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SUMMARY

Incomplete understanding of how hepatosteatosis transitions to fibrotic non-alcoholic 

steatohepatitis (NASH) has limited therapeutic options. Two molecules that are elevated in 

hepatocytes in human NASH liver are cholesterol, whose mechanistic link to NASH remains 

incompletely understood, and TAZ, a transcriptional regulator that promotes fibrosis but whose 

mechanism of increase in NASH is unknown. We now show that increased hepatocyte cholesterol 

upregulates TAZ and promotes fibrotic NASH. ASTER-B/C-mediated internalization of plasma 

membrane cholesterol activates soluble adenylyl cyclase (sAC; ADCY10), triggering a calcium-

RhoA-mediated pathway that suppresses β-TrCP/proteasome-mediated TAZ degradation. In mice 

fed a cholesterol-rich NASH-inducing diet, hepatocyte-specific silencing of ASTER-B/C, sAC, or 

RhoA decreased TAZ and ameliorated fibrotic NASH. The cholesterol-TAZ pathway is present in 

primary human hepatocytes, and associations among liver cholesterol, TAZ, and RhoA in human 

NASH liver are consistent with the pathway. Thus, hepatocyte cholesterol contributes to fibrotic 

NASH by increasing TAZ, suggesting new targets for therapeutic intervention.
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Cholesterol is consistently elevated in human NASH but its mechanistic link to NASH progression 

remains incompletely understood. Wang et al. now define a cholesterol-TAZ connection in which 

increased hepatocyte cholesterol upregulates TAZ through an adenylyl cyclase-calcium-RhoA 

pathway and promotes fibrotic NASH.

INTRODUCTION

Nonalcoholic steatohepatitis (NASH) is emerging as the leading cause of liver disease, but 

incomplete understanding of pathophysiology has led to a paucity of treatment options. 

Fibrosis caused by activation of hepatic stellate cells (HSCs) correlates best with clinical 

outcome in NASH (Angulo et al., 2015a; Angulo et al., 2015b; Dulai et al., 2017; Puche et 

al., 2013; Vilar-Gomez et al., 2018). The transcriptional regulator TAZ (WWTR1) is 

markedly increased in hepatocytes in human and mouse liver during steatosis-to-NASH 

progression (Khajehahmadi et al., 2019; Mooring et al., 2019; Wang et al., 2016). Increased 

TAZ results in increased hepatocyte Indian hedgehog (Ihh) transcription and secretion, 

leading to HSC activation, liver fibrosis, inflammation, and cell death (Wang et al., 2016). 

Importantly, hepatocyte-specific silencing of TAZ in multiple mouse models at the steatosis 

stage blocks NASH, and TAZ silencing can also partially reverse NASH, including fibrosis 

(Wang et al., 2019; Wang et al., 2016) a key test of potential therapeutic potential.

Emerging from these studies is the critical question as to how TAZ is increased in 

hepatocytes during the progression of NASH. Previous studies have shown that TAZ and a 

related factor called YAP are regulated primarily by phosphorylation by so-called Hippo 

kinases, which act in sequence to activate the TAZ/YAP kinase LATS (Koo and Guan, 2018; 

Zheng and Pan, 2019). When the Hippo kinases are active, phosphorylated TAZ and/or YAP 

are inactive due to their sequestration in the cytoplasm by 14-3-3 or their degradation by 

proteasomes or autophagy (Huang et al., 2012; Lee et al., 2018). Proteasomal degradation 

involves recognition of certain “phosphodegrons” on TAZ/YAP by specific E3 ligases, such 

as β-TrCP (Liu et al., 2010; Zhao et al., 2010). Certain cues, such as a rigid extracellular 

matrix and RhoA activation, lead to deactivation of Hippo kinases, accumulation of non-

phosphorylated TAZ/YAP in the nucleus, and induction of genes that have cognate binding 

sites in their promoters for the TEAD family of proteins, which are the TAZ/YAP-interacting 

proteins that mediate changes in gene transcription (Chang et al., 2018; Ohgushi et al., 2015; 

Zhao et al., 2008).

Another consistent observation in humans is the association of elevated liver cholesterol 

content with NASH fibrosis (Caballero et al., 2009; Ioannou, 2016; Min et al., 2012; Puri et 

al., 2007), but it remains unclear whether and how cholesterol might promote NASH. 

Hypothesized pro-NASH roles of cholesterol include perturbation of hepatocyte functions 

by changes in cellular membrane fluidity; triggering of inflammatory pathways in liver 

macrophages and hepatocytes; and activation of HSCs (Ioannou, 2016).

We now address and integrate these two critical questions in NASH by showing that 

cholesterol increases hepatocyte TAZ in NASH and through this pathway promotes NASH 

fibrosis. We demonstrate that cholesterol acts through a soluble adenylyl cyclase (sAC)–

protein kinase A (PKA)–inositol triphosphate receptor (IP3R)–calcium–RhoA pathway to 
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prevent TAZ proteasomal degradation. These findings provide new mechanistic insight into 

the role of hepatocyte cholesterol in NASH; elucidate how a key fibrosis inducer, TAZ, is 

increased in NASH; and suggest a number of new targets for therapeutic intervention against 

NASH fibrosis.

RESULTS

TAZ Protein Correlates with Liver Cholesterol and Fibrosis in NASH

Cholesterol content is increased in the livers of humans with NASH compared with normal 

liver (Caballero et al., 2009; Puri et al., 2007), and unesterified (“free”) cholesterol is 

correlated with disease severity (Caballero et al., 2009; Ioannou, 2016; Puri et al., 2007). In 

addition, high-cholesterol diets promote NASH in various mouse models (McGettigan et al., 

2019; Savard et al., 2013; Van Rooyen et al., 2011; Wouters et al., 2008). To test for a 

possible correlation between liver cholesterol and TAZ in a mouse model of non-alcoholic 

fatty liver disease (NAFLD), we compared mice fed a diet rich in palmitate and fructose 

(NAFLD diet) that contained 0.2%, 0.5%, or 1.25% cholesterol. We have previously shown 

that 16 weeks of 1.25% cholesterol diet-feeding increases hepatocyte TAZ and causes 

multiple features of NASH, including fibrosis, in a TAZ-dependent manner (Wang et al., 

2016; Zhu et al., 2018). Consistent with relatively poor absorption of dietary cholesterol in 

this strain of mice (Schwarz et al., 2001), only the 1.25%-cholesterol diet significantly 

increased liver free cholesterol content, mimicking a hallmark in human NASH liver (Puri et 

al., 2007) (Figure 1A), and only the 1.25% diet was able to increase TAZ (Figure 1B). 

Further, only the livers from the 1.25% cholesterol-fed mice had increases in fibrosis; 

inflammatory cells; Tgfb1 and Acta2 mRNAs, which are markers of HSC activation; and 

Mcp1 mRNA, which is a marker of inflammation (Figures 1C and S1A). These mice also 

had elevated ALT in the plasma, which indicates liver injury (Figure S1B). To test the 

cholesterol-TAZ association in humans, we analyzed liver biopsy specimens from humans 

with NASH and variable liver cholesterol values and found a strong positive correlation 

between free cholesterol content and TAZ protein (Figures 1D and S1C). Thus, there is an 

association among cholesterol content, TAZ protein, and fibrosis in the livers of mice with 

NAFLD, and the association between liver cholesterol and TAZ protein extends to humans 

with NASH.

Cholesterol Loading of Hepatocytes Increases TAZ, While Cholesterol Depletion of 
Hepatocytes Lowers TAZ via Proteasomal Degradation

To determine if there was a cell-autonomous, causal link between cholesterol and TAZ in 

hepatocytes, we incubated primary mouse and human hepatocytes with cholesterol-enriched 

phospholipid liposomes (Lipo-Chol) to increase their cholesterol content and found that this 

treatment caused a marked increase in TAZ protein (Figures 1E and 1F). We also examined 

AML12 cells, which are non-transformed mouse hepatocytes that have a relatively high 

basal content of both cholesterol and TAZ (Figure 1G, left). Incubation with phospholipid 

liposomes, which induces cholesterol efflux from cells, lowered filipin staining and TAZ, 

which could be restored by then incubating these liposome-treated cells with cholesterol-

enriched liposomes (Lipo-Chol) (Figure 1G, middle and right). The mRNA encoding TAZ 

(Wwtr1) was unaffected by these treatments, and there were no differences in WWTR1 
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mRNA expression among human livers with normal histology, steatosis, and NASH (Figures 

1H and 1I). Boosting endogenous cholesterol synthesis by transfecting cholesterol-depleted 

AML12 cells with a constitutively active form of SREBP-2 (Horton et al., 1998) also 

increased TAZ protein (Figure 1J). The data also show that Lipo-Chol, as expected (Brown 

and Goldstein, 1997), suppressed the level of the active, mature form of SREBP-2. Thus, 

either exogenous or endogenous cholesterol increases TAZ protein but not its mRNA in 

hepatocytes.

