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Abstract

Pancreatic adenocarcinoma (PDAC) is associated with poor clinical outcomes and incomplete 

responses to conventional therapy. Therefore, there is an unmet clinical need to better understand 

the predisposing factors for pancreatic cancer in hopes of providing early screening to high-risk 

patients. While select risk factors such as age, race, and family history, or predisposing syndromes 

are unavoidable, there are several new and established risk factors that allow for intervention, 

namely by counseling patients to make the appropriate lifestyle modifications. Here, we discuss 

the best-studied risk factors for PDAC such as tobacco use and chronic pancreatitis, as well as 

newly emerging risk factors including select nutritional deficits, bacterial infections, and 

psychosocial factors. As several of these risk factors appear additive or synergistic, by 

understanding their relationships and offering coordinated, multidisciplinary care to high-risk 

patients, it may be possible to reduce pancreatic cancer incidence and improve clinical outcomes 

through early detection.

1 - INTRODUCTION

Pancreatic cancer is projected to be the second leading cause of cancer related death in the 

United States by 2030 (1). Pancreatic ductal adenocarcinoma (PDAC) is the most common 

pancreatic cancer histotype, and typically presents at late clinical stages (2). As a result, 

most PDAC patients have poor responses to conventional therapy and median survival 

remains a dismal 6–12 months (2). Given the limited therapeutic options for pancreatic 

cancer patients and lack of adequate screening modalities, it is imperative to better 
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understand the clinically identifiable risk factors for PDAC in hopes of identifying high-risk 

patients in the primary care setting, and providing early imaging and appropriate counseling 

in order to reduce the likelihood of developing this largely incurable malignancy.

2.1 - UNAVOIDABLE RISK FACTORS

While many of the known risk factors for pancreatic cancer are actionable through direct 

patient counseling, there are several that do not provide the opportunity for intervention. 

Still, these risk factors are nonetheless informative as they may provide guidance regarding 

screening and differential diagnosis. While PDAC has a slight male predominance, this may 

be partially explained by lifestyle differences between men and women, and outcomes do 

not significantly differ between sexes (2). However, such lifestyle differences cannot fully 

explain the difference in disease incidence, particularly in light of recently identified sex 

differences in driving genes and biomarkers in a variety of cancer types (3). In fact, when 

evaluating the TCGA genomic databases of pancreatic cancer patients (N=185), we found 

that while male and female patients had no significant difference in clinical outcomes, the 

presence of any specific mutation, or copy number alteration, there were several highly 

significant differences in mRNA expression between the sexes (Figure 1A,B and Table 1). 

While the clinical relevance of these findings are not clear at this time, interestingly most 

genes comparatively overexpressed in women were found on the X chromosome, whereas 

men only had significantly increased expression of one gene located on chromosome 12 

(Table 1).

In addition to these sex differences, ethnicity also appears to play a role in PDAC. Though 

African Americans have the highest rates of PDAC and worst outcomes compared to other 

ethnic groups (4), the reasons for this are poorly understood and may implicate a variety of 

social factors discussed later in this article (5). As such, the associations between gender/

ethnicity with PDAC may be avoidable to a degree. However, it is also highly likely that 

these factors may be compounded by an increased genetic susceptibility in certain ethnic 

groups. Using the previously mentioned TCGA cohort, we found that for the 180 patients 

where ethnicity was documented, 162 were listed as white, with the remaining 18 reported 

as either African American or Asian (Figure 1C). Despite the poor representation of 

minority groups in this sample set, we again identified significant differences in the mRNA 

expression of three genes between whites and non-whites (Figure 1D and Table 1). These 

data suggest that there may be an underlying genetic or epigenetic component to the 

differences in PDAC incidence and outcomes among racial groups. However, while the exact 

reasons select social and ethnic groups have higher rates of PDAC than others warrant 

further study, it is clear that certain communities are disproportionately affected by the 

disease, and may benefit from a greater emphasis on chemoprevention or early screening.

Beyond sex and race, select non-O blood types have also been suggested to be associated 

with PDAC risk (6), though the clinical utility of these data are unclear. Age, however, is one 

of the most established risk factors for PDAC (2). Per the most recent SEER data, the 

median age at the time of diagnosis is 70 years, with most patients being diagnosed between 

65 and 74 (2). Fewer than 10% of patients develop PDAC before the age of 50, and these are 
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typically associated with a higher rate of predisposing genetic syndromes (7,8), discussed in 

detail below.

2.2 - PREDISPOSING GENETIC SYNDROMES

As with many cancers, genetics appear to play a role in PDAC etiology. For example, 

patients with a first degree relative with a history of PDAC have a 1.5 to 3-fold increase in 

disease risk (9,10). To this end, though PDAC is seldom inherited, several predisposing 

genomic alterations have been described (11). For instance, autosomal recessive 

ataxiatelangiectasia is associated with an increased risk of several cancers, including PDAC 

(12). This syndrome is well characterized, involving an inherited mutation to the DNA 

response and repair gene ATM. This leads to increased genetic instability due to a loss of 

high-fidelity double-strand break homologous recombination and dysregulation of cell cycle 

checkpoints (13). Several other inherited defects in DNA repair also increase PDAC risk. 

