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Abstract: Denoising the point cloud is fundamental for reconstructing high quality surfaces with
details in order to eliminate noise and outliers in the 3D scanning process. The challenges for a
denoising algorithm are noise reduction and sharp features preservation. In this paper, we present a
new model to reconstruct and smooth point clouds that combine L1-median filtering with sparse
L1 regularization for both denoising the normal vectors and updating the position of the points
to preserve sharp features in the point cloud. The L1-median filter is robust to outliers and noise
compared to the mean. The L1 norm is a way to measure the sparsity of a solution, and applying
an L1 optimization to the point cloud can measure the sparsity of sharp features, producing clean
point set surfaces with sharp features. We optimize the L1 minimization problem by using the
proximal gradient descent algorithm. Experimental results show that our approach is comparable to
the state-of-the-art methods, as it filters out 3D models with a high level of noise, but keeps their
geometric features.

Keywords: point cloud denoising; 3D surface reconstruction; sparse representation

1. Introduction

With the rapid expansion of 3D scanning devices, the process of capturing and scanning real
objects has become a common task in many areas, ranging from medicine and entertainment to
industry and 3D printing. Despite significant development in the precision of 3D scanning technology,
the raw data produced by the scanning devices inevitably contains noise and outliers caused by the
inherent measurement error of 3D devices and the digitalization process. Herein lies the importance of
denoising the point cloud in a pre-processing step before proceeding with surface reconstruction or
shape analysis. The goal of the denoising algorithms is to suppress noise and outliers while preserving
the sharp features such as edges and corners. Unlike denoising methods focused on triangular meshes,
methods focused on point clouds do not have connectivity information, introducing an additional
challenge. Denoising point clouds with sharp features is a complex problem as the features and noise
are high frequency and therefore difficult to distinguish.

Many point set surfaces are piecewise smooth almost everywhere except for a few features such
as corners and edges [1,2]. This means that these features are sparse, allowing a sparsity analysis in
the point clouds to be conducted to estimate them. We can measure the sparsity of a solution using
either the L0 norm or the L1 norm. The L0 norm counts the number of non-zero elements in a vector,
directly measuring the sparsity, but it is challenging to optimize due to its non-convexity; furthermore,
the L1 norm can approximate the L0 norm. The L1 norm is convex, and under certain conditions,
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produces sparse solutions. Some works exploit the sparsity theory on point clouds [1–4], and applying
this theory is motivated by the field of sparse signal reconstruction and compressed sensing [5,6].
These works have attempted to overcome the problems related to noisy point clouds; the algorithms
proposed in these studies perform well for feature preservation with a certain level of noise. Still, when
the noise scale is larger or impulsive noise is present, they usually do not do well. Although the
L0 norm produces sparser solutions than the L1 norm, the application of the L0 minimization can
over-flatten and over-sharpened effects for small geometric features.

In this paper, we propose a robust method that focuses on removing noise and outliers while
preserving the sharp features in a point cloud. Our approach comprises two iterative steps: (1) the
normal estimation, finding a regression plane equidistant to all heights in a local neighborhood to
then calculate the normal at the plane; and (2) based on the estimation of the normals, the position of
the points is updated, using the orthogonal distance of the noisy point to the local regression plane,
shifting the point along the normal direction projecting it onto the plane. This two-step procedure is
repeated until a minimum error threshold is reached.

Our work is motivated by three observations: (1) L1-median filtering data-fidelity term encourages
us to find a local regression plane to approximate the input points while discarding the noise and
outliers; (2) points that belong to the same local smooth region will have similar normals, and the
differences between them should be sparse, while large differences in values would reveal sharp
features; and (3) points in a local neighborhood must comply with a local planarity criterion, except in
the sharp features.

The three principal contributions of this paper are as follows: We present a two-step method for
both normal estimation and point position update measuring the sparsity of sharp features while
discriminating between noise and features. First, an adaptive weighted strategy is used to improve
the normal estimation on sharp features. Second, a point cloud denoising method is developed
that is sufficiently robust to large scale noise, outliers, and impulsive noise, outperforming some
state-of-the-art point clouds denoising methods.