We next tested the possibility that cholesterol increased TAZ by enhancing its stability 

against proteasomal degradation by assaying TAZ at various times after incubation with 

liposomes vs. vehicle control ± the proteasome inhibitor MG132. There was a marked 

decrease in TAZ by 6 h of liposome incubation, and TAZ stability was restored upon 

cholesterol repletion (Figure 1K). The decrease in TAZ seen with cholesterol depletion was 

inhibited by MG132 (Figure S1D). Similar results were found when cycloheximide was 

used to block new protein synthesis (Figures S1E and S1F).

We next considered a role for the E3 ligase β-TrCP, which was implicated previously in TAZ 

proteasomal degradation in several cancer cell lines in vitro (Huang et al., 2012; Liu et al., 

2010). We found that silencing β-TrCP partially blocked the decrease in TAZ in liposome-

treated cells (Figures 1L, S1G, and S1H); β-TrCP level itself was not altered by cholesterol 

in vitro or in vivo (Figures S1I and S1J). To test the role of β-TrCP in vivo, mice fed the 

0.2% diet, which does not induce NASH by itself, were injected with hepatocyte-specific 

AAV8-H1-shBtrc (Ghorpade et al., 2018; Wang et al., 2016; Zheng et al., 2019) (Figure 

1M). This treatment did not affect body weight, percent liver:body weight, or fasting blood 

glucose (FBG) (Figures S1K–S1M). As hypothesized, the livers of these mice demonstrated 

higher TAZ protein despite unchanged Wwtr1 mRNA (Figure 1N); more fibrosis; higher 

expression of mRNAs encoding inflammatory cytokines and proteins associated with HSC 

activation, including the TAZ gene target Ihh; more inflammatory cells; and increased 

TUNEL+ cells; and higher plasma ALT compared with control mice (Figures 1O–1P, S1N, 

and S1O). Although β-TrCP can affect canonical Wnt signaling in other settings (Marikawa 

and Elinson, 1998), hepatocyte β-TrCP silencing did not affect liver phospho-Ser31-Ser37-

Thr41-β-catenin, a measure of canonical Wnt activation (Figure S1P, with validation of the 

β-catenin endpoint in AML12 cells in Figure S1Q). These combined data suggest that 

cholesterol increases TAZ protein and TAZ-stimulated NASH by decreasing β-TrCP-

mediated TAZ proteasomal degradation.

The Decrease in TAZ in Cholesterol-Depleted Hepatocytes Requires LATS1/2-Mediated TAZ 
Phosphorylation

LATS-mediated TAZ phosphorylation can promote its proteasomal degradation (Huang et 

al., 2012; Liu et al., 2010). In this context, we found that LATS2 kinase activity on 

recombinant TAZ was lower in the high-TAZ livers of mice fed the 1.25% vs. 0.2% or 0.5% 

cholesterol diets (Figure 2A). Further, phospho-TAZ was increased by cholesterol depletion 

of AML12 cells and decreased by cholesterol repletion of these cells and primary human 

hepatocytes (Figures 2B, 2C, and S2A). Importantly, the decrease in TAZ in cholesterol-

depleted AML12 cells was abrogated by LATS2 silencing (Figures 2D, upper blot, and 
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S2B). As predicted based on the coordinated regulation of TAZ and YAP (Koo and Guan, 

2018; Zheng and Pan, 2019), cholesterol depletion also lowered YAP in a LATS2-dependent 

manner (Figure 2D, middle blot). LATS1 activity, as assessed by its phosphorylation, was 

also decreased in the livers of 1.25% cholesterol-fed mice, and silencing of LATS1 

prevented TAZ decrease in cholesterol-depleted AML12 cells (Figures S2C–S2E). Next, we 

transfected AML12 cells with various hemagglutinin (HA)-tagged Ser→Ala TAZ mutants at 

LATS-mediated phosphodegron sites (Huang et al., 2012; Lei et al., 2008). Liposome-

mediated lowering of TAZ was uniquely prevented in S117A-TAZ-transfected cells (Figures 

2E and S2F–S2I), and post-cycloheximide decay of S117A-TAZ after liposome treatment 

was markedly slower than that of wild-type TAZ (Figure S2J). Moreover, we observed 

phospho-S117 in immunoprecipitated TAZ from MG132-treated, cholesterol-depleted 

HepG2 cells, analyzed by LC-MS/MS (Figure S2K). To investigate these findings in vivo, 
Wwtr1fl/fl mice fed the 0.2%-cholesterol diet for 8 weeks were injected with AAV8-TBG-

Cre to deplete endogenous hepatocyte TAZ and with AAV8-TBG-HA-wild-type (WT) 

human TAZ or AAV8-TBG-HA-S117A human TAZ (Figure 2F). At the time of sacrifice 8 

weeks later, the two groups of mice had similar body weights, percent liver:body weights, 

and fasting blood glucose (Figures S3A–S3C). As hypothesized, there was higher liver 

expression of HA-S117A versus HA-WT TAZ protein despite similar expression of human 

WWTR1 mRNA and similar knockdown efficiency of mouse Wwtr1 (Figures 2G and S3D). 

Most importantly, S117A-TAZ mice demonstrated high levels of fibrosis; inflammatory 

cells; and mRNAs encoding proteins associated with activated HSCs, including Ihh 
compared with WT-TAZ mice, concomitant with higher plasma ALT and more TUNEL+ 

cells in the liver (Figures 2H–J and S3E). These combined data suggest that hepatocyte 

cholesterol depletion promotes LATS-mediated TAZ-S117 phosphorylation and consequent 

TAZ proteasomal degradation and, conversely, that hepatocyte cholesterol enrichment 

stabilizes TAZ by preventing its phosphorylation by LATS and thereby promotes NASH.

Cholesterol Activates RhoA Activity to Decrease LATS2 Activity and Increase TAZ

As RhoA activation can inhibit Hippo kinases (Fujimoto et al., 2015; Wada et al., 2011; 

Zhao et al., 2012), we hypothesized that cholesterol might stabilize TAZ by activating 

RhoA. Using two assays of RhoA activity, we found that cholesterol depletion of AML12 

cells lowered RhoA activity, which was then restored by incubation with cholesterol-rich 

liposomes (Figure 3A). Cholesterol enrichment of primary human hepatocytes similarly 

activated RhoA (Figure 3B). Moreover, the restoration of RhoA activity by cholesterol was 

blocked by the C3 Rho inhibitor or by silencing RhoA with siRhoa (Figures 3C, S3F, and 
S3G). As expected, RhoA inhibition or silencing also lowered YAP. As a link to LATS2, we 

showed that siRhoa restored LATS2 kinase activity in cholesterol-repleted AML12 cells 

(Figure 3D).

We next assayed RhoA activity in the livers from the mice fed the three diets described in 

Figure 1. As hypothesized, RhoA activity was higher in the livers of mice fed the NASH-

inducing 1.25%-cholesterol diet than in mice fed the non-NASH-inducing 0.5%- and 0.2%- 

cholesterol diets (Figure 3E), and RhoA activity was strongly correlated with liver free 

cholesterol content and TAZ protein in the livers of humans with various degrees of NAFLD 

(Figure 3F and Supplemental Table 1). To test causation AAV8-H1-shRhoa, was injected 
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into mice fed the 1.25% cholesterol diet for 8 weeks. Analysis after 8 more weeks on the 

diet revealed that RhoA silencing led to a decrease in liver TAZ protein, but not Wwtr1 
mRNA (Figures 3G and 3H). As was observed in vitro, YAP was also lower, although the 

relative degree of lowering in this in vivo setting was less than that of TAZ. As predicted, the 

livers of shRhoa-treated mice had increased LATS1/2 activity but no change β-TrCP 

(Figures S3H and S3I). Despite similar body weights, percent liver:body weights, and 

fasting blood glucose between the two groups of mice (Figures S3J–S3L), hepatocyte RhoA 

silencing resulted in decreases in the liver of fibrosis, inflammatory cells, Ihh mRNA, and 

mRNAs encoding proteins associated with activated HSCs, and they also had lower plasma 

ALT and more TUNEL+ cells in the liver (Figures 3I–K and S3M). In theory, the modest 

decrease in YAP in these mice could have contributed to the improvement in NASH. 

However, in mice treated with AAV8-H1-shTaz, which markedly suppresses NASH 

progression (Wang et al., 2016), liver YAP was not affected (Figure S3N), suggesting that 

TAZ can promote NASH independently of YAP. In summary, RhoA mediates the effect of 

cholesterol on inactivating LATS2 and increasing TAZ in hepatocytes and thereby promotes 

steatosis-to-NASH progression.