These include hereditary breast and ovarian cancer syndrome, which is predominantly 

caused by deleterious mutations in homologous recombination genes BRCA1 and/or 

BRCA2 (14). Similarly, truncating mutations to the homologous recombination gene PALB2 
also seem to increase risk of PDAC (15). Lynch syndrome (also known as hereditary 

nonpolyposis colorectal cancer) is caused by a deficit in DNA mismatch repair caused by 

mutations to several genes including MLH1, MSH2, MSH6, PMS2, and EPCAM. Though 

classically associated with colon cancer, Lynch syndrome also increases the risk for several 

other tumor types including PDAC (16).

Beyond defects in DNA repair, several other syndromes increase the lifetime risk of PDAC. 

Familial adenomatous polyposis (FAP) also modestly predisposes to PDAC due to the 

presumptive loss of function of the APC tumor suppressor gene. However, like Lynch 

syndrome, FAP is better known for its strong association with colon cancer (17). Similarly, 

Peutz–Jeghers syndrome (PJS) is characterized by an autosomal dominant mutation in 

STK11 tumor suppressor gene, also known as LKB1. PJS is classically associated with 

benign hamartomatous polyps in the gastrointestinal tract, though these have low rates of 

malignant transformation (18). However, PJS also significantly increases the risk of 

developing several other cancers including PDAC (19,20). PDAC is also associated with 

familial atypical multiple mole melanoma, an autosomal dominant mutation in CDKN2A. 

As the name implies, this syndrome is strongly linked with multiple dysplastic nevi and high 

rates of melanoma due to impaired function in the tumor suppressors p16INK4a and p14ARF, 

both negative regulators of the cell cycle (21,22). Finally, hereditary pancreatitis is caused by 

autosomal dominant mutations to PRSS1, resulting in hyper-activation of its trypsinogen 

gene product. While the pancreatitis phenotype has high penetrance, patients suffering from 

hereditary pancreatitis also have an approximately 50% increase in their lifetime risk of 

PDAC (23,24).

While the above syndromes increase PDAC risk, very few influence the clinical 

management of PDAC once diagnosed. Though there is emerging evidence substantiating 

the use of PARP inhibitors in BRCA-mutated PDAC (25), no other pancreatic cancer 

associated syndrome is clinically actionable at this time. Hence, patients with a known or 

family history of these genetic events may benefit from early screening (26,27), and the 
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precise contributions of these genomic alterations to the PDAC phenotype warrants further 

study.

2.3 - GENETIC SUSCEPTIBILITY LOCI

In addition to the above syndromes, genome wide association studies (GWAS) have 

identified several susceptibility alleles for PDAC (28). These common germline variants 

predominantly single nucleotide polymorphisms (SNPs), conferring a modest risk increase 

of PDAC to carriers (29–34). For instance, in a 2009 GWAS, researchers genotyped 558,542 

SNPs in 1,896 individuals with pancreatic cancer and 1,939 controls. The authors combined 

their results with an additional 2,457 pancreatic cancer patients and 2,654 controls from 8 

additional studies, and found a significant association between a locus on 9q34 and disease 

incidence. This locus was marked by the SNP rs505922, mapping to the first intron of the 

ABO blood group gene (29). In 2010, a similar GWAS evaluating in 3,851 pancreatic cancer 

patients and 3,934 controls identified eight new cancer susceptibility loci. Five of these 

SNPs mapped to the gene NR5A2 on chromosome 1q32.1, including rs3790844. Two 

additional SNPs (rs9543325 and rs9564966) mapped to a non-genic region on chromosome 

13q22.1. Finally, a single SNP (rs401681) mapped to the CLPTM1L-TERT locus on 

5p15.33 (30).

A larger 2014 study examined 7,683 pancreatic cancer patients and 14,397 controls, and 

identified several new susceptibility loci. These include rs6971499 that maps to the LINC-
PINT gene at 7q32.3, rs7190458 that maps to BCAR1/CTRB1/CTRB2 at 16q23.1, 

rs9581943 that maps to PDX1 at 13q12.2, and rs16986825 that maps to ZNRF3 at 22q12.1 

The authors also identified a SNP (rs2736098) that mapped to exon 2 of TERT at 5p15.33, 

and another (rs1561927) mapping to PVT1 on 8q24.21 (31). In 2015, 3 new TERT variants 

were identified (rs2736100, rs4583925, and rs2735948) all of which had a significant 

association with pancreatic cancer risk (32). In 2018, these investigators conducted their 

largest GWAS to date, including 9,040 pancreatic cancer patients and 12,496 controls. In 

this study, they identified five new susceptibility loci for pancreatic cancer. These include 

rs78417682 at the TNS3 locus on 7p12, rs13303010 at the NOC2L locus on 1p36.33, 

rs2941471 at the HNF4G locus on 8q21.11, rs4795218 at the HNF1B locus on 17q12, and 

rs1517037 at the GRP locus on 18q21.32 (34). As additional susceptibility loci are 

beginning to emerge, it is becoming clear that these and other genetic variants may have 

important roles in guiding decisions regarding both pancreatic cancer screening and 

treatment (35–39).

2.4 - ADDITIONAL GENOMIC ALTERATIONS

While pancreatic cancers typically have fewer mutations than most other tumor types (40), 

exome and copy number variation (CNV) studies have determined that PDAC tumors have a 

highly complicated mutational landscape, with variable alterations to several different cell 

processes (41,42). A 2015 study shed further light on the complex genetic landscape of 

pancreatic cancer by conducting whole-genome sequencing and CNV analysis on 100 

PDAC patients. This work identified frequent chromosomal rearrangements leading to copy 

number alterations in several genes with known roles in pancreatic carcinogenesis including 
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TP53, SMAD4, CDKN2A, ARID1A and ROBO2, as well as novel genes such as KDM6A 
and PREX2. Further, the authors used variation in chromosomal structure to group these 

PDAC patients into 4 subtypes: stable, locally rearranged, scattered, and unstable (43).