2. Related Work

Point cloud denoising algorithms can be roughly divided into six categories as follows: moving
least squares (MLS)-based methods, locally optimal projection (LOP)-based methods, sparsity-based
methods, non-local similarity-based methods, graph-based methods, and normal smoothing-based
methods. In this section, we are interested in point cloud denoising coupled with features preservation.

2.1. MLS-Based Methods

The MLS [7] methods approximate a noisy input point cloud with a smooth surface by projecting
the noisy points onto the MLS surface. Three steps are required to project each point: (1) finding a
local reference domain to each point, (2) defining a function above the reference domain by fitting a
bivariate polynomial using its neighboring points, and (3) computing the projection by evaluating the
polynomial at the origin. MLS methods have some drawbacks, because they are not robust to outliers.
The projection procedure can be unstable in high curvature regions and for low sampling rate and
can over-smooth the surface. Several variants to this method have been proposed to correct the cited
problems and for handling sharp features; e.g., algebraic point set surfaces (APSS) [8], and robust
implicit MLS (RIMLS) [9].

2.2. LOP-Based Methods

Without the use of normal information, LOP-based [10] methods generate a set of points called
particles using the L1 median and a regularization term. This method projects the points onto an
underlying surface while enforcing a uniform distribution of points. A variation to this method is the
weighted LOP (WLOP) [11]; this method produces more evenly distributed points on the surface. Edge
aware resampling (EAR) [12] improves sharp features by modifying LOP to use normal information as
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a weight function. However, LOP-based methods can produce over-smoothing because of the use of
local operators.

2.3. Non-Local Similarity-Based Methods

These methods are inspired by the image processing techniques non-local mean (NLM) [13]
and the block-matching and 3D filtering (BM3D) [14] algorithms, and they exploit the concepts of
self-similarity between small surface patches in the point cloud. The direct application of this concept
to the point cloud is not straightforward, because the point cloud structure does not exhibit a regular
disposition such as the pixels in an image in their structure. The methods based on MLN or BM3D
better preserve structural features under a high level of noise. One of the first works extending the
NLM algorithm to operate in point clouds is [15]. This method uses the MLS surface and its polynomial
coefficients as neighborhood descriptors to find similar patches or neighborhoods. In [16], the authors
generalized the BM3D, searching for similar neighborhoods globally in the point cloud using the
iterative closest point (ICP) algorithm. Low-rank matrix representation is used in [4], wherein the
authors use dictionary representation from the noisy patches to smooth 3D patches. The drawback of
this method is its computational complexity given the global point clouds search.

2.4. Graph-Based Methods

Graph-based methods treat the point cloud as a signal in a graph, and the smooth surface is
chosen by using graph filters. In [17], the authors use the graph of the k-nearest neighborhood to
represent a point cloud as a signal, and carry the smoothing out via convex optimization. The method
in [18] used weighted graph Laplacian over the normals and total variation L1-norm as the regularized
term to model two kinds of additive noise. Using a bipartite graph, they establish a linear relationship
between the points and normals to proceed with the optimization. In [19], the authors proposed the
use of a graph Laplacian regularization (GLR) and low manifold model to find self-similarity between
patches to the smooth point cloud, avoiding the direct smoothing of point coordinates or point normals.
In [20], the authors computed local tangent planes based on a graph and then reconstructed the point
cloud by the weighted average of its projections in the tangent planes.

2.5. Normal Smoothing-Based Methods

Normal smoothing methods are focused on estimating noise-free normals, followed by an updating
of the position of the points based on the clean normals. In [21], the authors used a robust version
of principal component analysis (PCA) to estimate the normal vector; the authors proposed weight
factors that were inversely proportional to the sum of the distance to the mean. The weights defined in
this way make the method robust to outliers and noise. They proposed a simple solution to avoid data
shrinkage using bootstrap bias correction. The method iteratively smooths the surface and preserves
sharp features.