Cholesterol-mediated stabilization of TAZ could be caused by cholesterol itself or a 

metabolite. In AML12 cells treated with an inhibitor of acyl-coenzyme A:cholesterol 

acyltransferase (ACAT), which converts cholesterol to cholesterol fatty acid esters, basal 

TAZ increased, indicating the importance of free cholesterol rather than cholesterol fatty 

acid esters (Figure S4A). Further, neither cholest-5-en-3β-ol (epi-cholesterol) nor 

enantiomeric cholesterol (ent-cholesterol) (Westover et al., 2003) was able to activate RhoA 

(Figure S4B). Next, we increased the expression of the mRNAs encoding two cholesterol-

metabolizing enzymes—sterol 27-hydroxylase (CYP27A1) and the cholesterol 25-

hydroxylase (CH25H)—by treating cholesterol-loaded AML12 cells with the LXR agonist 

T0901317 (Gilardi et al., 2009; Liu et al., 2018) (Figure S4C). LXR agonism lowered TAZ 

protein in cholesterol-loaded TAZ in these cells, and TAZ expression was restored by 

silencing either CYP27A1 or CH25H (Figure S4D), likely reflecting changes in cellular 

cholesterol content under these conditions. These data indicate that TAZ pathway is 

relatively specific for cholesterol.

Cholesterol Activates RhoA via a Cyclic AMP-Dependent Protein Kinase (PKA)-IP3R-
Calcium Pathway

Based on findings in other cell types (Masiero et al., 1999; Zhou et al., 1991), we considered 

the hypothesis that cholesterol might activate RhoA by increasing cytoplasmic calcium. We 

transfected AML12 cells with the genetically encoded calcium indicator GCaMP6f 

engineered to localize to the cytoplasm or ER (Wang et al., 2017) and found that cholesterol 

depletion led to a decrease in cytoplasmic calcium and an increase in ER calcium (Figure 

4A), consistent with cholesterol promoting ER calcium release into the cytoplasm. 

Moreover, the calcium ionophore ionomycin increased RhoA activity and TAZ in 

cholesterol-depleted AML12 cells with (Figures 4B and 4C), while the cytoplasmic calcium 

sequestering agent BAPTA-AM lowered RhoA activity and TAZ in cholesterol-repleted 

AML12 cells (Figures 4D and 4E).
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Inositol triphosphate receptors (IP3R) are key mediators of ER calcium release, and we 

found that the IP3R inhibitor xestospongin C blocked both the increase in cytoplasmic 

calcium and the decrease in ER calcium in cholesterol-loaded AML12 cells (Figure S4E) 

and abrogated the increase in TAZ in cholesterol-loaded AML12 cells (Figure 4F). Further, 

increased TAZ in cholesterol-loaded AML12 cells could be suppressed by siRNA-mediated 

silencing any of the IP3Rs, although the suppression appeared somewhat greater with siItpr1 

(Figures 4G and S4F). We also found that cholesterol enrichment of AML12 cells and 

human hepatocytes increased phospho-IR3R (Figures 4H and 4I), which is a marker of IP3R 

activation (D’Alessandro et al., 2018).

We demonstrated previously that IP3R could be serine-phosphorylated and activated by 

cyclic AMP-dependent protein kinase (PKA) (Wang et al., 2016; Wang et al., 2012). In this 

context, a marked increase in phospho-Creb, which is a marker of PKA activation, in 

cholesterol-repleted AML12 cells and in the livers of mice fed a high- vs. low-cholesterol 

diets (Figures 4J and 4K). Most importantly, inhibition of PKA by H-89 or silencing using 

siPrkaca prevented the increase in TAZ in cholesterol-repleted AML12 cells (Figures 4L 

and S4G), while PKA activation with 8-Br-cAMP increased phospho-IP3R and TAZ in 

cholesterol-depleted AML12 cells (Figure 4M). These combined data support a cholesterol–

RhoA–TAZ pathway mediated through PKA-mediated IP3R activation, leading to activation 

of RhoA by cytoplasmic calcium.

Cholesterol-Mediated Induction of the PKA-TAZ Pathway in Hepatocytes Requires Adenylyl 
Cyclase 10

PKA is activated by cAMP, and in mammalian cells there are two families of adenylyl 

cyclase that synthesize cAMP: hormone-responsive transmembrane adenylyl cyclases 

(tmACs: ADCY1-9), which are activated by G-protein alpha subunit, group S (Gsα); and 

soluble adenylyl cyclase (sAC: ADCY10), which is distributed throughout the cytoplasm 

and inside intracellular organelles (Kamenetsky et al., 2006; Zippin et al., 2003). To 

determine if tmACs were involved in the TAZ pathway, we first silenced Gsα (Gnas) in 

cholesterol-repleted AML12 cells and found that this failed to block the increase in TAZ in 

cholesterol-repleted AML12 cells (Figures 5A and S5A). Next, we compared the effect of 

ddAdo, an inhibitor selective for tmACs relative to sAC (Bitterman et al., 2013) with LRE1, 

an inhibitor selective for sAC relative to tmACs (Ramos-Espiritu 2016), in primary mouse 

hepatocytes. LRE1, but not ddAdo, inhibited cholesterol-mediated increase in TAZ and 

cAMP (Figures 5B and 5C). As validation, ddAdo, but not LRE1, blocked glucagon-

induced phospho-CREB, which signals via GPCR linked to Gsα and a tmAC (Figure S5B). 

Further, silencing sAC in hepatocytes, including human hepatocytes, lowered TAZ, p-IP3R1, 

and active RhoA (Figures 5D–5F, S5C, and S5D). Most importantly, treatment of 

Adcy10fl/fl mice fed the 1.25%-cholesterol diet with AAV8-TBG-Cre to silence hepatocyte 

sAC lowered liver TAZ, fibrosis, inflammatory cells, Ihh mRNA, and mRNAs encoding 

proteins associated with activated HSCs, TUNEL+ cells, and plasma ALT (Figures 5G–5J 

and S5E–S5H). Thus, sAC is the source of cAMP responsible for cholesterol-mediated 

activation of the PKA–IP3R–RhoA–TAZ pathway in hepatocytes.
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The Cholesterol-TAZ Pathway Requires Internalization of Plasma Membrane Cholesterol

As sAC is localized in intracellular sites, we reasoned that activation of the TAZ pathway 

required internalization of plasma membrane cholesterol. In support of this idea, treatment 

of cholesterol-loaded AML12 cells and human hepatocytes with an anthrolysin O peptide 

called ALOD4, which blocks plasma membrane cholesterol trafficking (Infante and 

Radhakrishnan, 2017), prevented the increase in RhoA activity and TAZ (Figures 6A–6C). 

Similar results were observed with LDL- and SREBP-2-derived cholesterol (Figures 6D–6E, 

S5I, and S5J), which are known to traffic through the plasma membrane (Liscum and Dahl, 

1992). Note that ALOD4 increased SREBP-2 maturation, validating its ability to block 

cholesterol trafficking to the regulatory cholesterol pool in the ER (Infante and 

Radhakrishnan, 2017). As further validation, we silenced GramD1 (ASTER)-A, -B, and C, 

which mediate cholesterol trafficking from the plasma membrane to the cell interior (Sandhu 

et al., 2018). Cholesterol-induced TAZ was dependent on ASTER-B and ASTER-C (Figures 

6F and S5K), and, as evidence for the role of plasma membrane cholesterol trafficking in 

the upstream pathway, cholesterol-induced activation of PKA (p-Creb), IP3R, ( p-IP3R1), 

and RhoA was blocked by ALOD4 and/or silencing Gramd1b/c (Figures 6G–I, S5L, and 
S5M).

In normal liver, Gramd1c is more abundant than Gramd1b (Sandhu et al., 2018), but 

Gramd1b increased in the livers mice fed the 1.25%-cholesterol diet (Figure S6A). Most 

importantly, treatment of 8-week NASH diet-fed mice with AAV8-H1-shGramd1b/c 

prevented increases in liver TAZ; fibrosis, including the expression of HSC-activating TAZ 

gene target Ihh; inflammation; and activation of PKA (p-Creb), IP3R, (p-IP3R1), and RhoA, 

and LATS1/2 (p-LATS) over the ensuing 8 weeks, despite unchanged body weight, percent 

liver weight, or fasting blood glucose (Figures 7A–7G and S6B–S6F). Surprisingly, neither 

TUNEL+ cells in the liver nor plasma ALT were statistically different between the two 

groups of mice (Figures S6G and S6H). As expected, YAP was also lower in the livers of 

shGramd1b/c-treated mice, although the percent decrease of YAP was less than that of TAZ 

(Figure 7B). However, as noted previously, silencing hepatocyte TAZ lessens NASH without 

lowering YAP (Figure S3N). In summary, the combined data in this study show that 

internalization of plasma membrane cholesterol is required for cholesterol-induced TAZ 

stabilization in hepatocytes in vitro and for cholesterol-diet induced increases in liver TAZ, 

fibrosis, and inflammation in mice during NASH progression (Figure 7H).

DISCUSSION

The cholesterol-TAZ pathway revealed herein has implications for both NASH and the 

fundamental process of cellular cholesterol trafficking and signaling. The findings provide 

plausible mechanisms linking elevated liver cholesterol to NASH and NASH to elevated 

TAZ, and they raise the possibility of new therapeutic targets for NASH. With regard to the 

cell biologic aspects of this work, the data demonstrate a new role for trafficking of plasma 

membrane cholesterol in the regulation of cAMP, PKA, and calcium.

