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Abstract

Accurate predictions of pollutant concentrations at new locations are often of interest in air 

pollution studies on fine particulate matters (PM2.5), in which data is usually not measured at all 

study locations. PM2.5 is also a mixture of many different chemical components. Principal 

component analysis (PCA) can be incorporated to obtain lower-dimensional representative scores 

of such multi-pollutant data. Spatial prediction can then be used to estimate these scores at new 

locations. Recently developed predictive PCA modifies the traditional PCA algorithm to obtain 

scores with spatial structures that can be well predicted at unmeasured locations. However, these 

approaches require complete data, whereas multi-pollutant data tends to have complex missing 

patterns in practice. We propose probabilistic versions of predictive PCA which allow for flexible 

model-based imputation that can account for spatial information and subsequently improve the 

overall predictive performance.
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1 Introduction

In recent years, there has been a growing interest in studying the role and health impact of 

PM2.5, which is fine particulate matter with aerodynamic diameter less than 2.5 μm (Brook 

et al., 2004). PM2.5 is a complex mixture of many components, and its chemical profile may 

vary drastically across time and space (Brook et al., 2004; Bell et al., 2007; Dominici et al., 

2010). Obtaining a lower-dimensional representation of PM2.5 multi-pollutant data is often 

necessary, as including many correlated pollutants in a statistical model is problematic. 
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Principal component analysis (PCA) (Jolliffe, 1986) is an unsupervised dimension reduction 

technique that has gained popularity in multi-pollutant analysis (Dominici et al., 2003).

Examples of environmental studies utilizing PM2.5 data include studies on the associations 

between various health outcomes and long-term (Pope III et al., 2002; Künzli et al., 2005; 

Miller et al., 2007; Chan et al., 2015; Kaufman et al., 2016) or short-term (Gold et al., 2000; 

Tolbert et al., 2007; Pascal et al., 2014; Achilleos et al., 2017; Hsu et al., 2017; Tian et al., 

2017) exposures to PM2.5. For instance, Chan et al. (2015) found significant associations 

between long-term exposure to PM2.5 and higher systolic blood pressure, pulse pressure, and 

mean arterial pressure in the Sister Study. Kaufman et al. (2016) showed evidence of strong 

association between ambient concentration of PM2.5 and accelerated atherosclerosis in the 

Multi-Ethnic Study of Atherosclerosis and Air Pollution. In a recent systematic review of 

epidemiological studies, Achilleos et al. (2017) found substantial increases in all-cause, 

cardiovascular, and respiratory mortalities due to acute exposure of PM2.5. Many studies 

have suggested that the associations between PM2.5 total mass and various health outcomes 

can be modified by some specific constituents or the overall chemical composition (Franklin 

et al., 2008; Bell et al., 2009; Krall et al., 2013; Zanobetti et al., 2014; Dai et al., 2014; 

Kioumourtzoglou et al., 2015; Wang et al., 2017; Keller et al., 2018).

In the United States, PM2.5 studies often rely on data collected from regulatory monitoring 

networks managed by the Environmental Protection Agency (EPA). Unfortunately, for many 

pollution-health association studies, these fixed monitoring sites are usually not at the same 

locations where health outcomes are available. Such spatial misalignment motivates an 

exposure modeling stage in which a spatial prediction model, such as land-use regression or 

universal kriging, is often used to estimate the exposure at unmeasured locations where 

pollutant data is not observed (Brauer et al., 2003; Künzli et al., 2005; Crouse et al., 2010; 

Bergen et al., 2013; Chan et al., 2015).

Derivation of a lower-dimensional representation of PM2.5 multivariate data prior to making 

these spatial predictions is necessary, as predicting chemically and spatially correlated 

pollutant surfaces is challenging and intractable in most cases. As PCA is capable of 

performing dimension reduction without meddling with the health outcomes, it can be easily 

integrated in the analysis of spatially-misaligned data. Using PCA, a lower-dimensional 

scores of the multi-pollutant data at monitoring locations can be obtained. These monitoring 

scores, along with geographic covariates, can then be used in a spatial prediction model to 

estimate the corresponding scores at unmeasured locations. However, PCA does not account 

for exogenous geographic information and spatial correlations across neighboring locations. 

Hence, PCA may produce scores that summarize the monitoring data well but are difficult to 

be predicted at unmeasured locations. A spatially predictive PCA algorithm (Jandarov et al., 

2017) was developed to mitigate this issue by producing scores with spatial patterns that can 

be subsequently predicted well at new locations.

An additional challenge arises in practice where there is often a large amount of missing 

data, especially for multi-pollutant monitoring data. For example, not all PM2.5 components 

are measured at all monitoring sites, either due to environmental considerations, logistic 

constraints or lack of resources. The missing patterns can sometimes be complex or spatially 
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informative. Neither traditional PCA nor predictive PCA is well-equipped to deal with 

missing data, and thus a separate imputation step is required prior to dimension reduction. 

Existing non-parametric imputation schemes, ranging from simple mean imputation to 

sophisticated matrix completion, do not account for external spatial information. They may 

therefore distort the underlying spatial structure in the original data even before the 

dimension reduction stage, and thus negatively impact the predictive performance in the 

final stage.

In this paper, our goal is to enhance the dimension reduction procedure under the presence 

of missing data by proposing a probabilistic framework in place of the deterministic 

algorithm of predictive PCA. Similar to Jandarov et al. (2017), our methods seek to produce 

principal components that can be well predicted at new locations. The added probabilistic 

assumptions allow for flexible model-based imputation that takes into account the embedded 

geographic and spatial information, and thus eliminates the need for a preprocessing stage 

with non-parametric imputation.

2 Motivating example

To illustrate the merit of our proposed methods, we use data collected nationally by the Air 

Quality System (AQS) network of monitors managed by the EPA. Measurements of annually 

averaged PM2.5 total mass and its components are only collected at a few sub-networks of 

AQS. For consistency with previous related work (Keller et al., 2017; Jandarov et al., 2017), 

we choose to use the 2010 data from the Chemical Speciation Network (CSN), of which 

monitoring sites are located strategically in various urban areas. Data is available for 21 

components of PM2.5: elemental carbon (EC), organic carbon (OC), sulfate ion (SO4
2 − ), 

nitrate ion (NO3
−), aluminum (Al), arsenic (As), bromine (Br), cadmium (Cd), calcium (Ca), 

chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (MN), sodium (Na), 

sulfur (S), silicon (Si), selenium (Se), nickel (Ni), vanadium (V), and zinc (Zn).

Geographic covariates are obtained for all available sites through the Exposure Assessment 

Core Database by the MESA Air team at the University of Washington. Data on roughly 600 

Geographic Information System (GIS) covariates are available, including distances from 

roads, distances from major pollution sources, land-use information, vegetation indices, etc. 

The specific sources and attributions of these geographic covariates are carefully described 

in Bergen et al. (2013).

Data for 2010 is available for 221 CSN sites, with only 130 of those sites having complete 

data on all 21 components. Overall the amount of missing data in 2010 is roughly 32.1%. 