In [22], the authors used the multi-normal guided concept (GN) to correctly estimate the normals
in edges and corners, based on the observation that points on the same side of the edges have the
same normal orientation. The first step is to detect the edges and then refine them using the L1-medial
skeleton of point cloud algorithm [23], followed by an estimation of the multi-normals, and finally, an
updating of the position by optimizing a height-based function. In [24], the authors used the same
multi-normal concept for denoising called rolling normal filtering (RN). The first step here was the
same as for [22], but for the point position update, they introduced an energy term to avoid point cloud
deformation close to the edges. The method is robust to the noise and preserves edges and corners.
Yadav et al. [25] used Constraint-based normal voting tensor (CVN) analysis and binary optimization
to estimate noise-free normal. Next, to update the position of points, the method was used to classify
each point on the cloud as edge, corner, or planar point, and based on this classification, they proposed
three optimization procedures for each type of point. The method is effective for denoising the point
cloud and preserves the sharp features.
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2.6. Sparsity-Based Methods

These methods are based on the theory of sparse representation of certain geometric features
of the point cloud. The sparsity-based method assumes local planarity for the optimization model.
Recently, attention has been devoted to sparsity-based methods in geometry processing [26]. These
methods comprise two sparse modeling steps. The first carries out a sparse reconstruction of the
normals by solving a global minimization problem with sparse prior regularization. The prior model
can be the L0-norm or L1-norm. The local planarity comprises the following assumption: If two points
belong to the same smooth region, its normal vectors will be similar; therefore, the gradient should be
sparse. Based on the smoothed normals, it updates the point positions following a second sparse global
model optimization. Methods in [1,2] follow this strategy. Recently, authors in [3] proposed a method
called moving robust principal component analysis (RMPCA), using weighted minimization of the
point deviations from a local reference plane to preserve sharp features. However, when the noise
level is high, over-smoothing or over-sharpening occurs. Our approximation belongs to sparsity-based
methods and is in the same spirit of RMPCA, but the difference lies in that we use sparsity in both data
fitting and the prior term. Our method uses the L1 median for the fitting term and the L1 norm for the
regularization term. For the proposed method, we apply a local sparse optimization strategy based on
proximal gradient.

3. Robust Point Cloud Denoising

As in previous point cloud denoising methods [22,24,25], our method comprises two steps, namely
normal denoising and point position update.

Starting from a noisy point cloud P near an unknown surface S, the goal of the proposed algorithm
is to find a noise-free point set P′ that conserves the features of the original point cloud. We use local
neighborhoods to each point pi ∈ P. The main idea is to define a local reference tangent plane =p to
every pi in the point cloud and determine its normal vector ni, and then shift the point pi in the normal
direction to a distance τi ∈ R, obtaining a new position p′i = pi + τini, p′i ∈ P′. The new position p′i
being the projection of point pi onto the tangent plane =p, which is the linear approximation of the
surface S at point pi, as shown in Figure 1.
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The normal ݊௜ and the displacement ߬௜, are computed iteratively by adjusting the tangent plane 
ℑ௣ to the neighborhood ௚ܰ(݌௜). To estimate the tangent plane ℑ௣, we are looking for an equidistance 
height to all heights of the points ݌௝ ∈ ௚ܰ(݌௜) over ℑ௣. To estimate the local reference tangent plane 
ℑ௣, we minimize a cost function (Equation (2)) concerning ߬ and ݊, subject to the constraint ‖݊‖ =
1. 

3.1. L1-Median 

Figure 1. The point pi is projected onto the reference plane. =p is a linear approximation to the surface.

The normal ni and the displacement τi, are computed iteratively by adjusting the tangent plane
=p to the neighborhood Ng(pi). To estimate the tangent plane =p, we are looking for an equidistance
height to all heights of the points p j ∈ Ng(pi) over =p. To estimate the local reference tangent plane =p,
we minimize a cost function (Equation (2)) concerning τ and n, subject to the constraint ‖n‖ = 1.
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3.1. L1-Median

The L1-median is a robust estimator related to the multivariate median, and is defined to be the
point p, which minimizes the sum of Euclidean distances to all points in the data set

{
p j

}
j∈J

.

arg min
x

∑
j∈J

‖p j − p‖ (1)

The L1-median is insensitive to outliers and noise when compared with the mean [10]. We use the
L1-median as a data-fidelity term.