While these findings are likely to be most useful in managing advanced PDAC, other studies 

have suggested that copy number alterations in select genes may have relevance in 

determining pancreatic cancer risk. This includes copy number amplification of SKAP2/

SCAP2, which may have an association with the development of PDAC (44). Additionally, a 

single study identified 93 non-redundant copy number variations associated with familial 

pancreatic cancer (45). However, others suggest that copy number variation may not have a 

significant role in the etiology of sporadic pancreatic cancer (46). It is important to note that 

the majority of copy number variation studies have been performed on advanced cancer 

specimens, where a certain degree of genetic instability is expected. Therefore, it is unclear 

which of these findings, if any, will have a role in helping to predict for pancreatic cancer in 

healthy populations. However, recent findings suggest that mitochondrial DNA copy number 

variations in peripheral blood leukocytes are associated with PDAC (47). Additionally, 

others report that leukocyte DNA from PDAC patients harbor as many as 431 copy number 

variations that may associate with disease incidence (48). Hence, this is an important area of 

research that warrants continued exploration.

3.1 - CLINCIALLY ACTIONABLE RISK FACTORS

Though the above factors may only inform screening modalities, there are several lifestyle 

and social factors that are also associated with pancreatic cancer incidence, as well as other 

serious health conditions that are often comorbid with pancreatic cancer. While these risk 

factors may also inform early screening, many are potentially reversible through proper 

patient counseling and education, particularly in the primary care setting.

3.2 - SMOKING

Smoking is one of the best-studied and most important avoidable risk factors for PDAC 

(49,50). Nearly 25% of pancreatic cancer deaths are linked to tobacco use (51,52), and a 

California-based study suggests that smoking 1 pack per day increases the lifetime risk of 

developing pancreatic cancer by 5–6 times (53). The exact risk increase seems to vary, as 

this is based largely on the duration and intensity of exposure (52,54). A META analysis 

evaluating 82 studies published between 1950 and 2007 determined that there was a 75% 

increase in the risk of pancreatic cancer in smokers compared to non-smokers, which 

persists for at least 10 years after smoking cessation (55). Interestingly, this pertains 

primarily to cigarette and cigar smokers, with no correlation between disease incidence and 

pipe or smokeless tobacco use (49,50). Cigarette smoking is also a strong predictor of 

pancreatic cancer mortality (5), further underscoring the importance of proper patient 

education.

Though this clinical phenomenon is well established, the cellular mechanisms linking 

smoking and PDAC are poorly understood. Several studies have sought to address this, 

providing unprecedented insight into the potential means through which tobacco smoke 
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promotes pancreatic carcinogenesis. For instance, cigarette smoke contains a variety of aryl 

hydrocarbon receptor (AhR) ligands that have been implicated in smoke-induced induction 

of the cyclooxygenase (COX)/prostaglandin (PG) pathways, as well as activation of 

fibroblasts in the lung (56,57). Inflammation is a key driver of pancreatic cancer (58), which 

is closely linked to fibroblast activation and tumor-associated fibrosis (59). Accordingly, 

AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin or benzo[a]pyrene accelerated chronic 

pancreatitis in vivo, particularly through the upregulation of the inflammatory cytokine IL22 

(60). Similarly, clinical data suggests that circulating IL22 is elevated in chronic pancreatitis, 

is associated with cigarette smoking, and therapeutic inhibition of IL22 reduces disease 

progression in vivo. As discussed later in this article, chronic pancreatitis is another key risk 

factor for pancreatic cancer (61), and IL22 appears to promote pancreatic tumorigenesis 

through a variety of mechanisms (62). However, the link between smoking and IL22 in 

PDAC is not clear, and warrants further study.

Additional evidence appears to implicate aberrations to the epigenome in smoking-

associated pancreatic carcinogenesis. For instance, histone deacetylase 3 (HDAC3) is a key 

regulator of several normal and pathologic cell processes, with important roles in PDAC 

(63,64). Studies in murine models of early disease demonstrated that aerial exposure to 

cigarette smoke accelerated lesion development in an HDAC3-dependent manner, promoting 

stellate cell activation, IL6 biosynthesis, and epithelial to mesenchymal transition (65). 

These events were reversed using the HDAC inhibitor Saha, offering a potential therapeutic 

option for smoking-associated PDAC (65).

In vitro studies have also helped identify potential mechanisms to link smoking and PDAC, 

namely via aberrant AKT signaling (66). Incubating human pancreatic duct cells with either 

cigarette smoke extract or the smoking-associated compound 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone reduced apoptosis and enhanced AKT activation, Bcl-xL expression, 

and the early formation of autophagic vacuoles (66). Interestingly, prolonged exposure with 

these compounds further suppressed apoptosis and abolished autophagy (66). Given the 

established roles for AKT (67) and autophagy (68) in PDAC, this is another potential means 

through which smoking may promote or accelerate PDAC development.