Not only do we compare the predictive performances following the application of different 

PCA methods, but we also examine how different the chemical profiles are when 

considering only complete sites versus all available data. The data processing, analysis 

procedures, and results are discussed in Section 6.
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3 Review of PCA and predictive PCA

3.1 Traditional PCA

We denote X ∈ ℝn × p as the exposure data with p pollutants observed at n monitoring sites 

with spatial coordinates s1,…, sn. The exposure data X may contain missing elements as 

some pollutants are not measured at all monitoring site. Let ri be a vector of k geographic 

covariates pertaining to the i-th monitoring site. Variables corresponding to locations where 

exposure data are of interest but not measured are distinguished by an asterisk, i.e. n*, X*, 

s1
∗, …, sn∗∗ , r1

∗, …, rn∗∗ .

The data of interest, X*, is high-dimensional but inaccessible. If X* were observed, 

dimension reduction could be applied directly to obtain a lower-dimensional representation 

U∗ ∈ ℝn∗ × q where q < p. Because of spatial misalignment, a spatial prediction model is 

required to estimate the unobserved exposures. Modeling highly correlated surfaces is 

challenging and inefficient given the final aim of recovering only the lower-dimensional U*. 

Thus, a sensible modeling procedure under the presence of spatially misaligned multi-

pollutant data with missing observations may consist of several steps: (1) imputation for 

missing data, (2) dimension reduction to derive scores at monitoring sites, and (3) spatial 

prediction to estimate corresponding scores at new locations. In this paper, we focus on 

dimension reduction using PCA, an unsupervised technique that is suitable for handling 

spatially-misaligned data.

Traditional PCA provides a mapping from the original p-dimensional exposure surface to a 

corresponding q-dimensional representation where X ≈ UV⊤ for q < p. We refer to the 

orthogonal columns of V ∈ ℝp × q as the loadings or principal directions. The columns of 

ℝn × q, {u1,…, uq}, are the principal component (PC) scores. These PC scores can be 

thought of as linear combinations of the original features of X. These newly transformed 

variables are considered uncorrelated due to orthogonality of the loadings, which is an 

attractive feature of PCA. The PCA algorithm is also optimal in the sense that the derived 

PC scores are conveniently ordered by the amount of variability explained in X.

3.2 Spatially predictive PCA

While PCA provides a unique solution in the reduced dimensions, the algorithm can be 

reformulated into a series of biconvex optimization problems, in which the loading and 

corresponding score of each PC can be solved in an iterative fashion (Shen and Huang, 

2008),

min
u, v

X − uv⊺ F
2 s.t. ‖v‖2 = 1 .

Utilizing such optimization framework, Jandarov et al. (2017) develop a spatially predictive 

PCA algorithm (PredPCA hereafter) by directly incorporating spatial information in the 

objective function:

Vu et al. Page 4

Environmetrics. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



min
α, v

X − Zα
‖Zα‖2

vT
F
2

,

where Z = R R , in which R ∈ ℝn × k contains k GIS covariates, and R ∈ ℝn × k  contains 

k  thin-plate spline basis functions. The induced PC score, Zα/∥Zα∥2, is constrained to have 

an underlying smooth spatial structure guided by geographic and spatial information 

encoded in Z. An advantage of PredPCA over PCA is the capability to identify principal 

directions that lead to spatially predictable PC scores at unmeasured locations. Recent work 

by Bose et al. (2018) further improves PredPCA by adaptively selecting information to be 

included in Z for each PC.

3.3 Challenge with missing data

When monitoring data is incomplete, both PCA and PredPCA in their current forms cannot 

handle missing data directly. Simply omitting locations with missing data may reduce the 

usable sample size substantially; thus, imputation is often required.

Folch-Fortuny et al. (2015) proposed new methods for building PCA models with missing 

data, using known-data regression. These proposed methods offer decent performance in 

simulated data and some chemical data applications. However, some methods either were 

strongly time-consuming due to multiple imputation (MI) or unfeasible with a larger number 

of variables. Liu and Brown (2013) compared five iterative imputation methods, including 

general iterative PC imputation, singular value decomposition imputation, regularized 

expectation-maximization (EM) with multiple ridge regression, regularized EM with 

truncated total least squares, and MI by chained equations. No single imputation scheme 

emerged as the overall best method in both simulated and real datasets. Focusing on air 

pollution datasets, Gómez-Carracedo et al. (2014) also evaluated various methods to fill in 

missing data, including single imputation techniques and MI. Under mild to moderate 

missing data conditions, these methods performed similarly, however, MI led to imputed 

values that had more variability. It is important to note that these techniques proposed or 

reviewed in these papers are based on only observed pollutant values but without additional 

spatial information. When the missingness is spatially informative, such imputation schemes 

may bias the results of these techniques. Furthermore, these methods were not geared 

towards spatially-misaligned data, where the ultimate goal is to obtain reliable and 

meaningful predictions of the exposure and its chemical profile at new locations.

In the next section, we propose a probabilistic framework that aims to derive spatially 

predictive PC scores, with the ability to handle incomplete monitoring data and induce 

flexible model-based imputation that accounts for spatial and geographic information. We 

refer to this framework as probabilistic predictive PCA, or ProPrPCA. In particular, we 

propose two versions of ProPrPCA. The first model, ProPrPCA-Krige, uses a latent variable 

structure similar to probabilistic PCA (Tipping and Bishop, 1999), with the addition of 

spatial patterns in the latent variable space. We discuss the connection of this model to some 

existing methods in multivariate analysis and highlight its contribution to handling missing 

data. The second proposed model, ProPrPCA-Spline, is motivated by the optimization 
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problem of PredPCA. This model utilizes thin-plate spline basis functions to capture spatial 

patterns in the data and is less computationally intensive than the Krige version.

4 Probabilistic predictive PCA

4.1 Probabilistic formulation with latent variable structure: the Krige model

Tipping and Bishop (1999) proposed a probabilistic formulation of PCA based on a 

Gaussian latent variable model. Their model assumes X = uv⊤ + E, where u ∼ N(0, In), 

v ∈ ℝp, ∥v∥2 = 1, and the elements of E are independently and identically distributed (i.i.d.) 

with mean zero and variance γ2. We extend this framework by directly imposing a spatial 

mean and covariance structure on the latent variable space. That is, given a desired number 

of PCs, q, our model assumes

X = ∑
l = 1

q
(ulvl

T + El),

ul = Rβl + ηl,

where βl ∈ ℝk includes the coefficients corresponding to the geographic covariates in R, 

while ηl ∈ ℝn has zero mean and spatial covariance Σ(ξl), with ξl denoting the spatial 

covariance parameters of the latent space. We use similar constraint ∥vl∥2 = 1, and assume 

that Σ(ξl) has no nugget effect. The latent score ul is stochastic with a full spatial 

distribution.

Let Θl be the collection of the model parameters, {vl, βl, γl
2, ξl}, corresponding to the l-th 

PC. When the monitoring data is complete, estimate of the first loading, v1, can be obtained 

using the original data matrix X. The corresponding score u1 at monitoring locations can 

then be calculated by projecting X onto the direction of v1. In later steps, Θl can be 

estimated using Xl = Xl − 1 − ul − 1vl − 1
⊺ , where X1 = X. The PC score ul, can then be 

derived by projecting Xl onto vl. Note that we use projection of the data matrix to obtain the 

PC score in each step instead of using model estimate of the latent mean Rβl. When some 

elements of X are missing, estimation of Θl is based only on the observed elements of Xl. 