The mechanisms leading to increased liver cholesterol in NASH are likely multi-factorial. A 

number of studies, including this one, have shown a direct link between dietary cholesterol 

and NASH in mice (McGettigan et al., 2019; Savard et al., 2013; Van Rooyen et al., 2011; 
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Wouters et al., 2008) and fibrotic liver disease in humans (Ioannou et al., 2009). The 

C57BL/6J mouse strain has a relatively low ability to absorb dietary cholesterol (Schwarz et 

al., 2001) and therefore must be fed diets with high cholesterol content simply to achieve a 

level of liver cholesterol accumulation approaching that in human NASH (see Figure 1A). 

Other mechanisms proposed for liver cholesterol accumulation in NASH include 

dysregulated endogenous cholesterol synthesis (Min et al., 2012), including a recently 

described pathway that involves caspase-2 activation of SREBP-2 (Kim et al., 2018); genetic 

polymorphisms in lipid-related genes (Chen et al., 2017); increased cholesteryl ester 

hydrolysis (Min et al., 2012); and decreased cholesterol excretion into bile (Min et al., 

2012). Our hepatocyte studies suggest the SREBP-2-mediated endogenous cholesterol can 

activate the pathway. This raises the possibility of a positive-feedback loop, as inactivation 

of LATS2, which we showed is downstream of cholesterol, was reported to activate 

SREBP-2 and cause cholesterol accumulation (Aylon et al., 2016). Future in vivo studies 

will be required to investigate how nondietary mechanisms of increasing liver cholesterol 

affect TAZ and NASH in vivo and whether the reported benefits of statins and possibly 

ezetimibe on NASH progression (Athyros et al., 2017) may be related to the mechanisms 

described here. Of note, statins may have secondary effects on TAZ by blocking the 

prenylation of RhoA, which is necessary for its activation (Blanco-Colio et al., 2002). 

Finally, it is interesting to note that plasma ALT and TUNEL+ cells in the liver were not 

decreased by silencing Gramd1b/c, whereas all interventions downstream of this initial step 

in the pathway did lower these endpoints. Thus, it is possible that cholesterol trafficking has 

an additional, separate role that partially protects hepatocytes from injury and death. If so, 

the net effect of interrupting of cholesterol trafficking may be no change in plasma ALT and 

TUNEL+ liver cells, i.e., lower TAZ would protect hepatocytes (Wang et al., 2016), but this 

effect might be negated by loss of a separate hepatocyte protective process.

There are likely multiple and complementary mechanisms linking elevated liver cholesterol 

to NASH, including cholesterol-mediated processes in HSCs and macrophages as well as 

hepatocytes. Examples of previously suggested mechanisms include: (a) activation of 

inflammatory and death pathways in hepatocytes and Kupffer cells (Bieghs et al., 2013; Gan 

et al., 2014; Ioannou, 2016) and activation of HSCs, either directly or via changes in Kupffer 

cells (McGettigan et al., 2019; Teratani et al., 2012). A surprising component of the pathway 

here relates to the role of soluble adenylyl cyclase (sAC). This finding raises a number of 

intriguing questions, e.g., whether there is a specific subcellular location where sAC-

mediated cAMP synthesis and PKA activation occur during cholesterol repletion of 

hepatocytes. A previous study showed that sAC co-localizes with mitochondria in multiple 

cell types (Lefkimmiatis, 2014; Valsecchi et al., 2013), and mitochondria are known to 

associate with regions of the ER, termed mitochondria-associated membranes (MAMs), that 

are rich in IP3Rs (Wieckowski et al., 2009). cAMP acts locally to activate nearby PKA, 

which is anchored by AKAP in discrete microdomains (Rich et al., 2000; Zaccolo and 

Pozzan, 2002). Thus, cholesterol transferred from the plasma membrane to ER may enable 

sAC in ER-localized mitochondria to generate cAMP and activate nearby PKA and IP3R. In 

this context, analysis of NASH livers of high-cholesterol-fed diabetic mice showed filipin 

fluorescence in the ER and mitochondria as well as the plasma membrane of hepatocytes 

(Gan et al., 2014). A more fundamental question is the molecular mechanism linking 
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cholesterol to sAC activity, which could occur through direct or indirect mechanisms (Litvin 

et al., 2003; Tresguerres et al., 2011). Interestingly, a recent study using a renal carcinoma 

cell line suggested that TAZ/YAP can actually suppress sAC activity by lowering cellular 

calcium (White et al., 2019). Whether this pathway is absent in cholesterol-enriched 

hepatocytes or counteracted by cholesterol-induced activation of IP3R remains to be 

determined.

A key therapeutic goal related to the epidemic of NASH is to prevent the progression of liver 

fibrosis before it causes liver damage. Directly targeting hepatocyte TAZ (Wang et al., 2016) 

or inhibiting the TAZ-inducing pathway revealed here can accomplish this goal in mice with 

established early fibrotic NASH. An emerging modality of therapeutic translation of these 

findings is hepatocyte-targeted siRNAs, e.g., siRNA conjugated to N-acetylgalactosamine 

(GalNAc) (Nair et al., 2014), and the first hepatocyte-targeted siRNA has been approved by 

the FDA for the treatment of hereditary transthyretin amyloidosis (Adams et al., 2018). In 

this context, we have recently shown that treatment of NASH mice with GalNAc-siTaz 

prevents and reverses fibrosis in NASH in mice (Wang et al., 2019). The current study now 

raises additional possibilities targets of TAZ, including ASTER-B/C and sAC. In view of the 

difficulty in predicting drug efficacy and toxicity, the availability of multiple options, 

especially those supported by in depth mechanistic data, in vivo molecular-genetic causation 

data, and human NASH data is critical.

Limitations of Study

The in vivo causation experiments were conducted in an experimental model of NASH, and 

thus further work is needed to show the importance of the cholesterol-TAZ pathway in 

human NASH. Nonetheless, human relevance is supported by the following: (1) both liver 

cholesterol and TAZ are associated with NASH, but not steatosis, in humans; (2) human 

NASH liver shows correlations among liver cholesterol, RhoA, and TAZ; and (3) key 

components of the cholesterol-TAZ pathway are operational in primary human hepatocytes, 

including the roles of cholesterol, ADCY10 (sAC), and RhoA. As predicted, the hepatocyte 

cholesterol-Hippo pathway revealed herein also increases YAP, and thus it is theoretically 

possible that hepatocyte YAP also contributes to cholesterol-induced NASH. However, as 

noted, shTAZ markedly suppresses NASH without affecting YAP. It is also interesting to 

note that interruption of cholesterol trafficking (shGramd1b/c) and RhoA in NASH mice 

caused less of a decrease in YAP than in TAZ. Importantly, despite their common regulation, 

TAZ and YAP functions can diverge, including in liver (Hagenbeek et al., 2018). In the end, 

the role of hepatocyte YAP in NASH must await a dedicated study in which hepatocyte YAP 

is silenced without altering TAZ in experimental models of NASH progression.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. Ira Tabas (iat1@columbia.edu). This study did not 

generate new unique reagents.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Studies—Male wild-type C57BL/6J mice (#000664, 10-11 weeks/old) were 

obtained from Jackson Laboratory (Bar Harbor, ME) and were allowed to adapt to housing 

in the Columbia University Irving Medical Center Institute of Comparative Medicine for 1 

week prior to random assignment to experimental cohorts. Wwtr1fl/fl mice (TAZ gene 

floxed) (Xin et al., 2013) were generously provided by Dr. Eric Olson, University of Texas 

Southwestern and were backcrossed to C57BL/6J background and confirmed by genotyping. 

Adcy10fl/fl mice (Chen et al., 2013) were backcrossed to C57Bl/6 background confirmed by 

Mouse Universal Genotyping Array (MUGA). The mice were fed a fructose-palmitate diet 

containing either 1.25%, 0.5%, or 0,2% cholesterol. The 1.25%-cholesterol diet induces 

NASH after 16 weeks and is referred to as the “NASH diet” (Envigo, TD.160785 + sugar 

water) (Wang et al., 2016). The diets containing 0.5% and 0.2% cholesterol induce 

hepatosteatosis but not NASH and are referred to as NAFLD diets. All mice were fed with 

NASH/NAFLD diet and sugar water, which contains 23.1g/L of fructose and 18.9g/L of 

glucose. AAV8-TBG-Cre or control AAV8-TBG-LacZ (1x1011 genome copies/mouse) was 

administered to Wwtr1fl/fl mice by tail vein injection 1 week prior to initiation of the NASH 

diet or to Adcy10fl/fl mice 8 weeks after initiation of the NASH diet. AAV8-H1-shRNA, 

AAV8-H1-scrambled RNA, AAV8-TBG-HA-hTAZ, and AAV8-TBG-HA-hTAZ-S117A 

viruses were delivered by tail vein injection at 2x1011 genome copies/mouse either 1 week 

prior to the NASH/NAFLD diet or 8 weeks after diet initiation. Animals were housed in 

standard cages at 22°C in a 12-12-hour light-dark cycle in a barrier facility. All animal 

experiments were performed in accordance with institutional guidelines and regulations and 

approved by the Institutional Animal Care and Use Committee at Columbia University and, 

for the Adcy10fl/fl mouse experiment, at Weill-Cornell Medical Center.