3.3 DIET & OBESITY

Obesity is an epidemic in the United States, affecting 1 in 3 adults and 17% of adolescents 

(69). Beyond the well-studied link between obesity and several serious health conditions 

including hypertension, cardiovascular disease, and diabetes (70), obesity is associated with 

the incidence of several cancers including PDAC (71). Obesity has been suggested to 

increase the incidence of PDAC by roughly 50% (72). This has been corroborated through 

several META analyses, the first of which found only a weak association between PDAC 

and body mass index (BMI) (73). Subsequent META analyses have substantiated a more 

significant association between an obese BMI and PDAC incidence (74–76), particularly 

with respect to waist circumference and centralized fat distribution (74,77).

Additional studies have suggested that obesity is also associated with poor clinical outcomes 

or treatment related complications. In patients undergoing pancreaticoduodenectomy, those 
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with a BMI ≥30 have longer operative times, more intraoperative blood loss, and an 

increased risk of developing pancreatic fistulas (78). Though this study did not find an 

association between obesity and post-operative survival (78), a large single institution study 

determined that obese patients have improved long-term survival independent of known 

clinical or pathologic factors (79). Paradoxically, another similar study determined that 

patients with a BMI ≥35 are more likely to have node-positive pancreatic cancer and 

decreased survival after surgical resection (80), and potentially poorer responses to cytotoxic 

chemotherapy (81). Though these conflicting results suggest that the predictive value for 

BMI in surgically resectable PDAC treatment is unclear, larger studies including inoperable 

disease suggest that an obese BMI is associated with poor overall survival in PDAC 

independent of additional factors such as diabetes and hyperglycemia (82).

Similarly, diet may also have a causative role in PDAC (83). In a META analysis of 11 

prospective studies, increased consumption of red and processed meats was strongly 

associated with disease incidence in men (84). Deficiencies in several individual nutrients 

have also been suggested to correspond to pancreatic cancer risk, though these data are often 

contradictory (85). For example, studies have suggested that increased dietary intake of 

vitamin C is inversely associated with PDAC risk (86,87). However, a subsequent study 

suggested that the inverse association that had been observed in case-control studies may 

have been affected by recall and selection biases, and that additional prospective studies are 

required before substantiating vitamin C as a predictor of PDAC risk (88). Similarly, while 

case-control studies have suggested that low dietary folate (vitamin B9) may correspond to 

increased risk, others have contradicted these findings or suggest that supplemental folate 

does not provide any significant risk reduction (89–92).

Others have suggested potential protective roles of lipid soluble vitamins A, D, and E; 

however, none has produced conclusive evidence linking dietary deficiency with pancreatic 

cancer risk (86,93–101). Likewise, associations with PDAC and dietary lipids or selenium 

intake have only proven significant in case-control studies, and while low intake of omega-3 

polyunsaturated fatty acids or high intake of cholesterol may have a positive association with 

overall risk, the predictive value of these factors also remains unclear (86,102–108).

Hence, studies evaluating single nutritional deficiencies have produced unclear and often 

contradictory results. Therefore, none has proven to be a clinically relevant predictor of 

pancreatic cancer risk. Recently, there is an increasing emphasis placed on overall dietary 

patterns rather than one specific nutritional deficiency (85). For example, a META analysis 

of 16 case-control and cohort studies determined that typical Western diets rich in animal 

products, starches, or fats are associated with a significant risk increase, whereas there was 

an inverse association between pancreatic cancer risk and diets high in fruits, vegetables, and 

fiber (109). Additional studies have suggested that a Western diet high in saturated fat 

confers an increased disease risk, and healthy/prudent or Mediterranean diets have favorable 

effects on disease incidence (110). Hence, rather than attempting to risk stratify or 

counseling patients to correct specific dietary deficiencies, all patients should be encouraged 

to make more sensible food choices and more closely adhere to a healthy diet, and care 

providers should be prepared to provide adequately resources to help patients make this 

transition.
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3.4 - DIABETES MELITUS

Diabetes is closely linked with diet/obesity, and is associated with an increased risk of 

pancreatic cancer. Further, up to 80% of pancreatic cancer patients will present with new-

onset type 2 diabetes or hyperglycemia at the time of diagnosis (111,112). This is 

particularly noteworthy, particularly in light of recent molecular evidence suggesting that 

increased glucose concentrations trigger nucleotide imbalance through aberrant O-

GlcNAcylation, inducing de novo KRAS mutations in pancreatic epithelial cells (113). 

However, there also is a growing body of evidence highlighting diabetes as an early 

paraneoplastic consequence of PDAC, leading to controversy over whether diabetes mellitus 

is an independent risk factor or early marker for pancreatic cancer (112). While new onset 

diabetes has been suggested as a potential screening tool for pancreatic cancer (111), 

additional studies have evaluated the relative risk for diabetic patients of developing 

pancreatic cancer, particularly with respect to the duration of their diabetes.

For instance, a META analysis evaluating 20 case-control and cohort studies between 1975 

and 1994 determined that diabetic patients had a relative risk of 1.8–2.6 (114). When 

evaluating patients with a diabetes duration of at least 5 years, the relative risk was 2.0 (114). 

An updated META analysis examining 36 studies between 1966 and 2005 determined that 

patients with a <4 year history of diabetes had a 50% greater risk of pancreatic cancer 

compared to those with who had diabetes for ≤5 years (115). Though these results suggest a 

modest causal relationship between pancreatic cancer and diabetes, subsequent studies have 

identified a more significant link.