Estimated PC score ul can then be made by projecting the model-based imputed exposure 

data onto the direction of vl.

Our approach to estimate Θl in each step is similar to the EM algorithm employed by 

Tipping and Bishop (1999). We consider the latent variable ul to be the “missing” portion, 

and thus the “complete” data consists of the observed Xl and the latent variable ul. The goal 

is then to maximize the joint likelihood of Xl and ul. The mathematical details and 

algorithms for both complete and missing monitoring data are described in the Supplemental 

Materials. We refer to this model as ProPrPCA-Krige due to the kriging formulation in the 

model assumptions.
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Our ProPrPCA-Krige model is closely related to the SupSVD model recently proposed by Li 

et al. (2016). The SupSVD model is expressed as X = UV⊤ + E where U = YB + F. Here U 
is a the latent score matrix, V is a full-rank loading matrix, F and E are error matrices. Li et 

al. (2016) also propose an EM approach to estimate the model parameters. The ProPrPCA-

Krige model is also related to the envelope model proposed in Cook et al. (2010), which is a 

more general version compared to SupSVD. As discussed in Li et al. (2016), the SupSVD 

model attempts to extract a low-rank representation of the original data based on some 

auxiliary data, while the envelope model aims to reduce variation in regression coefficient 

estimation. We note that our model is motivated by spatial misalignment where data are not 

observed at cohort locations, but some geographic information is available. The end goal is 

also different from the SupSVD and envelope models, as we seek to accurately predict a 

low-rank representation of the data at unmeasured locations. Thus, our model is designed 

such that patterns of available covariates and spatial structure are properly induced in the 

latent scores at locations where we have data, so that we can easily predict them at new 

locations. An additional contribution is that we develop EM algorithms for parameter 

estimation for both complete and missing data scenarios.

4.2 Probabilistic formulation within thin-plate splines: the Spline model

While the ProPrPCA-Krige algorithm is cohesive with a prediction stage using universal 

kriging, the parameter estimation appears to be computational burdensome. In general, the 

EM algorithm is often computationally expensive and convergence is not always guaranteed. 

We propose a more simplified version of ProPrPCA,

X = ∑
l = 1

q
((Zβl)vl

T + El),

where Z contains thin-plate spline functions similar to PredPCA. Compared to the 

ProPrPCA-Krige model, the latent score ul no longer has a stochastic component. Instead, ul 

is now a smooth structure enriched with spatial patterns included in Z.

The overall procedure to obtain PC scores is similar to the Krige algorithm. The algorithm 

with complete monitoring data is shown in Table 1. When some elements of Xl are missing, 

estimation of Θl = {vl, βl, γl
2} is based on the observed elements of Xl, and estimated PC 

score ul can be derived by projecting the model-based imputed exposure matrix onto the 

direction of vl. When the monitoring data is complete, the algorithm for parameter 

estimation at each step is straightforward. The mathematical derivations and the algorithm 

for missing data are described in the Supplemental Materials. We refer to this model as 

ProPrPCA-Spline due to the use of thin-plate spline basis functions.

5 Simulations

We conduct two sets of simulations to compare the different PCA approaches. The first set 

involves a low-dimensional setting with three-pollutant exposure surfaces. The second set 
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illustrates a higher-dimensional setting with 15 generated pollutant surfaces. In both cases, 

the multi-pollutant data is generated on a 100 × 100 grid (N = 10, 000).

In each simulation, we randomly choose 400 training locations and 100 testing locations. We 

then apply the four competing methods (PCA, PredPCA, ProPrPCA-Krige, and ProPrPCA-

Spline) to the training data, Xtrain, to obtain the corresponding loading vl
train and score ul

train, 

for l = 1,…,q where q is a desired number of PCs. We then use ul
train and relevant covariate 

information to obtain ul
test, predicted scores at testing locations, in a universal kriging model 

with an exponential covariance assumption. Finally, we compare the predicted scores to the 

known scores, ul
test, which are defined by projecting Xtest onto the direction of vl

train.

We also consider various scenarios in which some training data is missing. These scenarios 

include missing completely at random (MCAR) , with 30%, 35%, and 40% of missing data, 

and missing at random (MAR), in which the missing patterns are associated with the 

generated spatial covariates. When there is missing data, we apply low-rank matrix 

completion (LRMC) via the SoftImpute algorithm (Mazumder et al., 2010) to fill in the 

missing entries prior to PCA and PredPCA.

There are several metrics to evaluate the predictive performance. The metric of interest is the 

prediction R2 adapted from Szpiro et al. (2011), which reflects the correlation between ul
test

and ul
test. We also look at the reconstruction error (RE), defined as ‖Xtest − Xtest‖F  where 

Xtest = Utest(V train)T, Utest = u1
test … uq

test , and V train = v1
train … vq

train .

5.1 Three-dimensional exposure surfaces

We simulate three-dimensional surfaces with {x1, x2, x3}, and three independent covariates 

[r1, r2, r3}. Only r1 ∼ N(0, IN) is “observed” and thus used in the universal kriging model. 

Both r2 ∼ N(0, IN) and r3 ∼ N(0, IN) are unobserved and primarily used to induce 

correlations across [x1, x2, x3}. We generate data such that x1 = 4r1 + 2r3 + ϵ1, x2 = 3r2 + ϵ2, 

and x3 = 2r1 + 4r2 + ϵ3, where ϵ1, ϵ2, ϵ3 ∼ N(0, Σ), where Σ has an exponential structure with 

partial sill σ2 = 3.52, nugget τ2 = 1, and range ϕ = 50. Under this setting, only x1 and x3 are 

predictable by r1. While not dependent on r1, x2 is moderately correlated with x3 via r2. We 

also generate a second set of data in which the errors ϵ1, ϵ2, ϵ3 ∼ N(0, 1). For MAR 

scenarios, x1 is missing at training locations where r1 values are larger than its 80th sample 

percentile, while x2 and x3 have 20% MCAR. We look at the first PC for these simulations, 

i.e. q = 1.

Figure 1 shows the prediction R2’s and REs across 1,000 simulations for data generated with 

spatially correlated noise. Table 2 displays the means and standard deviations of the 

estimated loadings from each method when the training data is complete. The principal 

direction produced by PCA is loaded heavily on x3 and only moderately on both x1 and x2. 

This leads to poor predictive performance for PCA (median R2 = 0.40). Meanwhile, loadings 

from the other three methods put the most weight on x1 and some on x3, thus they have 

higher prediction R2’s (median R2’s are about 0.75) and lower REs.
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Under MCAR scenarios, prediction R2’s substantially decrease and REs increase for both 

PCA and PredPCA as the amount of missing data increases. Median R2 of PredPCA drops 

to as low as 0.64 when the training data are 35% MCAR. On the other hand, there are only 

some subtle reductions in the predictive performances of both ProPrPCA approaches. Under 

MAR, the performances of both PCA and PredPCA are significantly worse. While 

ProPrPCA-Krige performs better than PredPCA on average, the variability of ProPrPCA-

Krige in performance is high across simulations. Despite not achieving the same predictive 

level as it had under complete data, ProPrPCA-Spline has the highest predictive performance 

among the four competing methods.