3.2. L1 Sparse Regularization

L1 regularization has been applied for feature selection [27], sparse signal reconstruction [28], signal
processing as image decomposition [29], and basis pursuit [30]. Although L0 regularization produces
the sparsest solution, under certain constraints, L1 regularization produces a sparse solution [31].
Image processing has successfully applied L1 regularization to preserve fine details and edges through
the minimization of the gradient [32]. This is conceptually named total-variation regularization or
TV, and is used to measure the sparsity of the gradient. The proposed method uses TV for normal
estimation to preserve the sharp features.

3.3. Cost Function

To denoise the noisy point cloud, we integrate L1-median height filter and L1 regularization of
gradient or total variation. The normal is obtained, minimizing the following energy functional:

min
n,τ

E f + λEreg (2)

where E f is the fidelity term, Ereg is the regularization term, λ is the regularization parameter, and
‖n‖ = 1.

The L1-median height fidelity term E f is defined as follows:

E f =
∑

q j∈Ng(pi)

‖hi − τi‖ψ(hi, τi)θ(‖pi − q j‖) (3)

where hi = nt
i(pi − q j), ψ(hi, τi) = e−(hi−τi)

2/σ2
h , and θ(‖pi − q j‖) = e−d2/σ2

d .
It is used to fit a robust hyperplane in the neighborhood of the sampled point pi, and to then

estimate the normal vector with respect to the hyperplane. We minimize the sum of Euclidean
distances of the orthogonal projections (height) of points q j ∈ Ng(pi), with respect to the hyperplane
(Equation (3)). τi is the height to be found, which minimized the orthogonal projections of each point
q j to the hyperplane.

arg min
x

∑
j∈J

‖p j − x‖ (4)

The estimation of the hyperplane shows robustness to large deviations of points q j. The outliers
are identified by the L1-median height filter, which penalizes points q j with high orthogonal projections
or heights hi with respect to the hyperplane.

Consequently, points q j with considerable heights, hi, are probably located passing through the
sharp features; these points are possible outliers. As such, we propose an adaptive weighting strategy,
which adaptively assigns the weight of each point as a function of the height. Thus, the weighting
term ψ(.), adaptively encourages the reduction of the influence of points q j with high hi values, and
σh is the height parameter, which controls sensitivity to outliers. Thus, the term ψ(.) only considers
points located in the same smooth region to estimate the normal vector.
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The L1 norm regularization term Ereg is defined as

Ereg =
∑

n j∈Ng(ni)

wi, j‖ni − n j‖1 (5)

where wi, j = e−(
1−nt

i nj
1−cos (σn)

)

2

, which is introduced as a measure of sparsity to preserve the sharp features
and smooth the underlying surface. If a point cloud is piecewise smooth, many of the gradients in
the normals field n (consistently oriented) tend to be zero; in contrast, the large values of the gradient
only indicate sharp features. This means that normals n j ∈ Ng(ni) in a neighborhood must be similar,
where wi, j is the normal weight function, and σn is the angle parameter that measures the similarity
between normals n j, which is customarily is set to σn = 150.

3.4. Model Optimization

We optimize ni and τi subject to ‖ni‖ = 1, using a minimizing strategy defined as follows:

min
ni,τ

∑
q j∈Ng(pi)

‖hi − τi‖ψ(hi, τi)θ(‖pi − q j‖) + λ
∑

n j∈Ng(ni)
wi, j‖ni − n j‖1. (6)

This approach finds the optimal values of ni and τi by alternating optimization strategies, a
procedure shown in Algorithm 1.