This includes a 2011 META analysis which, despite similar heterogeneity within the 

individual studies, found that diabetes was associated with increased pancreatic cancer risk 

independent of alcohol consumption, BMI, geographic location, sex, smoking status, and 

study design (116). Similar to other studies, this META analysis also found the highest risk 

of pancreatic cancer to be among patients with ≤1 year history of diabetes (116). A more 

recent analysis suggests the relative risk for pancreatic cancer is nearly 5-fold for patients 

with a diagnosis of diabetes within the last year, with a more modest 2-fold risk increase for 

patients diagnosed 1–4 years ago (117). This has been corroborated by additional studies, 

which in addition to finding an inverse association between PDAC risk and years with 

diabetes, found an increased risk for insulin users compared to non-users, which was 

restricted to insulin use of ≤3 years (118).

Combined, these studies strongly suggest that pancreatic-cancer associated diabetes is 

largely a paraneoplastic event. Further, it is well established that most pancreatic cancer 

patients will develop either glucose intolerance or diabetes prior to their cancer diagnosis 

(119–121). Additionally, longstanding diabetics tend to worsen in the months before their 

pancreatic cancer diagnosis (121–123), and diabetes tends to improve following surgical 

removal of pancreatic cancer (120–124). Accordingly, the Chari group has recently 

developed a novel model to determine risk of pancreatic cancer in individuals with new-

onset diabetes, which they refer to as “enriching new-onset diabetes for pancreatic cancer” 

or END-PAC (125). By retrospectively evaluating data from 1,561 patients with new-onset 

diabetes, they created a model weighting the three factors most significant to predict for 
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PDAC. These include change in weight, change in blood glucose, and age at onset of 

diabetes (125). This approach was highly effective in risk-stratifying patients for PDAC in 

an independent, population-based cohort of 1096 diabetics (125). Therefore, new-onset 

diabetes may be the most informative risk factor for early pancreatic cancer screening, and 

pancreatic cancer should be suspected in any patient meeting END-PAC criteria.

However, despite the well documented clinical association between pancreatic cancer and 

diabetes, as expertly reviewed by Sah and colleagues (121), the molecular mechanisms that 

underlie these events are only recently becoming clear. For instance, clinical evidence 

suggests that pancreatic cancer associated diabetes is at least in part due to a decline in β-

cell function and increased insulin resistance (126). Accordingly, supernatants from PDAC 

cell lines promote insulin resistance in cultured hepatocytes and myoblasts in vitro, and 

intraperitoneal administration of MiaPaCa2-conditioned media induces β-cell dysfunction in 
vivo (127–130). While the soluble, tumor-derived factors that case these changes are not 

well characterized, a study examining pancreatic tumor tissue from patients with or without 

diabetes identified the 14 amino acid peptide from S100A8 as being differentially expressed 

in those with diabetes. Further, S100A8 impaired glucose catabolism by myoblasts in vitro, 

suggesting that it may very well have a causative role in pancreatic cancer-associated 

diabetes (131).

Other studies have also identified differences in proteins expression among PDAC patients 

with and without diabetes. For example, islets in PDAC patients with diabetes typically 

overexpress the gap junction protein Connexin-26 (132). Another study examined peripheral 

blood samples from either healthy controls, or patients diagnosed with pancreatic cancer 

and/or diabetes. This group found that blood from pancreatic cancer patients with diabetes 

had increased mRNA and protein expression of several factors, namely vanin-1 (VNN1) and 

matrix metalloproteinase 9 (MMP9) (133). Adrenomedullin is also upregulated in PDAC, 

particularly in those who develop diabetes. Additionally, adrenomedullin is carried in 

pancreatic cancer-associated exosomes, and also appears to cause insulin resistance in β-

cells (134). Another study has identified pancreatic polypeptide (PP) as a potentially useful 

predictor of pancreatic cancer-associated diabetes. Though their sample size is small, the 

authors identified a blunted PP response in pancreatic cancer-associated diabetes compared 

to type 2 diabetics without a pancreatic cancer diagnosis. While this PP response may 

discriminate between type 2 diabetes and pancreatic cancer-associated diabetes, this 

phenomenon also appears to be exclusive to PDAC patients with tumors located in the head 

of the gland (135). Hence, by combining these observations with the END-PAC model, it 

may be possible to risk stratify newly diagnosed diabetics and identify those who would 

most benefit from early pancreatic cancer screening.

3.5 - ALCOHOL & PANCREATITIS

Alcohol has long been suspect to confer an increased risk of pancreatic cancer. The 

carcinogenic properties of alcohol and its metabolites are well-documented (136). 

Accordingly, alcohol has been implicated in the development of a variety of solid tumors, 

and genetic variants of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) 

are associated with increased overall cancer risk (137). Select studies have identified a 
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positive association between heavy alcohol consumption and PDAC, though this risk 

increase is not as strong as that caused by smoking (138–141). One case-control study 

suggested that alcohol consumption was not associated with pancreatic cancer risk overall, 

but that cigarette smoking modified the alcohol-cancer relationship, as heavy drinking is 

more frequently observed in smokers than non-smokers. In current smokers, light to 

moderate alcohol intake modestly increased pancreatic cancer risk, and heavy alcohol 

consumption significantly increased risk (142). Hence, it is difficult to establish alcohol as 

an independent risk factor for pancreatic cancer.

However, though the direct link between pancreatic cancer and alcohol remains unclear, the 

link between pancreatitis and pancreatic cancer has been known for decades. While 

gallstones are the most common cause of acute pancreatitis and the risk of future episodes 

can be eliminated through cholecystectomy, both alcohol and smoking also appear to be 

clinically significant risk factors (143). However, alcohol continues to be the most 

significant risk factor for chronic pancreatitis. While a diagnosis of acute pancreatitis 

appears to increase the long-term risk of pancreatic cancer (144), chronic pancreatitis is a 

much more significant risk factor (145), particularly in patients requiring surgery (146). 