Table 3 shows the estimated loadings with complete data, while Figure 2 shows the 

prediction R2’s and REs across 1,000 simulations for data generated with independent noise. 

Similar trends, where ProPrPCA outperforms the rest when missing data is more severe, are 

also observed in this set of generated data.

5.2 High-dimensional exposure surfaces

We also demonstrate the performance of ProPrPCA algorithms via simulations with 15 

generated pollutants. The full setup is described in the Supplemental Materials. Overall, the 

high-dimensional exposure surfaces are generated from three underlying scores, u1, u2, and 

u3. The data generating mechanism is such that u1 is the most spatially predictable, u2 is 

moderately predictable, and u3 is not predictable by any covariates used in the universal 

kriging model. The loadings used to generate the data are sparse, in order to clearly identify 

the behaviors of the PCA methods. That is, the first five pollutants, (x1, x2, x3, x4, x5), are 

generated from u1. Meanwhile, (x6, x7, x8, x9, x10) are generated from u2, and (x11, x12, x13, 

x14, x15) are generated from u3. For MAR scenario, we induce a mild spatial pattern in the 

missing data for the first five pollutants. In these simulations, we evaluate the predictive 

performance based on two PCs, i.e. q = 2.

We create two scenarios: scenario 1 with Var(u1) = 10, Var(u2) = 7.5, and Var(u3) = 5, and 

scenario 2 with Var(u3) = 10, Var(u1) = 7.5, and Var(u2) = 5. In scenario 1, where the order 

of variance contribution is the same as the order of spatial predictability, we expect all 

methods to identify linear combinations of u1 and u2 as the first two PCs when training data 

is complete. In scenario 2, the non-predictable score u3 has the highest variance 

contribution. Thus we expect PCA to identify linear combinations of u3 and u1 for the first 

two PCs, with a large contribution of u3 for the first PC. Meanwhile, we anticipate the other 

predictive methods to still pick linear combinations of u1 and u2.

Table 4 shows the results for the prediction R2’s across 1,000 simulations under scenario 1. 

As expected under scenario 1, all methods perform comparably when the training data is 

complete. While the results for MCAR 30% and 40% are not shown in this chapter, we 

observed similar patterns to the three-dimensional simulations where the performance of 

PCA and PredPCA decreases steadily as the amount of MCAR missing data increases. 

Under MCAR 35% setting, ProPrPCA-Spline has the best median R2’s for both PCs.

Under MAR, data among the first five pollutants are more likely to be missing at locations 

with extreme geographic covariate values. This setup effectively has an impact on the actual 
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variance contributions of the underlying scores in a given sample, and particularly lowers the 

variability contributed by u1. As a result, for PC1, PCA is likely to produce loadings with 

higher contribution from u2 than before. As the predictive methods (PredPCA and 

ProPrPCA) attempt to balance out the trade-off between data representativeness and spatial 

predictability, these methods will also likely to obtain linear combinations with more 

weights from u2 for PC1 than before. Subsequently, linear combinations obtained for PC2 

will have more weights from u1 than before. This explains the decreases in median R2’s of 

PC1 for all methods but slight increases for PC2. ProPrPCA-Spline notably has the best 

median R2 for PC1.

We further compare the differences in R2 values between ProPrPCA-Spline and PredPCA in 

Figure 3. With complete training data, ProPrPCA-Spline only outperforms PredPCA for less 

than 60% of the simulations, and the magnitude of the difference between the two methods 

is rather negligible. Under MCAR 35%, ProPrPCA-Spline outperforms PredPCA for both 

PCs in 69.7% of the 1,000 simulations, and, for 28.5% of the time, ProPrPCA-Spline is 

better in one of the PCs. Finally, under MAR, there are only 2.5% of the simulations in 

which ProPrPCA-Spline is worse than PredPCA for both PCs. There are 38.7% of the 

simulations where ProPrPCA-Spline is better for only PC1 (blue top-left quadrant). 

Particularly for points lying in this quadrant, the greater spread along the y-axis implies that 

a higher increase in R2 for PC1 is often accompanied by a smaller decrease in R2 for PC2. 

Thus ProPrPCA-Spline shows more prominent benefits than PredPCA for PC1 without 

trading off too much in predictability of PC2.

Table 5 and Figure 4 show the corresponding results under scenario 2. In this scenario, as 

expected, PCA often identifies linear combinations of u3 and u1 as the first two PCs, and 

thus the predictive performance is generally poor, especially for PC1. ProPrPCA-Krige 

severely underperforms compared to PredPCA and ProPrPCA-Spline, even with complete 

data. Both PredPCA and ProPrPCA-Spline produce similar median R2’s with complete data. 

Similar to scenario 1, ProPrPCA-Spline performs consistently well with an increasing 

amount of MCAR, while the performance of PredPCA deteriorates. ProPrPCA-Spline shows 

clear benefits under MAR, particularly for PC1 (0.72) compared to PredPCA (0.63). The 

visualization of the differences in prediction R2’s between ProPrPCA-Spline and PredPCA 

in Figure 4 further supports similar conclusions to those of scenario 1, when the order of 

spatial predictability is the same as the order of variance contributed.

6 Data application

6.1 Methods

In this section, we first compare the pollutant profiles obtained by different dimension 

reduction methods to the annual average 2010 CSN data. Prior to our analysis, we take a 

similar approach to Keller et al. (2017) and convert the mass concentrations of PM2.5 

components to proportions by dividing by the total mass of PM2.5, and then log-transform 

these proportions. We also apply a similar preprocessing procedure as described in Keller et 

al. (2017) and Jandarov et al. (2017) to the GIS covariates to be used in the predictive 

algorithms and the spatial prediction model. That is, we remove covariates that are missing 

at all chosen sites, that have the same values in at least 80% of the sites, or that have at least 
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2% of their values being more than five standard deviations away from the sample mean. We 

also remove land-use covariates whose maximal value is only 10% among all chosen sites. 

Finally, we apply PCA on the processed GIS data and use the first five PCs in later stages.

After the preprocessing procedure, we end up with a total of 221 CSN sites, only 130 of 

which have complete data on all 21 PM2.5 components. We first apply three methods, PCA, 

PredPCA, and ProPrPCA-Spline, on the 130 sites with complete data (the “complete” set). 

We then proceed to apply these methods on all 221 CSN sites (the “full” set), where LRMC 

is applied prior to PCA and PredPCA. The goal is to assess how the estimated loadings and 

PC scores change when using only sites with complete data compared with using all 

available sites. The design matrix, Z, used in PredPCA and ProPrPCA-Spline includes the 

five PCs of GIS covariates and thin-plate spline basis functions generated from the spatial 

coordinates, similar to Jandarov et al. (2017). We do not use ProPrPCA-Krige in our 

comparison because of its inferior and unstable performance compared to ProPrPCA-Spline 

in our previously described simulations. In addition, the computational burden of the Krige 

version is exponentially larger than the Spline version, as described in the Supplemental 

Material.