Algorithm 1. Model optimization

1 Initialization: τ0 = 0
2 repeat

j=0
repeat

3 fix τk, solve for nk+1 as minimum of Equation (6).
4 fix nk, solve for τk+1 as minimum of Equation (6).

pk+1 = pk + τknk
5 until ‖pk+1 − pk‖

2
2 < ε

edge_points_correction()
14 until j > jmax

We solve the energy minimization problem regarding n having fixed τ. Since the minimization
problem is non-differentiable due to the regularization term Ereg, we use the proximal gradient
descendent method [33] as an optimization strategy.

3.4.1. The n0 Parameter Initialization n

First, we estimate the initial normal set to each pi ∈ P using only the equation corresponding to
the fidelity term E f , with τ = 0 for the optimization. Similar to [34], we use the constraint ‖n‖ = 1, and
compose the Lagrange form of Equation (3) to compute the derivative with respect to n, obtaining

L(n,λ) =
∑

q j∈Ng(pi)

‖hi‖ψ(hi)θ(‖pi − q j‖) +
λ
2
(1− ‖ni‖

2) (7)

Ln(n,λ) =
∑

q j∈Ng(pi)

ωi(pi − q j)(pi − q j)
tni − λni = 0 (8)

with weight ωi = ψ(hi)θ(‖pi − q j‖)/‖hi‖
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We can see that the term ωi(pi − q j)(pi − q j)
t on Equation (8) is a symmetric and definite positive

matrix (weighted covariance matrix), and we can rewrite it depending on n as

Cm(n)n = λn (9)

where Cm(n) =
∑

q j∈Ng(pi)
ω(pi − q j)(pi − q j)

t

Equation (6) is an eigensystem and can be solved iteratively as follows:

Cm(nk)nk+1 = λk+1nk+1 (10)

where λk+1 is the smallest eigenvalue of Cm(nk), and nk+1 is an orthonormal eigenvector. We start the
initialization with n0 = 0, i.e., Cm(0)n1 = λ1n1, is the first iteration.

3.4.2. Optimization of n

Keeping τ and ψ(hi, τi) fixed to solve Equation (6), ψ(hi, τi) is treated as a constant because it
is a practical way to make it computationally tractable. Thus, the fidelity term E f has gradient ∇E f
as follows:

∇E f (n) =
∑

q j∈Ng(pi)
ηi(hi − τi)(pi − q j)

t (11)

with weight ηi = ψ(hi, τi)θ(‖pi − q j‖)/‖hi − τi‖. ηi is undefined when hi = τi; therefore, when
‖hi − τi‖ < 10−3, we set ηi = θ(‖pi − q j‖).

Setting d = ni − n j, we define the proximal mapping (or operator), associated with a convex
non-differentiable function h(), as follows:

proxh,γ(d) = arg min
z

(h(z) +
1

2γ
‖z− d‖22) (12)

The proximal gradient descendent has an iteration form as follows:

dk+1 = proxh,γ(dk
− γ∇E f (nk)) (13)

where γ > 0 is a scalar termed step size, and dk+1 is computed iteratively until convergence. The
proximal operator corresponding to the L1-norm or regularization term Ereg is the following shrinkage
or soft thresholding function:

proxh,γ(dic) =


dic − γλwi j if dic > γλwi j

0 if |dic| ≤ γλwi j
dic + γλwi j if dic < −γλwi j

(14)

where dic is each component of normal vector di.

3.4.3. Optimization of τ

With n fixed, we solve Equation (6) for τ, which shows that the fidelity term E f has gradient ∇E f .

∇E f (τ) =
∑

q j∈Ng(pi)

ηi(hi − τi) = 0 (15)

By solving ∇E f (τ), we obtain an iterative solution, which yields the following local update
equation:

τk+1
i =

∑
q j∈Ng(pi)

ηihi∑
q j∈Ng(pi)

ηi
(16)
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where ηi =
ψ(hi,τi)θ(‖pi−q j‖)

‖hi−τi‖
. The parameters n and τ are iteratively optimized using Equations (13)

and (16) until convergence; ηi is undefined when hi = τi. Therefore, when ‖hi − τi‖ < 10−3, we set
ηi = θ(‖pi − q j‖).