Therefore, chronic pancreatitis is likely more informative when stratifying patients for early 

screening. In META analysis, chronic pancreatitis confers a nearly eight-fold increased risk 

of pancreatic cancer 5 years after diagnosis. However, this risk appeared to diminish with 

long-term follow up. The authors resultantly recommend close follow-up in the first years 

following a diagnosis of chronic pancreatitis (145), though aggressive surveillance of any 

patient with a history of pancreatitis and other known risk factors may be warranted.

4.1 - NEWLY EMERGING RISK FACTORS

Recent evidence has illuminated several added risk factors that may also have utility when 

identifying high-risk patients. Interestingly, these appear to involve a number of infectious 

processes as well as a variety of underappreciated psychosocial factors. While the individual 

predictive values for several of these factors is still unclear, these may warrant clinical 

consideration particularly when patients also have a known history of more established risk 

factors.

4.2 - INFECTION & THE MICROBIOME

Bacterial and viral species are of paramount importance to the etiology of several cancers 

(147). While the pancreas has long been considered a sterile organ, a recent study identified 

an abundance of select bacterial species in both human and murine pancreatic cancer 

specimens (148). The microbial signature of PDAC tumors also appears to have a prognostic 

value, as a signature rich for Pseudoxanthomonas, Streptomyces, Saccharopolyspora, and 
Bacillus clausii predicts long-term survival in PDAC patients (149) Further, ablation of 

intratumoral bacteria enhanced the efficacy of immunotherapy in vivo, which is particularly 

noteworthy as immunotherapy is beginning to show promise in PDAC (148,150–159). 

Interestingly, other roles for select bacterial species in PDAC are also emerging. For 

example, a recent study identified a potential role for intratumoral Gammaproteobacteria in 

the emergence of chemoresistance both in vitro and in vivo (160). However, a more causal 
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role for select bacterial species has been suggested, particularly in light of clinical 

observations linking specific infections with pancreatic cancer risk.

For instance, a 1998 study identified a positive association between serum IgG antibodies 

against Helicobacter pylori (H. pylori), with 65% of PDAC patients testing positive 

compared to 45% of healthy controls (161). Subsequent studies have expanded on this 

relationship, including a larger 2001 study that found 82% of PDAC patients to be 

seropositive for H. pylori compared to 73% in controls. Additionally, compared to 

seronegative subjects, those seropositive for gene-A-positive H. plylori strains had a 

statistically significantly increased risk of pancreatic cancer (162).

A 2007 study evaluating gastric and duodenal ulcers suggested a 20% excess risk increase 

for unoperated gastric ulcer patients (163). This study also states that gastric ulcers are 

primarily associated with corpus colonization of H. pylori and the formation of N-

nitrosamines, whereas duodenal ulcers are associated with antral colonization, hyperacidity 

and uninhibited secretin release. Hence, they suggest that N-nitrosamines may have a role in 

PDAC pathobiology (163), though this remains untested. While additional studies have 

contradicted these findings, a 2011 META analysis including 2,335 patients across 6 studies 

found a significant risk increase for H. pylori seropositivity (164). Hence, while H. pylori 
can colonize the pancreas and these infections may have a role in PDAC (165), its 

independent predictive value for H. pylori seropositivity is not clear, though this may 

warrant consideration in combination with other risk factors.

Beyond H. pylori, several other gut microbiota species also appear to be involved in PDAC. 

The microbial species that colonize the pancreas appear to have significant overlap with 

those of the gastrointestinal tract (149). Accordingly, microbes from the gastrointestinal 

tract, particularly the small intestine, are able to access the pancreas through both the biliary 

tract and the bloodstream (148,166,167). Depletion of the gut microbiome significantly 

reduced tumor burden in murine models of PDAC, however, this was not observed in mice 

lacking functional T and B cells (168). Further, human-into-mice fecal microbiota 

transplantation has been shown to differentially modulate the tumor microbiome in vivo, 

with significant effects on tumor growth and local immune responses (149). Hence, further 

investigation into the contributions of the gut microbiome into PDAC may lead to new 

insights into cancer treatment, prevention, and screening (169).

Oral microbiota also appear to have important roles in PDAC etiology, and may have a place 

in PDAC screening given the ease at which saliva samples can be obtained in the primary 

care setting. Periodontal disease has also been linked to PDAC risk, particularly those 

caused by Porphyromonas gingivalis (P. gingivalis). For example, an early study found a 

positive association between tooth loss and PDAC risk (170), with similar observations in 

periodontal disease (171). Several subsequent studies have affirmed this relationship (172), 

including a European study examining the relationship between serum antibodies to 25 

different oral bacteria and pancreatic cancer risk. This identified found a near two-fold risk 

increase in patients with a high P. gingivalis antibody titer (173). Though the mechanisms 

underlying this association warrant investigation, P. gingivalis antibody titers may be 

informative in the appropriate clinical context.
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There is emerging evidence that the oral microbiome may also have a role in helping to 

select patients for pancreatic screening. A large nested case–control study examining 361 

pancreatic cancer patients and 371 matched controls found that the presence of P. gingivalis 
and Aggregatibacter actinomycetemcomitans were associated with higher risk of pancreatic 

cancer, whereas the presence of phylum Fusobacteria and its genus Leptotrichia were 

associated with a decreased disease risk (174). Additionally, Neisseria elongata (N. elongata) 

and Streptococcus mitis (S. mitis) were found to be significantly lower in the saliva of 

PDAC patients than that of healthy controls (175). As the authors conclude that these two 

bacterial species has strong predictive value for PDAC, the relative absence of N. elongata 
and S. mitis warrant consideration in risk stratifying patients for early imaging (175). 