We also conduct leave-one-site-out cross-validation to compare the predictive performances 

among these methods. In each round of cross-validation, we leave out one site among the 

complete sites as test data. We then perform dimension reduction and fit a universal kriging 

model on training data comprised of either only the remaining complete sites (the 

“complete” training data), or all remaining sites (the “full” training data), while the testing 

data in each round stays the same. The goal is to assess the predictive performance of 

different methods with both complete and missing data.

6.2 Results

6.2.1 The multi-pollutant profile—Figure 5 shows the estimated loadings and the 

spatial distributions of corresponding scores of the first PC for four combinations of method 

and dataset: PCA applied to the complete set, PredPCA applied to the complete set, 

imputation followed by PredPCA applied to the full set, and ProPrPCA-Spline applied to the 

full set. The results for ProPrPCA-Spline when using the complete set (not shown here) are 

essentially identical to PredPCA results.

The estimated PC1 loadings are similar across PredPCA applied to either set and to 

ProPrPCA-Spline, with highly positive weights on SO4
2 −  and S and highly negative weights 

on Al, Ca, Na, and Si. Highly positive scores are observed in the east and part of the 

Midwest, probably due to sulfur emissions from coal combustion (Thurston et al., 2011; 

Hand et al., 2012). Negative scores are observed in the west and southwest, and have a 

classic resuspended soil profile (Thurston et al., 2011; Tong et al., 2012; Clements et al., 

2017). While the spatial distribution of PCA scores looks similar to other methods, loadings 

obtained by PCA applied to the complete set are fundamentally different than the rest, with 

much weaker positive weights on SO4
2 −  and S, and strongly negative weights on many 

additional elements, including Cr, Cu, Fe, Mn, Ni, Zn.
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Figure 6 shows the estimated loadings and the score distributions for the PC that has a 

highly positive composition of Na, Ni, and V. This feature corresponds to PC3 obtained by 

PCA or PredPCA applied to the complete set, and PC2 obtained by PredPCA or ProPrPCA-

Spline applied to the full set. ProPrPCA-Spline results in highly positive scores along the 

west coast, the east coast, and southeast region, possibly due to residual oil combustion 

(Thurston et al., 2011), and marine aerosol (Thurston et al., 2011; Kotchenruther, 2017). 

ProPrPCA-Spline also identifies pronounced negative loadings on Zn and NO3
−. The 

remaining three combinations of methods and datasets are able to produce fairly similar 

maps with strongly positive scores along the west coast and across the northern east coast, 

although they fail to highlight some relevant coastal locations in the southeast region.

Figure 7 shows the results for features highly positive in NO3
− and Zn, which corresponds to 

PC2 obtained by PCA or PredPCA applied to the complete set, and PC3 obtained by 

PredPCA or ProPrPCA-Spline applied to the full set. For all methods, highly positive scores 

are observed in the northern Midwest, possibly due to nitrate hazes (Coutant et al., 2003; 

Pitchford et al., 2009; Hand et al., 2012). Additionally, loadings produced by ProPrPCA-

Spline are also strongly positive in Ni, V, and negative in Al, Si, with greater magnitude 

compared to other methods. Thus, moderately positive scores are also observed along the 

west coast. ProPrPCA-Spline also results in highly positive scores in the southeast region 

due to the calcium poor soils in that region compared to Al and Si content (Shacklette and 

Boerngen, 1984).

6.2.2 Cross-validation results—Finally, we look at the predictive performances in 

leave-one-site-out cross-validations. While having decent performance for PC2 and PC3 (R2 

= 0.51), using PCA applied to the complete training data yields a poor result for PC1 (R2 = 

0.24). PredPCA has similar performances for PC1 with either complete or full training data. 

However, there is a substantial trade-off in performances between PC2 and PC3, which can 

potentially be explained by the switching between PC2 and PC3 observed in the pollutant 

profile. ProPrPCA-Spline applied on the full training data shows the highest predictive 

performance for PC1 (R2 = 0.57) and PC3 (R2 = 0.69), but suffers from a decrease in the 

ability to predict PC2 well (R2 = 0.35). In the Supplemental Materials, these results are 

given with further details, and we also discuss an alternate approach to evaluate the 

predictive performance using the variance explained to reorder the PCs under each iteration 

of the cross-validation procedure.

A possible explanation to the overall relatively low R2’s for all methods is that we use the 

same pre-specified spatial information encoded in Z to characterize the spatial variability 

across all PCs, which may not be effective. A potential solution, which is beyond the scope 

of this paper, is adaptive selection of features to be included in Z, which is proposed and 

discussed in Bose et al. (2018).

7 Discussion

We propose a probabilistic extension to the PredPCA algorithm developed by Jandarov et al. 

(2017). The proposed ProPrPCA algorithms can be applied to misaligned multi-pollutant 
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data with missing observations. The ultimate goal is to improve the predictive performance 

of the exposure modeling stage that is often required in air pollution epidemiology studies 

that rely on fixed site monitoring data. In spite of its simplicity, these probabilistic 

extensions are nontrivial and effective in mitigating the impact of missing data on the 

predictive performance of the exposure model. The proposed methods also eliminate the 

necessity of a separate imputation procedure prior to dimension reduction. The scientific 

motivation, especially in health-pollution studies on PM2.5 and its components, includes the 

ability to use estimated PC scores at study locations as effect modifiers for the main health 

associations of interest.

We have demonstrated via simulations that ProPrPCA-Spline consistently outperforms its 

competitors under various missing observation scenarios. Its computational speed is on par 

with both PCA and PredPCA, which are non likelihood-based methods. The complex 

version, ProPrPCA-Krige, assumes a universal kriging formulation for the latent variable, 

with the mean model enriched by spatial covariates, and spatial correlations among the 

residuals. ProPrPCA-Spline incorporates thin-plate spline basis functions, which can be 

regarded as an alternative to a fixed low-rank kriging model (Kammann and Wand, 2003). 

Intuitively, the latent specification of ProPrPCA-Krige would have been cohesive with the 

later prediction stage using universal kriging. Possible explanations for the inferior 

performance of the Krige algorithm in our simulations include the difficult nature of the 

numerical optimization for spatial variance parameters, the number of parameters to 

estimate, and no guaranteed convergence to the global optima using the EM algorithm.

PCA is closely related to factor analysis (Harman, 1976), k-mean clustering (MacQueen, 

1967), or positive matrix factorization (Paatero and Tapper, 1994), which have recently been 

used as source apportionment or dimension reduction for exposure data prior to health 

analyses (Sarnat et al., 2008; Ostro et al., 2011; Zanobetti et al., 2014; Ljungman et al., 

2016). These applications, however, have been limited to time-series analysis in specific 

regions, without the challenge of spatial misalignment and severe missing data. Recent work 

by Keller et al. (2017) and Jandarov et al. (2017) has modified the traditional clustering and 

PCA methods, respectively, to the setting of spatially-misaligned multi-pollutant data, where 

the products of the dimension reduction procedure are desired to be spatially predictable. We 

further extend these frameworks by considering the realistic challenge of missing monitoring 

data. Our proposed framework essentially performs model-based imputation, which is 

cohesive and complementary to the spatial prediction stage. While one can impute the 

original data with sophisticated low-rank matrix completion techniques, which also operate 

based on the assumption of a latent variable structure, such methods only rely on observed 

measures. Therefore, if the missing patterns depend on external geographic covariates, such 

imputation schemes cannot recover the correct data structure.