Human Liver Specimens and Human Primary Hepatocytes

De-identified human liver specimens were acquired with patient consent from the Liver 

Tissue Cell Distribution System at the University of Minnesota. The specimens were 

collected on the date of liver transplantation and preserved as frozen samples. The mean age 

of the donors was 59 (ranging from 43 to 68 years old), and the donors included 2 males and 

6 females. The diagnostic information is included in Table S1. Phenotypic and pathological 

characterizations were conducted by medical physicians and pathologists associated with the 

Liver Tissue Cell Distribution System. Human primary hepatocytes were obtained with 

consent from male donors at the University of Pittsburgh through the Liver Tissue Cell 

Distribution System. All human studies were approved by the Columbia University 

Institutional Review Board and were conducted in accordance with National Institutes of 

Health and institutional guidelines for human subject research.

Cell Culture and Cell Treatment

AML12 mouse hepatocytes were purchased from ATCC (CRL-2254) and cultured in 

DMEM/F12 medium (Life Technologies, #11320) with 10% (vol/vol) heat-inactivated FBS 

(Gibco, #16140-071) and 1X penicillin-streptomycin solution (Corning, #30-002-Cl). 

HepG2 cells were purchased from ATCC (HB-8065) and cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Corning, #10-013-CV) with 10% (vol/vol) heat-inactivated FBS 
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and 1X penicillin-streptomycin solution. Primary mouse hepatocytes were isolated from 10-

week-old wild-type C57BL/6J mice as described previously (Ozcan et al., 2012). In brief, 

mice were euthanized with isoflurane, the abdomen was opened, and a catheter was inserted 

into the vena cava. The liver was perfused with Hanks’ balanced salt solution. The portal 

vein was then cut and perfused with collagenase I. After the perfusion, the liver was placed 

in a Petri dish containing DMEM and disaggregated with forceps. Digested liver was passed 

through 100-μm filter and centrifuged at 50 x g for 5 min. The supernatant fraction was 

removed, and the hepatocytes in the pellet were resuspended and cultured in DMEM 

containing 10% FBS, followed by treatment as described in the figure legends. All cells 

were grown at 37°C and 5% CO2. For liposome treatment, 1x105 AML12 cells were plated 

in 24-well plate and cultured for 24-48 h until cell confluence was ~90%. Liposome solution 

was added to the medium at 1:10 volume ratio in a total volume of 500 μl. For the epi- and 

ent-cholesterol experiment, the total volume of medium was 300 μl. The cells were 

harvested after treatment in Laemmli Sample Buffer (Bio-Rad, #1610737) with 2-

mercaptoethanol (Bio-Rad, #161-0710) for immunoblotting or in RNA lysis buffer (Qiagen, 

#79216) for mRNA quantification.

METHOD DETAILS

Reagents and Kits—The following plasma assay kits were used in this study: cholesterol 

(#439-17501), free cholesterol (#994-02501) and triglyceride (#465-09791, #461-09891) 

from Wako; and ALT (#A526-120) from TECO Diagnostics. Adeno-associated virus 

subtype 8 (AAV8)-shRNA targeting murine Rhoa was made by annealing complementary 

oligonucleotides (5’- CACC 

AgtcaagcatttctgtccaaatCTCGAGATTTGGACAGAAATGCTTGAC-3’), which were then 

ligated into the self-complementary (sc) AAV8-RSV-GFP-H1 vector as described previously 

(Wang et al., 2016). AAV8-H1-shRNA targeting murine Gramd1b was made by annealing 

complementary oligonucleotides (5’- CACC 

AgatgaaggactcgcttatcaaCTCGAGTTGATAAGCGAGTCCTTCATC-3’), which were then 

ligated into the scAAV-RSV-GFP-H1 vector as above. AAV8-H1-shRNA targeting murine 

Gramd1c was made by annealing complementary oligonucleotides (5’- 

CACCAgggaaagagatgagaagttctCGAAAGAACTTCTCATCTCTTTCCC-3’), which were 

then ligated into the scAAV-RSV-GFP-H1 vector as above. AAV8-H1-shRNA targeting 

murine Btrc was made by annealing complementary oligonucleotides (5’- CACCA 

gcgacatagtttacagagaatTCAAGAGATTCTCTGTA AACTATGTCG C-3’), which were then 

ligated into the scAAV-RSV-GFP-H1 vector as above. The resultant constructs were 

amplified by Vector Biolabs, Malvern, PA. AAV8-TBG-HA-hTAZ and AAV8-TBG-HA-

S117A-hTAZ were from Vector Biolabs. AAV8 containing hepatocyte-specific TBG-Cre 

recombinase (AAV-TBG-Cre, 107787-AAV8) and the control vector, AAV8-TBG-LacZ 

(105534-AAV8), were purchased from the Addgene. Cyto-GCaMP6f and ER-GCaMP6f 

were subcloned into lentiviral vectors and then packaged and concentrated by ALSTEM, 

LLC (Wang et al., 2017). WT-HA-human TAZ plasmid was from Addgene (#32839). The 

human SREBP-2(1-468) plasmid (Horton et al., 1998) was a gift from Dr. Jay Horton 

(University of Texas-Southwestern Medical Center). The kit to carry out mutagenesis of 

WWTR1 was from New England Biolabs (#E0554S), and the primers are listed in Table S2. 

The G-LISA™ RhoA activation assay kit was from Cytoskeleton (#BK124).
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Preparation of Liposomes—DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine; 

Avanti Polar Lipids, 850345; molecular mass: 677.5) and cholesterol (Sigma, C8667; 

molecular mass: 386.6) were dissolved in chloroform. Liposomes were made by adding 40 

mg of DMPC with or without 80 mg of cholesterol to a glass vessel and then removing the 

solvent using a stream of nitrogen gas. Ten ml PBS was added and, after mixing, the lipids 

were subjected to probe sonication on ice for 5 minutes using 10-second on-off intervals. 

The preparation was then centrifuged at 10,000 x g for 10 minutes, and the supernatant 

fraction was extruded through a 100-nm polycarbonate filter (Avanti, 610000-1Ea) at room 

temperature. Each aliquot was stored in glass vials under argon at 4°C and used within 2 

weeks. For liposomes, only 40 mg of DMPC were used (without cholesterol) based on the 

protocol. For epi- and ent-cholesterol liposomes, the initial mixture was 1 mg DMPC and 2 

mg sterol to which was added 250 μl of PBS. Epi-cholesterol (cholest-5-en-3β-ol) was 

purchased from Sigma-Aldrich (R207349), and ent-cholesterol was synthesized as 

previously described (Westover et al., 2003).

siRNA-Mediated Gene Silencing and Transfection—Scrambled siRNA control and 

oligo-targeting siRNAs were transfected into AML12 or primary hepatocytes using 

Lipofectamine RNAiMAX (Life Technologies) at 40 nM of siRNA in 24-well plates 

following the manufacturer’s instructions. Briefly, 2 X 105 cells at 30 - 40% confluence 

were incubated for 18 h with 0.5 ml of culture medium containing 1.5 μl Lipofectamine 

RNAiMAX and 20 pmol siRNA. The siRNA sequences are listed in Table S3. The plasmids 

were transfected into AML12 cells using Lipofectamine® LTX Reagent with PLUS™ 

Reagent (Life Technologies, #15338100). For each well in a 24-well plate, 2 μl LTX, 0.5 μl 

PLUS reagent, and 0.5 μg plasmid DNA are used when cells reached 30-40% confluence. 

After overnight incubation, the cells were switched back to normal culture medium.

Blood and Plasma Analyses—Fasting blood glucose was measured using a glucose 

meter (One Touch Ultra, Life- scan) in mice that were fasted for 5 h, with free access to 

water. Total plasma triglyceride, total cholesterol, free cholesterol, and ALT were assayed 

using commercially available kits, as listed in the Reagents and Kits section above.

Histopathological Analysis—Inflammatory cells in H&E-stained liver section images 

were quantified as the number of mononuclear cells per field (20x objective). For other 

parameters involving various stains, computerized image analysis (ImageJ) was used to 

quantify the area stained. The same threshold settings were used for all analyses. For all 

analyses, we quantified 6 randomly chosen fields per section per mouse. Liver fibrosis was 

assessed by quantifying Picrosirius (Sirius) red-stained area (Polysciences, #24901).

Filipin Staining and Immunofluorescence Microscopy—AML12 or primary 

cultured hepatocytes were fixed in 4% paraformaldehyde for 10 min at room temperature, 

rinsed using glycine/PBS, and stained with 0.25 mg/ml filipin for 2 h at room temperature. 

The cells were viewed in PBS by fluorescence microscopy using a UV filter set (340-380 

nm excitation, 40 nm dichroic, 430-nm long pass filter). As filipin fluorescence 

photobleaches very rapidly, care was taken to have the same UV exposure time before image 
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collection for all samples. TUNEL staining was conducted using a kit from Roche 

(#12156792910).