Additional studies have identified several other bacterial species that seem to be 

differentially present in the saliva of healthy controls and PDAC patients. These include 

bacteria belonging to the genera Corynebacterium and Aggregatibacter that are frequently 

reduced in PDAC patients, and Bacteroides and Granulicatella adiacens that are more 

represented in the saliva of PDAC patients (167). Hence, while our understanding of this 

topic is evolving, it is clear that the microbiome is an important and long underappreciated 

aspect of PDAC pathobiology that may have clinical utility in disease detection, prevention, 

and therapy.

4.3 - FAMILY, EDUCATION, INCOME, AND ACCESS TO CARE

As discussed, while several studies have implicated race as a risk factor for pancreatic 

cancer, recent evidence has also identified a variety of additional social factors that may in 

part explain some of these associations. A study evaluating nearly diagnosed patients found 

that while only 13% eventually undergo pancreatic resection, this was largely influenced by 

residential instability and material deprivation (176). Specifically, patients living in rural 

areas or urban patients with lower incomes are less likely to undergo surgical intervention, 

however, socio-demographic marginalization was not a predictive factor of outcomes in 

patients who did undergo surgical resection (176). Hence, there may be significant barriers 

to care that not only dictate the treatment of pancreatic cancer, but may also limit the 

availability to intervene with the many actionable risk factors listed above.

Finally, mental health is emerging as a potential factor in PDAC risk. Though the importance 

of providing appropriate mental health support has been emphasized in patients already 

diagnosed with PDAC, others have suggested that psychosocial distress may even play a 

more causative role in PDAC etiology. For instance, a 2013 study of 16,522 cases and 

82,107 controls found that the loss of a child was associated with a risk increase for PDAC, 

particularly within the first 5 years or if losing a child to suicide (177). Hence, extreme 

psychosocial stress may be implicated in PDAC risk, through this warrants additional 

investigation, as other factors such as maladaptive coping strategies e.g. alcohol and tobacco 

use may confound these observations.

5 - PERSPECTIVE & FUTURE DIRECTION

In recent years, due to advances in both early detection and therapy, survival has improved 

for nearly all solid malignancies. However, despite significant improvement in our 
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understanding of pancreatic cancer pathobiology, there remain extremely limited therapeutic 

options for patients with advanced disease. It is now more important than ever to both 

identify high-risk patients for who would benefit from early imaging, as well as counsel 

patients to avoid key risk factors in hopes of reducing disease incidence. As the preventable 

risk factors for PDAC are shared with any number of other conditions, all patients can and 

should be counseled to make these lifestyle modifications by their primary care physicians. 

However, screening poses a more significant challenge, particularly as there is a lack of 

consensus regarding which asymptomatic patients should be evaluated for PDAC. Unlike 

other cancers, there is no practical test that can be used to inform these decisions. Early 

detection for PDAC is based almost entirely on imaging studies, which simply cannot be 

offered to all patients and must be reserved for those showing one or more early warning 

signs for PDAC.

For example, as discussed a new diagnosis of diabetes is one of the most telling early signs 

of disease. However, it is important to note that very few cases of diabetes will be due to an 

underlying etiology of PDAC. Therefore, while it is easy to recommend that all newly 

diagnosed diabetics be screened for PDAC, this may not be practical or feasible given the 

expense, particularly in low resource settings. Therefore, it is imperative to better develop a 

multivariate “risk signature” in order to identify the patients that would most benefit from 

early imaging. As demonstrated, patients who both smoke and have a family history of 

PDAC have a staggering 12.8 fold risk increase (Table 2). Similarly, current smokers with a 

diagnosis of diabetes mellitus had a 9.3 fold risk increase (Table 2). These and the many 

other studies described in this review clearly show that certain risk factors can synergize 

with others to increase the likelihood of developing PDAC. However, there is a lack of 

consensus regarding the combinations that are the most informative. As a result, who is 

screened for PDAC is left solely to the discretion of care providers, and the patients sent for 

imaging will vary based on provider experience, expertise, and local resources. Through 

more careful and rigorous analyses of the interactions between the risk factors described 

above, it may be possible to reach consensus regarding which patients should be screened, 

thereby improving outcomes through earlier detection.

6 - SUMMARY

Given the significant clinical challenge of treating late stage PDAC, it is imperative that 

high-risk patients be identified as early as possible in order to provide early and aggressive 

screening, as well as allow for appropriate intervention to support the appropriate lifestyle 

modifications. While many of the factors described in this review appear to have 

independent predictive value for PDAC risk, pancreatic cancer etiology is highly complex 

and involves a variety of cell types and processes. Through understanding the interactions 

between these many risk factors, it may be possible to better identify those with the highest 

risk, and improve outcomes in what is generally considered an incurable disease.
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Figure 1. Differences in gene expression by sex and race in the TCGA cohort of pancreatic 
cancer patients
(A,B) Using the TCGA genomic databases of pancreatic cancer patients (N=185), we 

evaluated differences in gene expression between male (N=102) and female (N=83) patients. 