In the literature, spatial latent variable models have been explored under the Bayesian 

framework. For example, Wang and Wall (2003) proposed a generalized common spatial 

factor model using MCMC techniques. Hogan and Tchernis (2004) formulated a Bayesian 

factor analysis model, which was later extended by Liu et al. (2005) to motivate a 

generalized spatial structural equations model, and by Zhu et al. (2005) to deal with 

spatiotemporal data. These rich modeling approaches have not been utilized in the setting of 
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multi-pollutant analysis with spatial misalignment. The main goal of these models is often to 

explain the associations between the original variables and the underlying factors. Here the 

goal of an improved PCA algorithm is to obtain a lower-dimensional representation of the 

data in a spatially predictive way for subsequent use in spatial prediction and health 

regression.

The multi-stage procedure in analyzing health-pollution association under spatial 

misalignment is a common and pragmatic approach (Crouse et al., 2010; Bergen et al., 2013; 

Chan et al., 2015). However, it is important to be mindful of the potential implications of 

measurement errors and model uncertainty of the spatial prediction stage on the health 

inference model, a topic which has been discussed extensively in Szpiro and Paciorek 

(2013). Additionally, these authors emphasized that the spatially structured components of 

the covariates used in the health model should be included in the exposure modeling stage to 

guarantee a consistent estimation of the health effects. In the multi-pollutant setting with 

missing observations, additional stages of imputation and dimension reduction lead to more 

complicated layers of uncertainty. Our proposed methods eliminate the need for a separate 

imputation step prior to dimension reduction, as these two steps are handled simultaneously 

using a model-based approach. A possible alternative to the multi-stage paradigm is a 

unified approach where both exposure and health data are considered simultaneously in a 

joint model, while leveraging the factor analysis framework to perform dimension reduction. 

Szpiro and Paciorek (2013) point out several disadvantages of such joint model, including 

sensitivity to influential or outlying health data, vulnerability to model mis-specifications, 

and computational burden, especially with multi-pollutant data.

While we focus our discussion in this paper exclusively on studies involving data on PM2.5 

and its components, our proposed method is both appropriate for other multi-pollutant 

studies and applicable to other fields in general where spatial misalignment necessitates an 

exposure modeling procedure. Future work should include further understanding and 

improvement of the ProPrPCA-Krige algorithm, and a possible extension to spatiotemporal 

data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

Achilleos S, Kioumourtzoglou M-A, Wu C-D, Schwartz JD, Koutrakis P, and Papatheodorou SI 
(2017). Acute effects of fine particulate matter constituents on mortality: A systematic review and 
meta-regression analysis. Environment International, 109:89–100. [PubMed: 28988023] 

Bell ML, Dominici F, Ebisu K, Zeger SL, and Samet JM (2007). Spatial and temporal variation in 
PM2.5 chemical composition in the United States for health effects studies. Environmental Health 
Perspectives, 115(7):989. [PubMed: 17637911] 

Bell ML, Ebisu K, Peng RD, Samet JM, and Dominici F (2009). Hospital admissions and chemical 
composition of fine particle air pollution. American Journal of Respiratory and Critical Care 
Medicine, 179(12):1115–1120. [PubMed: 19299499] 

Bergen S, Sheppard L, Sampson PD, Kim S-Y, Richards M, Vedal S, Kaufman JD, and Szpiro AA 
(2013). A national prediction model for PM2.5 component exposures and measurement error–

Vu et al. Page 14

Environmetrics. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corrected health effect inference. Environmental Health Perspectives, 121(9):1017. [PubMed: 
23757600] 

Bose M, Larson T, and Szpiro AA (2018). Adaptive predictive principal components for modeling 
multivariate air pollution. Environmetrics, 29(8).

Brauer M, Hoek G, van Vliet P, Meliefste K, Fischer P, Gehring U, Heinrich J, Cyrys J, Bellander T, 
Lewne M, and Brunekreef B (2003). Estimating long-term average particulate air pollution 
concentrations: application of traffic indicators and geographic information systems. Epidemiology, 
14(2):228–239. [PubMed: 12606891] 

Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, 
Smith SC, and Tager I (2004). Air pollution and cardiovascular disease. Circulation, 109(21):2655–
2671. [PubMed: 15173049] 

Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, and 
Sandler DP (2015). Long-term air pollution exposure and blood pressure in the Sister Study. 
Environmental Health Perspectives, 123(10):951. [PubMed: 25748169] 

Clements AL, Fraser MP, Upadhyay N, Herckes P, Sundblom M, Lantz J, and Solomon PA (2017). 
Source identification of coarse particles in the Desert Southwest, USA using positive matrix 
ractorization. Atmospheric Pollution Research, 8(5):873–884. [PubMed: 30505154] 

Cook RD, Li B, and Chiaromonte F (2010). Envelope models for parsimonious and efficient 
multivariate linear regression. Statistica Sinica, pages 927–960.

Coutant BW, Engel-Cox J, and Swinton KE (2003). Compilation of existing studies on source 
apportionment for PM2.5 Technical report of the Office of Air Quality planning and Standards, 
Washington, D.C.: USEPA.

Crouse DL, Goldberg MS, Ross NA, Chen H, and Labrèche F (2010). Postmenopausal breast cancer is 
associated with exposure to traffic-related air pollution in Montreal, Canada: a case–control study. 
Environmental Health Perspectives, 118(11):1578. [PubMed: 20923746] 

Dai L, Zanobetti A, Koutrakis P, and Schwartz JD (2014). Associations of fine particulate matter 
species with mortality in the United States: a multicity time-series analysis. Environmental Health 
Perspectives, 122(8):837. [PubMed: 24800826] 

Dominici F, Peng RD, Barr CD, and Bell ML (2010). Protecting human health from air pollution: 
shifting from a single-pollutant to a multi-pollutant approach. Epidemiology (Cambridge, Mass.), 
21(2):187.

Dominici F, Sheppard L, and Clyde M (2003). Health effects of air pollution: A statistical review. 
International Statistical Review, 71(2):243–276.

Folch-Fortuny A, Arteaga F, and Ferrer A (2015). Pca model building with missing data: New 
proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems, 146:77–88.

Franklin M, Koutrakis P, and Schwartz J (2008). The role of particle composition on the association 
between PM2.5 and mortality. Epidemiology (Cambridge, Mass.), 19(5):680.

Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, and 
Verrier R (2000). Ambient pollution and heart rate variability. Circulation, 101(11):1267–1273. 
[PubMed: 10725286] 

Gómez-Carracedo M, Andrade J, López-Mahía P, Muniategui S, and Prada D (2014). A practical 
comparison of single and multiple imputation methods to handle complex missing data in air 
quality datasets. Chemometrics and Intelligent Laboratory Systems, 134:23–33.

Hand J, Schichtel B, Pitchford M, Malm W, and Frank N (2012). Seasonal composition of remote and 
urban fine particulate matter in the United States. Journal of Geophysical Research: Atmospheres, 
117(D5).