Measurement and Analysis of Liver Tissue Cholesterol—For liver cholesterol 

quantification, liver tissue (20 mg) was washed in cold PBS to remove blood, homogenized 

in 20x volume (400 μl) Cholesterol Assay Buffer (ab65390, Abcam), and centrifuged at 

10,000 x g for 10 min. The supernatant fraction was transferred to an Eppendorf tube and 

mixed thoroughly. Color Reagent Solution from the Wako Total/Free Cholesterol assay kit 

was added at a 1:20 ratio (v/v) to these lysates, followed by incubation and quantification in 

a plate reader according to the manufacturer’s instructions.

Immunoblotting—Liver protein was extracted using RIPA buffer (Thermo, #89900), and 

the protein concentration was measured by a BCA assay (Thermo, #23227). Proteins were 

separated by electrophoresis on 4-20% Tris gels (Life technologies, EC60285) and 

transferred to nitrocellulose membranes (Bio-Rad, #1620115). The membranes were 

blocked for 30 min at room temperature in Tris-buffered saline and 0.1% Tween 20 (TBST) 

containing 5% (wt/vol) nonfat milk and then incubated with primary antibody in the same 

buffer at 4°C overnight, using 1:1000 dilution. The protein bands were detected with horse 

radish peroxidase-conjugated secondary antibodies and Supersignal West Pico enhanced 

chemiluminescent solution (Thermo, #34080). Cultured cells were lysed in Laemmli sample 

buffer (Bio-Rad, #161-0737) containing 5% 2-mercaptoethanol, heated at 100°C for 5 min, 

and then electrophoresed and immunoblotted as above.

Immunoprecipitation, LATS2 Kinase Assay, and GTP-RhoA Assay—AML12 

cells from 100-mm culture dishes were collected into 0.4 ml 1x ice-cold cell lysis buffer 

(#9803S, Cell Signaling) and incubated on ice for 5 min. Then cell lysates were centrifuged 

at 10,000 x g for 10 min at 4°C. The supernatant fraction was pre-cleaned using 30 μl 

Protein G Agarose beads (Cell Signaling, #37478) and incubated overnight with anti-TAZ or 

anti-IP3R1 antibodies with gentle rotating at 4°C. Rabbit IgG was used as the negative 

control. Thirty ml of 50% protein G beads were added to the solution followed by incubation 

for 1 hour at 4°C. The beads were then collected by centrifugation and washed five times 

with 500 μl 1x cell lysis buffer. Proteins were re-suspended with 50 μl Laemmli Sample 

Buffer (#1610737, Bio-Rad) and then subjected to immunoblot analysis. For LATS2 kinase 

assay, AML12 cells transfected with HA-LATS2 plasmid (Zhao et al., 2010) were lysed in 

1x ice-cold cell lysis buffer (#9803S, Cell Signaling). The extract was immunoprecipitated 

using anti-HA antibody, and the immunoprecipitate was incubated with recombinant TAZ 

(pro-1814-b, Prospec) in kinase assay buffer (#9802, Cell Signaling) containing ATP 

(#9804, Cell Signaling). For mouse liver, extracts were immunoprecipitated using anti-

LATS2. For a control, a 1:1:1 mixture of extracts (mix) was treated with control IgG instead 

of anti-LATS2. The immunoprecipitates were incubated with recombinant TAZ and then 

immunoblotted for p-serine-TAZ using anti-phosphoserine antibody, TAZ, and LATS2. 

Active RhoA was assayed using either an ELISA assay (G-LISA®, #BK124, Cytoskeleton) 

or by precipitating GTP-bound RhoA using the RhoA Pull-down Activation Assay Biochem 

Kit (#BK036, Cytoskeleton). For this assay, cell lysates were incubated with beads 

containing GST-tagged Rho binding domain (RBD) of the human Rhotekin protein (amino 
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acids 7-89), which binds specifically to GTP-bound Rho proteins. The beads were pelleted 

and immunoblotted for RhoA and GST (input).

Quantitative RT-qPCR—Total RNA was extracted from liver tissue or cultured 

hepatocytes using the RNeasy kit (Qiagen, 74106). The quality and concentration of the 

RNA was assessed by absorbance at 260 and 280 nm using a Thermo Scientific NanoDrop 

spectrophotometer. cDNA was synthesized from 1 μg total RNA using oligo (dT) and 

Superscript II (Invitrogen). qPCR was performed with a 7500 Real time PCR system 

(Applied Biosystems) using SYBR Green Master Mix (Life Technologies, #4367659). The 

primer sequences are listed in Table S4.

Cytosolic and ER Calcium Measurements—AML12 were incubated for 18 h with 

GCaMP6f and ER-GCaMP6-150 lentiviruses at an MOI of 5. The cells were then treated as 

described in the figure legends and viewed by fluorescence microscopy. Measurements of 

relative GFP intensity/cell, as an indicator of calcium level, were conducted on 15-20 

randomly chosen cells per well, and 4-5 wells were examined for each group.

LC-MS/MS—HepG2 cells (3 x 107 cells) were treated with liposomes and MG132 for 4 h, 

followed by immunoprecipitation of TAZ. The immunoprecipitate was fractionated on 

4-20% Tris gels (Life technologies, EC60285) and stained by GelCode™ Blue Safe Protein 

Stain (ThermoScientific, #1860957). The gel band containing TAZ was excised and 

subjected to disulfide bond reduction with 10 mM dithiothreitol (56°C for 45 min) and 

alkylation with 55 mM iodoacetamide (room temperature for 30 min in the dark). In-gel 

digestions were carried out using trypsin at 37 °C for 8 h and chymotrypsin at 25°C for 15 h. 

Peptides were then extracted from the gel pieces, lyophilized, and desalted using a C18 

stage-tip column. Phosphopeptides were enriched with Titansphere™ TiO2 resin (particle 

size 10 μm, GL Sciences, Japan) and analyzed using a Thermo Fisher Scientific EASY-nLC 

1200 coupled on-line to a Fusion Lumos mass spectrometer (Thermo Fisher Scientific, 

USA). Buffer A (0.1% formic acid in water) and buffer B (0.1% formic acid in 80 % ACN) 

were used as mobile phases for gradient separation. A 100-μm × 15-cm chromatography 

column (ReproSil-Pur C18-AQ, 3 μm, Dr. Maisch GmbH, Germany) was packed in-house 

for peptide separation. Peptides were separated with a gradient of 5–40% buffer B over 20 

min and then 40%-100% buffer B over 5 min at a flow rate of 400 nl/min. The Fusion 

Lumos mass spectrometer was operated in data-dependent mode. Full MS scans were 

acquired in the Orbitrap mass analyzer over a range of 300-1500 m/z with resolution 60,000 

at m/z 200. The top most abundant 15 precursors were selected with an isolation window of 

1.4 m/z and fragmented by higher-energy collisional dissociation with normalized collision 

energy at 35. MS/MS scans were acquired in the Orbitrap mass analyzer with resolution 

15,000 at m/z 200. The automatic gain control target value was 4e5 for full scans and 5e4 for 

MS/MS scans respectively, and the maximum ion injection times were 50 ms and 100 ms for 

full scans and MS/MS scans, respectively. The acquisition data were searched against a 

customized protein database (E. coli database with addition of human TAZ sequence) using 

MaxQuant, with phosphorylation specified as dynamic modification.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All results are presented as mean ± SEM. Statistical significance was determined using 

GraphPad Prism software. Data that passed the normality test were analyzed using Student’s 

t test for two groups; one-way ANOVA with Tukey’s post-hoc analysis for more than two 

groups; or two-way ANOVA with Sidak’s post-hoc analysis for two factors. Data that were 

not normally distributed were analyzed using the nonparametric Mann-Whitney U test, or, 

for more than two groups, by Kruskal-Wallis with post-hoc analysis by the Dunn test. The 

statistical details can be found in the figures and legends.

DATA AND CODE AVAILABILITY

This study did not generate any unique datasets or code.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Liver cholesterol and TAZ are elevated in human and mouse fibrotic NASH

• Increased hepatocyte cholesterol upregulates TAZ in human and mouse 

hepatocytes

• Cholesterol blocks TAZ proteasomal degradation via an adenylyl cyclase-

RhoA pathway

• Silencing the pathway in hepatocytes lowers TAZ and fibrosis in experimental 

NASH
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Context and Significance

Nonalcoholic steatohepatitis (NASH) is the leading cause of chronic liver disease, with 

liver fibrosis being the most important predictor of liver failure. Due to major gaps in 

understanding the mechanisms of NASH fibrosis, treatment options are markedly limited. 