3.5. Point Position Update and Point Border Correction

In the last stage of the denoising method, we follow the update vertex position with a distance-based
constraint proposed by [25], where the resulted point cloud P is bounded within a prescribed distance
to the input point cloud.

3.5.1. Point Position Update

The authors in [25] propose a parameter provided by the user ε ∈ R+, bounding the maximum
deviation di between the initial noisy point cloud and its corresponding iteratively denoised version
point p′i ∈ P′. The update position point p′i for our algorithm is determined as follows:

p′i =
{

pi + τini i f di ≤ ε
pi i f di ≥ ε

, (17)

where di is computed as the difference between pi and the corresponding original point in the noisy
point cloud. The parameter ε is set to 4h, i.e., ε = 4h.

To make our algorithm more robust against edge artifacts and blurring, we detect the edge and
corner points, and it corrects its position to obtain cleaner and more defined borders.

3.5.2. Edge Points Detection

To detect sharp features in the point cloud, we refer to the method proposed in [22], which uses
the normals associated to each point in P and measures the normal variability into the neighborhood; if
the variability is lower than a predefined threshold, th is labeled as edge point. The similarity between
normal vectors ni and n j is defined as follows:

wn(ni, n j) = exp

−‖ni − n j‖
2

2σ2
n

 (18)

where σn is an angle threshold; using Equation (18), we define the normal variation in Ng(ni) as follows:

Vn(i) =
1∣∣∣Ng(ni)

∣∣∣ ∑ j∈Ng(ni)
wn(ni, n j). (19)

All points that satisfy Vn(i) < th are labeled as edge points.

3.5.3. Edge Point Correction

After edge points detection and taking advantage of the fact that the estimated normals near the
edges and corners belong to surfaces on one side or another of the sharp features, we propose a scheme
to correct the position of points that belong to edges or corners, which present a deviation from the
corner or borderline. As shown in Figure 2, we find the closest point p j with normal vector n j on an
opposite surface to the edge point pi and its normal ni. Next, we project point pi onto the plane that
contains point p j and its normal n j. The new position is computed as

dproj = n′j(pi − p j). (20)
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We only correct the point positions that meet the following criteria:

pcorr =

 pi − dproj·n′j i f δ <
∣∣∣dproj

∣∣∣ < ρ·h
pi other case

(21)

where h is the average distance between the points of the point cloud, ρ is a fixed value that represents
the percentage of the maximum shift of point pi towards the edge line, and δ is a fixed value close
to zero.

4. Experimental Results and Discussion

The proposed method was implemented in MATLAB and run on a laptop with Intel Core
i7-2670QM CPU, 2.20 GHz processor, and 8 GB RAM. We tested the method using several point clouds
with sharp features and smooth surfaces including irregular sampling. Additionally, synthetic and real
scanned noisy point clouds were used to validate our method. The synthetic models were contaminated
with Gaussian noise and impulsive noise along the normal directions or random directions. Different
levels of Gaussian noise with zero mean and standard deviation σ were applied to the models; the
standard deviation was proportional to the average distance between the points of the ground-truth
point clouds. The noise of raw scanned data was natural. We compared our method with eight
state-of-the-art denoising approaches including two MLS-based methods, APSS [8] and RIMLS [9];
one LOP based method, EAR [12]; one sparsity-based method, MRPCA [3]; one graph-based method,
GLR [19]; and three normal smoothing-based methods, CNV [25], RN [24], and GN [22]. Methods
APSS and RIMLS were implemented in MeshLab software. The GLR code and EAR software were
provided by the authors, as were the results of the MRPCA, CNV, RN, and GN methods.

4.1. Parameter Selection and Tuning

Our method presented seven parameters: the sparsity parameter λ, the height sensitivity σh, the
distance action range σd, the bound displacement ρ, the low bound δ, the radius of neighborhood r,
and the total number of iterations k.

The sparsity regularization parameter λ, depends on the desired gradient sparsity level and affects
the reconstruction of sharp features and the smoothness of the point cloud. A larger λ yields a smoother
result. We observed that λ = 0.2 worked well for all the testing point sets used in the experiments.