Harman HH (1976). Modern factor analysis. University of Chicago Press.

Hogan JW and Tchernis R (2004). Bayesian factor analysis for spatially correlated data, with 
application to summarizing area-level material deprivation from census data. Journal of the 
American Statistical Association, 99(466):314–324.

Hsu C-Y, Chiang H-C, Chen M-J, Chuang C-Y, Tsen C-M, Fang G-C, Tsai Y-I, Chen N-T, Lin T-Y, 
Lin S-L, and Chen Y-C (2017). Ambient PM2.5 in the residential area near industrial complexes: 
Spatiotemporal variation, source apportionment, and health impact. Science of the Total 
Environment, 590:204–214. [PubMed: 28279531] 

Vu et al. Page 15

Environmetrics. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jandarov RA, Sheppard LA, Sampson PD, and Szpiro AA (2017). A novel principal component 
analysis for spatially misaligned multivariate air pollution data. Journal of the Royal Statistical 
Society: Series C (Applied Statistics), 66(1):3–28.

Jolliffe IT (1986). Principal component analysis and factor analysis In Principal component analysis, 
pages 115–128. Springer.

Kammann E and Wand MP (2003). Geoadditive models. Journal of the Royal Statistical Society: 
Series C (Applied Statistics), 52(1):1–18.

Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL, Daviglus ML, Roux AVD, Gassett 
AJ, Jacobs DRJ, Kronmal R, Larson TV, Navas-Acien A, Olives C, Sampson PD, Sheppard L, 
Siscovick DS, Stein JH, Szpiro AA, and Watson KE (2016). Association between air pollution and 
coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of 
Atherosclerosis and Air Pollution): a longitudinal cohort study. The Lancet, 388(10045):696–704.

Keller JP, Drton M, Larson T, Kaufman JD, Sandler DP, and Szpiro AA (2017). Covariate-adaptive 
clustering of exposures for air pollution epidemiology cohorts. The Annals of Applied Statistics, 
11(1):93. [PubMed: 28572869] 

Keller JP, Larson TV, Austin E, Barr RG, Sheppard L, Vedal S, Kaufman JD, and Szpiro AA (2018). 
Pollutant composition modification of the effect of air pollution on progression of coronary artery 
calcium: The Multi-Ethnic Study of Atherosclerosis. Environmental Epidemiology, 2(3):e024. 
[PubMed: 30854505] 

Kioumourtzoglou M-A, Austin E, Koutrakis P, Dominici F, Schwartz J, and Zanobetti A (2015). PM2.5 
and survival among older adults: effect modification by particulate composition. Epidemiology 
(Cambridge, Mass.), 26(3):321.

Kotchenruther RA (2017). The effects of marine vessel fuel sulfur regulations on ambient PM2.5 at 
coastal and near coastal monitoring sites in the US. Atmospheric Environment, 151:52–61.

Krall JR, Anderson GB, Dominici F, Bell ML, and Peng RD (2013). Short-term exposure to particulate 
matter constituents and mortality in a national study of US urban communities. Environmental 
Health Perspectives, 121(10):1148. [PubMed: 23912641] 

Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F, Thomas D, Peters J, and Hodis 
HN (2005). Ambient air pollution and atherosclerosis in Los Angeles. Environmental Health 
Perspectives, 113(2):201. [PubMed: 15687058] 

Li G, Yang D, Nobel AB, and Shen H (2016). Supervised singular value decomposition and its 
asymptotic properties. Journal of Multivariate Analysis, 146:7–17.

Liu X, Wall MM, and Hodges JS (2005). Generalized spatial structural equation models. Biostatistics, 
6(4):539–557. [PubMed: 15843593] 

Liu Y and Brown SD (2013). Comparison of five iterative imputation methods for multivariate 
classification. Chemometrics and Intelligent Laboratory Systems, 120:106–115.

Ljungman PL, Wilker EH, Rice MB, Austin E, Schwartz J, Gold DR, Koutrakis P, Benjamin EJ, Vita 
JA, Mitchell GF, Vasan RS, Hamburg NM, and Mittleman MA (2016). The impact of multi-
pollutant clusters on the association between fine particulate air pollution and microvascular 
function. Epidemiology (Cambridge, Mass.), 27(2):194.

MacQueen J (1967). Some methods for classification and analysis of multivariate observations In 
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, 
pages 281–297. Oakland, CA, USA.

Mazumder R, Hastie T, and Tibshirani R (2010). Spectral regularization algorithms for learning large 
incomplete matrices. Journal of Machine Learning Research, 11(8):2287–2322. [PubMed: 
21552465] 

Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, and Kaufman JD 
(2007). Long-term exposure to air pollution and incidence of cardiovascular events in women. 
New England Journal of Medicine, 2007(356):447–458.

Ostro B, Tobias A, Querol X, Alastuey A, Amato F, Pey J, Pérez N, and Sunyer J (2011). The effects 
of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain. 
Environmental Health Perspectives, 119(12):1781. [PubMed: 21846610] 

Paatero P and Tapper U (1994). Positive matrix factorization: A non-negative factor model with 
optimal utilization of error estimates of data values. Environmetrics, 5(2):111–126.

Vu et al. Page 16

Environmetrics. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pascal M, Falq G, Wagner V, Chatignoux E, Corso M, Blanchard M, Host S, Pascal L, and Larrieu S 
(2014). Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine 
French cities. Atmospheric Environment, 95:175–184.

Pitchford ML, Poirot RL, Schichtel BA, and Malm WC (2009). Characterization of the winter 
midwestern particulate nitrate bulge. Journal of the Air & Waste Management Association, 
59(9):1061–1069. [PubMed: 19785273] 

Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, and Thurston GD (2002). Lung 
cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal 
of the American Medical Association, 287(9):1132–1141. [PubMed: 11879110] 

Sarnat JA, Marmur A, Klein M, Kim E, Russell AG, Sarnat SE, Mulholland JA, Hopke PK, and 
Tolbert PE (2008). Fine particle sources and cardiorespiratory morbidity: an application of 
chemical mass balance and factor analytical source-apportionment methods. Environmental Health 
Perspectives, 116(4):459. [PubMed: 18414627] 

Shacklette HT and Boerngen JG (1984). Element concentrations in soils and other surficial materials 
of the conterminous United States Geological Survey Professional Paper 1270, Washington, D.C.

Shen H and Huang JZ (2008). Sparse principal component analysis via regularized low rank matrix 
approximation. Journal of Multivariate Analysis, 99(6):1015–1034.

Szpiro AA and Paciorek CJ (2013). Measurement error in two-stage analyses, with application to air 
pollution epidemiology. Environmetrics, 24(8):501–517. [PubMed: 24764691] 

Szpiro AA, Paciorek CJ, and Sheppard L (2011). Does more accurate exposure prediction necessarily 
improve health effect estimates? Epidemiology (Cambridge, Mass.), 22(5):680.

Thurston GD, Ito K, and Lall R (2011). A source apportionment of US fine particulate matter air 
pollution. Atmospheric Environment, 45(24):3924–3936. [PubMed: 24634604] 

Tian L, Zeng Q, Dong W, Guo Q, Wu Z, Pan X, Li G, and Liu Y (2017). Addressing the source 
contribution of PM2.5 on mortality: an evaluation study of its impacts on excess mortality in 
China. Environmental Research Letters, 12(10):104016.