In human NASH, there are increases in both cholesterol and a fibrotic NASH-promoting 

protein called TAZ, but mechanisms linking cholesterol to NASH and NASH to TAZ 

upregulation remain unknown. Using specimens and liver cells (hepatocytes) from human 

and mouse NASH livers, researchers at Columbia University show that excess cholesterol 

in human and mouse hepatocytes increases TAZ through a calcium-mediated signaling 

pathway. Importantly, silencing genes in the pathway lowers TAZ, inflammation, and 

fibrosis in experimental NASH, suggesting new targets for therapeutic intervention.
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Figure 1. TAZ Protein Correlates with Liver Cholesterol and Fibrosis, and Cholesterol Increases 
TAZ in Hepatocytes
(A-C) The following parameters were measured in mice fed the NAFLD diet containing 

0.2%, 0.5%, and 1.25% cholesterol (chol) for 16 weeks (n = 5 mice/group; means ± SEM; 

*p < 0.05, **p < 0.01, ***p < 0.001):

(A) Liver total cholesterol and free cholesterol. The dotted line indicates the free cholesterol 

content in liver of NASH subjects (Puri et al., 2007).

(B) Liver TAZ and GAPDH immunoblot.
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(C) Liver sections stained for H&E (scale bar, 100 μm), quantified for inflammatory cells, 

and stained and quantified for Sirius red (arrows indicate areas of fibrosis; scale bar, 500 

μm).

(D) Correlation between TAZ protein level and free cholesterol concentration in human 

NASH livers (n = 8 subjects).

(E) Filipin staining and TAZ immunoblot of primary mouse hepatocytes incubated for 24 h 

with vehicle or cholesterol-rich liposomes (Lipo-Chol). Scale bar, 100 μm.

(F) TAZ immunoblot of primary human hepatocytes incubated with 24 h with vehicle or 

Lipo-Chol.

(G) Filipin staining and TAZ immunoblot of AML12 cells incubated for 24 h with vehicle, 

or for 16 h with liposomes and then 8 h with Lipo-Chol (Lipo → Lipo-Chol). Scale bar, 100 

μm.

(H) Wwtr1 mRNA of the cells in panel C (n = 4 biological replicates; means ± SEM; n.s., 

non-significant).

(I) WWTR1 mRNA in normal human livers (n = 7) or human livers showing features of 

steatosis (n =12) or NASH (n = 16; means ± SEM; n.s., non-significant).

(J) Filipin staining and TAZ and mature SREBP-2 immunoblot of AML12 cells incubated 

for 24 h with vehicle (Veh) or liposomes (Lipo); 16 h with liposomes followed by 8 h with 

Lipo-Chol); or 24 h with liposomes after transfection with human SREBP-2(1-468). Scale 

bar, 100 μm.

(K) TAZ immunoblot of AML12 cells treated as follows: upper blot: vehicle or liposomes 

for 0-10 h; lower blot: liposomes for 0-10 h, or for 16 h followed by 0-10 h with Lipo-Chol.

(L) TAZ immunoblot of AML12 cells transfected with siScr or siBtrc and then incubated for 

24 h with vehicle (Veh) or liposomes.

(M-N) The following parameters were measured in mice fed the 0.2% cholesterol NAFLD 

diet for 16 weeks, with AAV8-H1-shBtrc or AAV8-H1-scrambled RNA (shScr) injected at 

the 8-week time point (n = 5 mice/group; means ± SEM; *P < 0.05):

(M) Experimental design.

(N) TAZ immunoblot; and Btrc and Wwtr1 mRNA.

(O) Liver sections stained for H&E, quantified for inflammatory cells, and stained and 

quantified for Sirius red (arrows indicate areas of fibrosis). Scale bar, 200 μm.

(P) Liver Mcp1, Adgre1 (F4/80), Ihh, Timp1, Spp1, Col1a1, Col1a2, and Col3a1 mRNAs.
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Figure 2. Cholesterol Depletion of Hepatocytes Decreases TAZ in a LATS2-Dependent Manner
(A) LATS2 kinase assay, using rTAZ as substrate, of extracts of livers of mice fed the 

NAFLD diet containing 0.2%, 0.5%, or 1.25% cholesterol for 16 weeks.

(B) Immunoblots of phospho- and total TAZ in TAZ immunoprecipitates from AML12 cells 

incubated as follows: left blot, 4 h with MG132 plus vehicle (Veh) or liposomes; right blot, 

18 h with liposomes and then 4 h with MG132 plus vehicle or Lipo-Chol.
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(C) Immunoblots of phospho- and total TAZ in TAZ immunoprecipitates from primary 

human hepatocytes incubated for 8 h with vehicle or Lipo-Chol, with MG132 included 

during the last 4 h.

(D) TAZ and YAP immunoblots of siScr-treated or siLats2-treated AML12 cells that were 

incubated for 24 h with vehicle or liposomes.

(E) HA-TAZ immunoblot of HA-WT-human TAZ- or HA-S117A-human TAZ-transfected 

AML12 cells that were incubated for 24 h with vehicle, or liposomes for 16 h and then Lipo-

Chol for 8 h.

(F-J) The following parameters were measured in Wwtr1fl/fl mice fed the NAFLD diet 

containing 0.2% cholesterol for 16 weeks, with AAV8-TBG-Cre plus either AAV8-TBG-

HA-WT-hTAZ or AAV8-TBG-HA-S117A-hTAZ injected at the 8-week time point (n = 10 

mice/group; means ± SEM; *p < 0.05, ***p < 0.001):

(F) Design of the experiment.

(G) Liver HA-TAZ immunoblot, with quantification, and WWTR1 mRNA.

(H) Liver sections stained for H&E, quantified for inflammatory cells, and stained and 

quantified for Sirius red (arrows indicate areas of fibrosis). Scale bars, 100 μm for H&E and 

500 μm for Sirius red.

(I) Liver Mcp1, Col1a1, Col1a2, Col3a1, Timp1, Spp1, and Ihh mRNAs.

(J) Plasma ALT.
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Figure 3. Liver Cholesterol Correlates with RhoA Activity, and RhoA Silencing Decreases Liver 
TAZ, Inflammation, and Fibrosis in NASH Mice
(A) RhoA activity (left graph, G-LISA® assay; right graph, GTP-RhoA precipitation using 

GSTRhotekin-RBD) of AML12 cells incubated for 2 h with vehicle or liposomes, or for 24 

h with liposomes and then 2 h with Lipo-Chol. For the G-LISA® assay, n = 4 biological 

replicates; values shown are means ± SEM; *p < 0.05.

(B) RhoA activity of primary human hepatocytes incubated for 2 h with vehicle or Lipo-

Chol (n = 3 biological replicates; means ± SEM; *p < 0.05).
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(C) Top, TAZ and YAP immunoblots of AML12 cells incubated for 24 h with vehicle or 

liposomes or 16 h with liposomes and then 8 h with Lipo-Chol ± 1 μg/ml C3 transferase Rho 

inhibitor (C3) included during the last 4 h. Bottom, TAZ and YAP immunoblots of siScr- or 

siRhoa-transfected AML12 cells incubated for 16 h with liposomes and then 8 h with Lipo-

Chol.

(D) LATS2 kinase assay, using rTAZ as substrate, of extracts of siScr- or siRhoa-transfected, 

HA-LATS-expressing AML12 cells that were incubated for 16 h with liposomes and then 2 

h with Lipo-Chol.

(E) RhoA activity in liver extracts from mice fed 16 weeks with the NAFLD diet containing 

0.2%, 0.5%, and 1.25% cholesterol (n = 5 mice/group; means ± SEM; *p < 0.05).

(F) Correlations of liver free cholesterol and liver TAZ with RhoA activity in liver extracts 

from humans subjects presented in Figure 1F (n = 8 subjects).

(G-K) The following parameters were assayed in mice fed the NASH-inducing 1.25%-

cholesterol diet for 16 weeks, with AAV8-H1-shRhoa or AAV8-H1-shScr administered at 

the 8-week time point (n = 5 mice/group; means ± SEM; **p < 0.01, ***p < 0.001):

(G) Liver RhoA, TAZ, and YAP immunoblots.

(H) Liver Rhoa and Wwtr1 mRNAs.

(I) Liver sections stained for H&E, quantified for inflammatory cells, and stained and 

quantified for Sirius red (arrows indicate areas of fibrosis). Scale bar, 200 μm.

(J) Liver Adgre1 (F4/80), Col1a1, Col1a2, Col3a1, Acta2, Timp1, Spp1, Dpt, and Ihh 
mRNAs.

(K) Plasma ALT.
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Figure 4. Cholesterol Increases TAZ in Hepatocytes through an IP3R-Calcium-Protein Kinase A 
Pathway
(A) Images and mean fluorescence intensity (MFI) per cell of AML12 cells transduced with 

cyto-GCaMP6f or ER-GCaMP6f and then incubated for 30 min with vehicle or liposomes (n 

= 4 biological replicates; means ± SEM; *p < 0.05). Scale bar, 100 μm.

(B) RhoA activity of AML12 cells incubated for 2 h with liposomes ± 1 μM ionomycin 

(Iono) included during the last hour (n = 3 biological replicates; means ± SEM; **p < 0.01).

(C) TAZ immunoblot of AML12 cells incubated with vehicle or liposomes for 24 h ± 1 μM 

ionomycin included during the last 4 h.
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(D) RhoA activity of AML12 cells incubated for 16 h with liposomes and then 2 h with 

Lipo-Chol ± 5 μM BAPTA-AM (n = 3 biological replicates; means ± SEM; *p < 0.05).