Differences in mRNA expression were visualized via volcano plot, and genes with 

significant (FDR adjusted p-value < 0.05) differences between groups colored blue. For a 

complete list of these genes see Table 1. (C,D) In the same patient cohort, we evaluated 

differences in gene expression based on race. Of the 180 patients for which ethnicity was 

documented, 162 were white, and the remaining 18 African American or Asian (non-white). 

Differences in mRNA expression were visualized via volcano plot, and genes with 

significant (FDR adjusted p-value < 0.05) differences between groups colored blue. For a 

complete list of these genes see Table 1.
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Table 1.

Genes differentially expressed between males and females, or white and racial minority patients from the 

TCGA pancreatic cancer cohort

Gene Cytoband p-Value q-Value Higher Expression

EIF1AX Xp22.12 1.9*10−21 2.68*10−17 Female

KDM5C Xp11.22 2.66*10−18 1.88*10−14 Female

KDM6A Xp11.3 3.13*10−17 1.47*10−13 Female

JPX Xq13.2 9.15*10−17 3.23*10−13 Female

ZRSR2 Xp22.2 1.49*10−13 4.21*10−10 Female

PNPLA4 Xp22.31 1.31*10−12 3.09*10−9 Female

PUDP Xp22.31 3.7*10−12 7.46*10−9 Female

SYAP1 Xp22.2 1.44*10−11 2.27*10−8 Female

ZFX Xp22.11 1.45*10−11 2.27*10−8 Female

DDX3X Xp11.4 1.62*10−11 2.29*10−8 Female

SMC1A Xp11.22 3.07*10−10 3.94*10−7 Female

CA5BP1 Xp22.2 3.59*10−09 4.222*10−6 Female

FUNDC1 Xp11.3 1.9*10−08 2.064*10−5 Female

RPS4X Xq13.1 5.81*10−08 5.86*10−5 Female

ARSD Xp22.33 7.17*10−07 6.747*10−4 Female

STS Xp22.31 1.086*10−05 9.58*10−3 Female

TRAPPC2 Xp22.2 1.221*10−05 0.0101 Female

CA5B Xp22.2 2.114*10−05 0.0166 Female

GYG2 Xp22.33 4.977*10−05 0.0351 Female

DDIT3 12q13.3 V 3.913*10−05 0.0291 Male

TMC5 16p12.3 1.381*10−06 0.0155 Non-White

LRRC37A2 17q21.31 2.196*10−06 0.0155 White

USP32P1 17p11.2 5.541*10−06 0.0261 White

q = FDR adjusted p-value
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Table 2.

Abbreviated list of key clinical risk factors for PDAC

Risk Factor OR 95% CI Reference

Smoking

Current Smoker (overall) 1.77 1.38–2.26 (54)

Current Smoker ≥30 cigarettes/day 1.75 1.27–2.42 -

Current Smoker ≥40 cigarettes/day 1.78 1.35–2.34 -

Current Smoker v. Never Smoker 2.20 1.70–2.80 (49)

Former Smoker v. Never Smoker 1.20 1.00–1.30 -

Alcohol

1–3 drinks/week 0.78 0.58–1.05 (142)

4–20 drinks/week 0.86 0.63–1.17 -

≥21 drinks/week 1.35 0.81–2.27 -

Medical Histor

Diabetes mellitus (≤2 years after diagnosis) 2.90 2.10–3.90 (118)

Diabetes mellitus (3–5 years after diagnosis) 1.90 1.30–2.60 -

Diabetes mellitus (6–10 years after diagnosis) 1.60 1.20–2.30 -

Diabetes mellitus (11–15 years after diagnosis) 1.30 0.90–2.00 -

Diabetes mellitus (>15 years after diagnosis) 1.40 1.00–2.00 -

Chronic pancreatitis 2.23 1.43–3.49 (178)

All pancreatitis 3.42 1.98–5.91 -

Gastric ulcer disease 1.20 1.00–1.40 (163)

H. pylori seropositive 1.38 1.08–.75 (164)

P. gingivalis antibody ≥200ng/ml 2.38 1.16–4.90 (173)

Family history of PDAC 1.76 1.19–2.61 (179)

Multivariate Risk Factors

Non-smoker, ≥21 drinks/week 2.01 1.50–8.18 (142)

Current Smoker, ≥21 drinks/week 4.04 1.58–10.37 -

Current smoker, diabetes mellitus 9.30 2.00–44.1 (180)

Current smoker, family history of PDAC 12.8 1.60–108.9 -

OR = Odds Ration, CI = Confidence Interval

Cancer Lett. Author manuscript; available in PMC 2021 August 10.


	Abstract
	INTRODUCTION
	UNAVOIDABLE RISK FACTORS
	PREDISPOSING GENETIC SYNDROMES
	GENETIC SUSCEPTIBILITY LOCI
	ADDITIONAL GENOMIC ALTERATIONS
	CLINCIALLY ACTIONABLE RISK FACTORS
	SMOKING
	DIET & OBESITY
	DIABETES MELITUS
	ALCOHOL & PANCREATITIS
	NEWLY EMERGING RISK FACTORS
	INFECTION & THE MICROBIOME
	FAMILY, EDUCATION, INCOME, AND ACCESS TO CARE
	PERSPECTIVE & FUTURE DIRECTION
	SUMMARY
	References
	Figure 1.
	Table 1.
	Table 2.