Tipping ME and Bishop CM (1999). Probabilistic principal component analysis. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology), 61(3):611–622.

Tolbert PE, Klein M, Peel JL, Sarnat SE, and Sarnat JA (2007). Multipollutant modeling issues in a 
study of ambient air quality and emergency department visits in Atlanta. Journal of Exposure 
Science and Environmental Epidemiology, 17(S2):S29. [PubMed: 18079762] 

Tong DQ, Dan M, Wang T, and Lee P (2012). Long-term dust climatology in the western United States 
reconstructed from routine aerosol ground monitoring. Atmospheric Chemistry and Physics, 
12(11):5189–5205.

Wang F and Wall MM (2003). Generalized common spatial factor model. Biostatistics, 4(4):569–582. 
[PubMed: 14557112] 

Wang Y, Shi L, Lee M, Liu P, Di Q, Zanobetti A, and Schwartz JD (2017). Long-term exposure to 
PM2.5 and mortality among older adults in the southeastern US. Epidemiology (Cambridge, 
Mass.), 28(2):207–214.

Zanobetti A, Austin E, Coull BA, Schwartz J, and Koutrakis P (2014). Health effects of multi-pollutant 
profiles. Environment International, 71:13–19. [PubMed: 24950160] 

Zhu J, Eickhoff J, and Yan P (2005). Generalized linear latent variable models for repeated measures 
of spatially correlated multivariate data. Biometrics, 61(3):674–683. [PubMed: 16135018] 

Vu et al. Page 17

Environmetrics. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Prediction R2’s and reconstruction errors across 1,000 replications with a three-dimensional 

surface generated with spatially correlated noises. Under missing data scenarios, LRMC is 

used prior to the application of either PCA or PredPCA.
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Figure 2: 
Prediction R2’s and reconstruction errors across 1,000 replications with a three-dimensional 

surface generated with independent noises. Under missing data scenarios, LRMC is used 

prior to the application of either PCA or PredPCA.
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Figure 3: 
Differences in prediction R2 values between ProPrPCA-Spline and PredPCA for high-

dimensional scenario 1. Each dot represents result from one simulation. Percentages indicate 

the proportion out of 1,000 simulations.
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Figure 4: 
Differences in prediction R2 values between ProPrPCA-Spline and PredPCA for high-

dimensional scenario 2. Each dot represents the result from one simulation. Percentages 

indicate the proportion out of 1,000 simulations.
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Figure 5: 

Estimated loadings for the feature with highly positive weights on SO4
2 −  and S, and 

corresponding scores, obtained from different PCA algorithms applied to 2010 CSN data: 

PCA and PredPCA applied to the complete set (130 sites with complete data), PredPCA and 

ProPrPCA-Spline applied to the full set (all 221 available sites).
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Figure 6: 
Estimated loadings for the feature with highly positive weights on Na, Ni, and V, and 

corresponding scores, obtained from different PCA algorithms applied to 2010 CSN data: 

PCA and PredPCA applied to the complete set (130 sites with complete data), PredPCA and 

ProPrPCA-Spline applied to the full set (all 221 available sites).
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Figure 7: 

Estimated loadings for the feature with highly positive weights on NO3
− and Zn, and 

corresponding scores, obtained from different PCA algorithms applied to 2010 CSN data: 

PCA and PredPCA applied to the complete set (130 sites with complete data), PredPCA and 

ProPrPCA-Spline applied to the full set (all 221 available sites).
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Table 1:

The algorithm for ProPrPCA-Spline with complete monitoring data

Input X, Z, q, and tmax
for l in {1, …, q} do

Xl Xl − 1 − ul − 1vl − 1
⊺ where X0 = X, u0 = 0, and v0 = 0

Initialize vl
(0), (γl

(0))2, βl
(0), and t = 1

while not converged or t < tmax do

vl
(t + 1) vl ∕ ‖vl‖2 where vl Xl

⊺Zβl
(t) ∕ ‖Zβl

(t)‖2
2

βl
(t + 1) (Z⊺Z)−1 Z ⊗ vl

(t + 1) ⊺
vec(Xl)

(γl
(t + 1))2 (np)−1‖vec(Xl) − (In ⊗ vl

(t + 1))Zβl
(t + 1)‖2

2

t t + 1
end while

vl vl
(t), γ l

2 (γl
(t))2, βl βl

(t)

ul = Xlvl
end for

Output {v1, …, vq}, {u1, …, uq}, {β1, …, βq}, {γl
2, …, γq

2}
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Table 2:

Means (standard deviations) of estimated PC1 loadings across 1,000 replications with a three-dimensional 

surface with spatially correlated noise and complete training data.

X1 X2 X3

PCA 0.40 (0.11) 0.41 (0.09) 0.80 (0.07)

PredPCA 0.88 (0.04) −0.07 (0.04) 0.46 (0.09)

ProPrPCA-Krige 0.85 (0.04) −0.11 (0.08) 0.50 (0.08)

ProPrPCA-Spline 0.86 (0.03) −0.12 (0.07) 0.49 (0.07)
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Table 3:

Means (standard deviations) of estimated PC1 loadings across 1,000 replications with a three-dimensional 

surface with independent noise and complete training data.

X1 X2 X3

PCA 0.53 (0.06) 0.39 (0.04) 0.75 (0.03)

PredPCA 0.89 (0.02) 0.01 (0.02) 0.45 (0.04)

ProPrPCA-Krige 0.88 (0.02) 0.03 (0.04) 0.47 (0.04)

ProPrPCA-Spline 0.89 (0.02) 0.01 (0.03) 0.46 (0.04)

Environmetrics. Author manuscript; available in PMC 2021 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vu et al. Page 28

Table 4:

The median prediction R2’s across 1,000 simulations for high-dimensional scenario 1. Under missing data 

scenarios, LRMC is used prior to either PCA or PredPCA.

PC1 Complete MCAR 35% MAR

PCA 0.83 0.80 0.61

PredPCA 0.84 0.81 0.63

ProPrPCA-Krige 0.83 0.83 0.64

ProPrPCA-Spline 0.84 0.83 0.69

PC2 Complete MCAR 35% MAR

PCA 0.60 0.58 0.67

PredPCA 0.60 0.58 0.68

ProPrPCA-Krige 0.60 0.60 0.69

ProPrPCA-Spline 0.60 0.60 0.68
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Table 5:

The median prediction R2’s across 1,000 simulations for high-dimensional scenario 2. Under missing data 

scenarios, LRMC is used prior to either PCA or PredPCA.

PC1 Complete MCAR 35% MAR

PCA 0.01 0.01 0.00

PredPCA 0.81 0.78 0.63

ProPrPCA-Krige 0.70 0.66 0.41

ProPrPCA-Spline 0.81 0.80 0.72

PC2 Complete MCAR 35% MAR

PCA 0.78 0.74 0.60

PredPCA 0.56 0.54 0.62

ProPrPCA-Krige 0.30 0.26 0.23

ProPrPCA-Spline 0.56 0.56 0.59
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