(E-G) TAZ immunoblot in AML12 cells treated as follows:

(E) Vehicle or liposomes for 24 h, or liposomes for 16 h and then Lipo-Chol for 8 h ± 5 μM 

BAPTA-AM.

(F) Vehicle or liposomes for 24 h, or liposomes for 16 h and then Lipo-Chol for 8 h, with 2 

μM xestospongin C (XesC) or vehicle included during the last 4 h.

(G) Vehicle or liposomes for 24 h, or liposomes for 16 h and then Lipo-Chol for 8 h, in 

AML12 cells transfected with siScr, siItpr1, siItpr2, or siItpr3.

(H) Phospho-IP3R and IP3R1 immunoblots in IP3R1 immunoprecipitates from AML12 

cells incubated for 16.5 h with liposomes or 16 h with liposomes and then 30 minutes with 

Lipo-Chol.

(I) Phospho-S1756-IP3R1 and IP3R1 immunoblots of primary human hepatocytes incubated 

for 30 minutes with vehicle or Lipo-Chol.

(J) Phospho-S133-Creb and total Creb immunoblots of AML12 cells incubated for 16.5 h 

with liposomes or 16 h with liposomes and then 30 minutes with Lipo-Chol.

(K) Phospho-S133-Creb and total Creb immunoblots of liver extracts from mice fed 16 

weeks with the NAFLD diet containing 0.2%, 0.5%, and 1.25% cholesterol, with 

densitometric quantification (n = 5 mice/group; means ± SEM; **p < 0.01).

(L) Left, TAZ immunoblot of AML12 cells incubated for 24 h with vehicle or liposomes or 

16 h with liposomes and then 8 h with Lipo-Chol ± 10 μM H-89 PKA inhibitor for the final 

4 h. Right, TAZ immunoblot of siScr- or siPrkaca-transfected AML12 cells that were 

incubated for 16 h with vehicle or liposomes or 16 h with liposomes and then 8 h with Lipo-

Chol.

(M) Left, Phospho-S1756-IP3R1 and IP3R1 immunoblots of AML12 cells incubated for 

16.5 h with liposomes or 16 h with liposomes and then 30 minutes with liposomes ± 100 μM 

8-Br-cAMP. Middle, TAZ immunoblot of AML2 cells incubated for 24 h with vehicle or 24 

h with liposomes ± 100 μM 8-Br-cAMP. Right, Quantification of the middle blot (n = 5 

biological replicates; means ± SEM; ***p < 0.001).
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Figure 5. Adenylyl Cyclase 10 is Necessary for Increased TAZ in Cholesterol-Repleted 
Hepatocytes and in NASH Mice
(A) TAZ immunoblot of siScr- or siGnas-transfected AML12 cells that were incubated for 

16 h with liposomes and then 8 h with Lipo-Chol).

(B) TAZ immunoblot of primary mouse hepatocytes that were incubated for 24 h with 

vehicle or Lipo-Chol ± 10 μM 2′,5′-dideoxyadenosine (ddAdo) or 30 μM LRE1.

(C) cAMP content of AML12 cells that were incubated for 16.5 h with liposomes or 16 h 

with liposomes and then 30 minutes with Lipo-Chol ± 10 μM ddAdo or 80 μM LRE1 (n = 4 

biological replicates; values shown are means ± SEM; ***p < 0.001 vs. Veh and ddAdo).
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(D) Top, TAZ immunoblot of control AML12 cells that were incubated 24 h with liposomes, 

or siScr or siAdcy10-transfected AML12 that were incubated for 16 h with liposomes and 

then 8 h with Lipo-Chol. Bottom blot, TAZ immunoblot of siScr or siADCY10-transfected 

primary human hepatocytes that were incubated for 24 h with Lipo-Chol.

(E) Phospho-IP3R1 and IP3R1 immunoblots of siScr- or siAdcy10-transfected AML12 cells 

that were incubated for 16 h with liposomes and then 30 minutes with Lipo-Chol.

(F) RhoA activity of siScr- or siAdcy10-transfected AML12 cells that were incubated for 16 

h with liposomes and then 2 h with Lipo-Chol (n = 4 biological replicates; means ± SEM; 

***p < 0.001).

(G-J) The following parameters were assayed in Adcy10fl/fl mice fed the NASH-inducing 

1.25%-cholesterol diet for 16 weeks, with AAV8-TBG-Cre or AAV8-TBG-LacZ 

administered at the 8-week time point (n = 5 mice/group; means ± SEM, *p < 0.05):

(G) Liver Adcy10 mRNA and TAZ immunoblot.

(H) Liver sections stained for H&E, quantified for inflammatory cells, and stained and 

quantified for Sirius red (arrows indicate areas of fibrosis). Scale bars, 200 μm.

(I) Liver Tnfa, Col1a1, Col1a2, Timp1, and Ihh mRNAs.

(J) Plasma ALT.
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Figure 6. Cholesterol Transport from the Plasma Membrane is Necessary for Increased TAZ in 
Cholesterol-Repleted Hepatocytes
(A) RhoA activity of AML12 cells that were incubated for 24 h with vehicle or liposomes or 

for 2 h with liposomes and then 3 h with Lipo-Chol ± 10 μM ALOD4 (n = 6 biological 

replicates; means ± SEM; ***p < 0.001 vs. both Veh groups).

(B) TAZ immunoblot of AML12 cells that were incubated for 24 h with vehicle or 

liposomes or 24 h with liposomes and then 8 h with Lipo-Chol ± 10 μM ALOD4 included 

during the last 4 h.
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(C) TAZ immunoblot of primary human hepatocytes that were incubated for 24 h with 

vehicle or Lipo-Chol ± 10 μM ALOD4 included during the last 4 h.

(D) TAZ immunoblot of AML12 cells that were incubated for 24 h with vehicle or 

liposomes or 24 h with liposomes and then 8 h with 100 μg/ml LDL ± 10 μM ALOD4 

included during the last 4 h.

(E) TAZ and mature SREBP-2 immunoblots of control or human SREBP-2(1-468)-

transfected AML12 cells that were incubated for 24 h with vehicle or liposomes ± 10 μM 

ALOD4 included during the last 4 h.

(F) TAZ immunoblot of AML12 cells were treated with control ASO or ASO targeting 

Gramd1b, Gramd1c, or both and then incubated for 24 h with liposomes or 16 h with 

liposomes and then 8 h with Lipo-Chol.

(G) TAZ, p-S133-Creb, total Creb immunoblots of AML12 cells were treated and incubated 

as in panel E for ALOD4 and panel F for ASOs targeting Gramd1b and Gramd1c.

(H) Phospho-IP3R1 and IP3R1 immunoblots of siScr-, siGramd1b- and siGramd1c-, or 

siPrkaca-transfected AML12 cells that were incubated for 16 h with liposomes and then 8 h 

with Lipo-Chol.

(I) RhoA activity of control ASO- or Gramd1b/c ASO-treated AML12 cells that were 

incubated for 16 h with liposomes and then 2 h with Lipo-Chol (n = 3 biological replicates; 

means ± SEM; **p < 0.01).

Wang et al. Page 36

Cell Metab. Author manuscript; available in PMC 2021 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Silencing of Hepatocyte Gramd1b/c in Mice with Hepatosteatosis Prevents TAZ 
Increase and Suppresses NASH Progression
The following parameters were assayed in mice fed the NASH-inducing 1.25%-cholesterol 

diet for 16 weeks, with AAV8-H1-shGramd1b/c or AAV8-H1-shSrc administered at the 8-

week time point (n = 10 mice/group; means ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001):

(A) Liver Gramd1b and Gramd1c mRNAs.

(B) Liver TAZ and YAP immunoblots for 5 mice/group, with quantification.

(C) Liver sections stained for H&E, quantified for inflammatory cells, and stained and 

quantified for Sirius red (arrows indicate areas of fibrosis). Scale bars, 200 μm.
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(D) Liver Tnfa, Mcp1, Adgre1 (F4/80), Ihh, Col1a1, Col1a2, Col3a1, Tgfb, and Acta2 
mRNAs.

(E) Liver p-S133- and total Creb Immunoblots.

(F) Phospho-IP3R1 and total IP3R1 immunoblots of liver IP3R1 immunoprecipitates, with 

quantification.

(G) RhoA activity of liver extracts.

(H) Summary scheme of the hepatocyte cholesterol-TAZ pathway in NASH. In cholesterol-

enriched hepatocytes, internalization of plasma membrane cholesterol by ASTER-B/C leads 

to sAC-mediated increase in cAMP and PKA-dependent activation of IP3R. The resulting 

increase in Ca2+
i activates RhoA, which inhibits LATS1/2-dependent phosphorylation of 

TAZ. Phosphorylation of TAZ, particularly on S117, blocks β-TrCP-dependent proteasomal 

degradation of TAZ, resulting in an increase in TAZ-TEAD-induced genes, notably Ihh, 

which promotes HSC activation and liver fibrosis in NASH (Wang et al., 2016).
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