The displacement ρ was fixed throughout all experiments with ρ = 0.7. Parameter δ was fixed
throughout all experiments with δ = 10−4. Parameter h was the average distance between the points.
We computed the value of h, taking the six nearest neighbors to each point. The distance action range
σd, and the height sensitivity σh, are user-defined values given in terms of h. In all the experiments, the
radius r of the neighborhood was set to σd, i.e., r = σd; a smaller value of σd leads to faster computation
because the neighborhood Ng(pi) is small, and large values may cross sharp features and over smooth
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the results. Alternatively, r = σd can be chosen as a function of the local point density. In the results of
the experiments, we chose the values of this parameter constant, tuned to achieve visually appealing
results. The height sensitivity, σh, controls the outliers in the point cloud; small values of σh preserve
the model features, while large values only preserve the salient features.

The values of σh and σd depend on the level of noise. The bigger the noise level, the larger the value
of these parameters that should be chosen. We used σd ∈ {1.5h, 2h, 3h, 4h} and σh ∈ {0.5h, 0.7h, 0.9h}
for synthetic data and σd ∈ {1.5h, 2h} and σh ∈ {0.1h, 0.2h, 0.3h} for real scanned point clouds. The
difference of parameter values between synthetic and real models was because the level of noise in
real models was lower than synthetic models. The number of iterations k for the best results was set
at k ∈ {10, 16, 20, 50}. At last, there were only three parameters for our algorithm to tune the results
(σh, σd, k).

In our comparison experiments, we used the following parameter set for the eight selected
state-of-the-art methods. For the methods [3,12,22,24], we mention Default in the parameter Table 1,
because the corresponding smooth models were provided by the authors in [8]; we reported a tuple
(scale, # of iterations, α); [9] = (σr, σn); [12] = (Default values); [25] = (τ,ρ, p), and [19], the parameter
settings in their paper. Our method = (σh, σd, k).

Table 1. Parameter settings of comparative methods for different models.

Methods Cube Fandisk Rocker Arm Octahedron

EAR Default Default Default Default
APSS (2, 45, 0.5) (4, 15, 0) (4, 15, 0.5) (2, 45, 0.5)

RIMLS (4, 0.75) (4, 15, 0) (4, 1) (4, 0.75)
MRPCA Default Default Default Default

GLR Paper Paper Paper Paper
GN Default Default Default Default
RN Default Default Default Default

CNV (0.3, 0.95, 150) (0.3, 0.9, 150) (0.25, 0.9, 80) (0.25, 0.9, 80)
Ours (0.98 h, 4 h, 30) (0.7 h, 3 h, 16) (0.7 h, 3 h, 14) (0.7 h, 2 h, 20)

4.2. Quantitative Analysis

We used the following three metrics in our quantitative analysis: feature preservation, accuracy,
and signal-to-noise ratio.

4.2.1. Error Metrics

To quantify feature preservation, we measured the orientation error between the smoothed point
cloud and the ground truth. Mean angular deviation (MAD) was defined to measure the orientation
error as follows:

MAD =
1
n

n−1∑
i=0

< (ni, n̂i) (22)

where ni and n̂i are the point normals corresponding to the ground truth and the smoothed point
cloud, respectively.

To quantify the accuracy, i.e., the closeness between the ground truth model and the smoothing
model, we used the mean-squared-error (MSE) metric, which measures the average of the squared
Euclidean distances between the ground truth points and their closest denoising points, and vice versa
between the denoised points and their closest ground truth points, and finally, the average between
two measures gives the MSE. If the ground truth model and the smoothed model are P1 =

{
pi
}
i=1,.n1

and P2 =
{
q j
}

j=1,.n2
, the point clouds can be of different sizes, i.e., n1 , n2. The MSE is defined as

follows:
MSE =

1
2n1

∑
pi∈P1

min
q j∈P2

‖pi − q j‖
2
2 +

1
2n2

∑
qi∈P2

min
p j∈P1

‖q j − pi‖
2
2 (23)
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Finally, the signal-to-noise ratio (SNR) is measured in dB and is defined as follows.

