixed Poisson
process, and renewal process. The proposed approach is applied to two
illustrative examples to assess the loss severity and the long-term loss
incorporating parametric studies. The analytical approach is validated
by the Monte Carlo simulations. With a satisfactory agreement of the
results, the effectiveness and accuracy of the proposed approach are
validated. Following conclusions are drawn:

1. The moment generating function-based approach is proposed for the
higher-order analysis of long-term loss. By using the law of total

7

55 X10
a
n
2 2
= r=2% Ix3%
~15 r=<4%
k)
= | )% r=5%
g 1
g
305
o
&

0

0 50 100 150

Time interval #,; (year)

(a)

expectation, the developed approach successfully expands the ap-
plication scope of the moment generating function. Explicit ex-
pressions of moment generating functions are presented for the
homogeneous, non-homogeneous, and mixed Poisson processes.
When the derivations of moment generating functions are complex,
e.g., in a renewal process, properties of the stochastic process can be
utilized. The renewal function and the convolution technique are
used to derive moments under the renewal model. A new stochastic
model of the mixed Poisson process is introduced, which is asso-
ciated with a random variable for the rate function. Statistical mo-
ments of long-term loss under this new model are also effectively
assessed using the moment generating function.

2. The long-term loss of the investigated civil infrastructure under
different stochastic occurrence models of hazard is computed. In
particular, the homogeneous Poisson, non-homogeneous Poisson,
and mixed Poisson processes are investigated. The impact of climate
change and variability on hurricane-induced loss is assessed. Due to
the stochastic occurrence rate within the mixed Poisson process, the
relevant standard deviation, skewness, and kurtosis of long-term
loss are much larger than those associated with other models. In
addition, the long-term loss is sensitive to the change of loss severity
and monetary discount rate. Appropriate evaluations of these
parameters are required for the loss assessment.

3. Apart from the loss assessment, statistical moments can be used to
assess the long-term reliability. Moments can also be used to de-
scribe probabilistic characteristics of random variables. Some of the
derivations may not be applicable to stochastic processes without
Poisson properties. The moment generating function may not exist
due to divergent integrals.

4. Future studies are needed to incorporate different restoration
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Fig. 7. (a) Expectation and (b) skewness of the long-term loss considering different monetary discount rates.
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Appendix A. Moment generating function

The derivation of the moment generating function of long-term loss under the homogeneous and non-homogeneous Poisson models in Egs. (12)
and (21) is presented. Following the notations described in Section 3, the moment generating function of the long-term loss is

N (tint)
Oprp () = E [0 ] = B TT @1 (neTv)
k=1 (A1)

According to the properties of moment generating functions [70], the Eq. (A1) can be expressed as

(oo} n
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= exp(—Afin)
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+ Z '/0‘ '/;1 ‘/;n_l 73 (7)6 mk)fﬂ,".,Ty, (815 4w Sn IN (tine) )dSp--dsy T!e fint
n=1 k=1 (A2)

Eq. (A2) requires the joint probability density function of the arriving times Tj, To, ..., Tx. The loss severity is independent of the number of
arrivals N(t;,,). Hence, for the homogeneous Poisson process, the conditional joint probability density function of the arriving times Ty, To, ..., Tk
given N(t;,) = n can be represented by

P, (Gt 528N (i) = 1) = b (A3)

in which 0 < s; < s5 < ... < 83 < tin. The result shown in Eq. (A3) can be alternatively explained by the order statistics [40,70]. Given N(ti,,) = n,
the arriving time can be expressed by a sequence of independently identically uniformly distributed random variables {U;, Uy, ..., U,}

d
(T, T+, T)IN (ting) = 1) = (ine Uy Lint Uz, -+, £inc Up) (A4)

where d refers to that the same probability distribution is maintained on both sides. Random variables Uy, Us, ..., U, have a uniform distribution
over (0, 1). Consequently, substituting Eq. (A3) into Eq. (A2), the moment generating function of long-term loss can be rearranged as

10
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Within the period of (0, tiy:], the right-hand side of Eq. (A5) is noted as Q2. Taking derivatives on both sides with respect to t;,, the Eq. (A5) gives
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By solving this linear differential equation Eq. (A6), the moment generating function can be obtained as

tint _
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For the non-homogeneous Poisson process, the conditional probability density function of arriving times is

i1, (51 52080 IN (fin) = 1) = Q,, m) H/l(sk) s

where Q(t;,) is the expected number of hazard events [71], as indicated in Eq. (20). Following a similar computation procedure as shown in Eq. (A2),
the moment generating function can be expressed as
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Taking derivatives at two sides of Eq. (A9), the moment generating function of long-term loss associated with the non-homogeneous Poisson
process can be expressed as

Pt ) (1) = exp[ L a@leume) - 11ds A10)
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