SNR = 10 log
1

n2

∑
qi∈P2
‖qi‖

2
2

MSE
(24)

4.2.2. Metric Evaluation

Tables 2 and 3 shows the comparison between our method and competing state-of-the-art methods
highlighting cells in gray indicating the best performance. In Table 2 we can also see that the MSE
and SNR metrics are the lowest values compared to eight state-of-the-art methods. For the Fandisk
model, the proposed method reached the second position in all three metrics. For the Rocker Arm, our
method outperformed the state-of-the-art methods in the MAD metric, but with MSE and SNR our
method was better than the APSS method. For the Octahedron model, our method outperformed all
metrics of the state-of-the-art methods.

Table 2. Error metrics by comparative methods for each one of the 3D objects.

Methods EAR APSS RIMLS MRPCA GLR GN RN CNV Ours

Cube
MAD 4.3634 5.5588 4.4552 4.4341 6.2429 3.4878 4.4531 2.8668 2.6985
MSE 0.0183 0.0125 0.0117 0.0273 0.0336 0.0330 0.0352 0.0064 0.0046

SNR (dB) 39.438 42.613 43.272 35.749 33.936 33.920 33.305 48.394 51.418

Fandisk
MAD 4.4038 5.0465 5.6874 3.7932 7.7937 2.9186 3.1585 3.5273 2.9691
MSE 0.0073 0.0057 0.0060 0.0067 0.0257 0.0060 0.0038 0.0108 0.0039

SNR (dB) 45.105 46.168 45.965 45.525 39.653 45.963 48.006 43.410 47.833

Rocker
Arm

MAD 5.9647 4.8825 4.9493 6.0163 7.1012 7.7694 5.7894 7.1894 4.2611
MSE 0.1392 0.0468 0.0717 0.1345 0.2554 0.6141 0.5873 0.1651 0.0665

SNR (dB) 36.116 40.830 38.988 36.234 33.450 29.717 29.885 35.340 39.300

Octahedron
MAD 1.8779 3.9838 4.8495 4.9541 5.2574 1.3606 1.3776 1.0415 1.0196
MSE 9.5E4 0.0014 0.0011 0.0014 0.0016 0.0074 0.0074 7.0E4 5.6E4

SNR (dB) 54.384 51.007 52.846 51.006 50.008 55.731 55.631 57.057 58.931

Table 3. The results of the error metrics of different compared methods for two Block and Trim-star
objects varying the noise levels.

Methods EAR APSS RIMLS GLR Ours

Block
MAD 3.8083 4.2386 3.1723 2.9909 2.9232
MSE 0.0693 0.0641 0.0466 0.0469 0.0477

SNR(dB) 34.518 34.842 36.238 36.199 36.124
σ = 0.1 h

Trim-star
MAD 5.0802 4.7813 4.1111 7.0203 3.6042
MSE 0.0634 0.0324 0.0408 0.1105 0.0370

SNR(dB) 29.572 32.459 31.472 27.120 31.855

Block
MAD 6.2682 8.2802 4.1979 4.9876 3.5737
MSE 0.1339 0.1191 0.0688 0.0911 0.0551

SNR(dB) 31.676 32.149 34.552 33.310 35.492
σ = 0.2 h

Trim-star
MAD 6.9177 7.0610 5.3676 8.3487 4.8816
MSE 0.1068 0.0525 0.0573 0.1456 0.0522

SNR(dB) 27.341 30.353 30.011 25.914 30.363

Block
MAD 7.6707 11.629 4.6145 9.2070 4.4352
MSE 0.1573 0.1640 0.1029 0.2735 0.0784

SNR(dB) 30.980 30.753 32.816 28.488 33.955
σ = 0.3 h

Trim-star
MAD 8.1821 10.9294 6.7664 10.495 5.8392
MSE 0.0695 0.0995 0.0822 0.1828 0.0632

SNR(dB) 29.158 27.576 28.465 24.915 29.608
Noise levels and the comparison method are (a) Cube σ = 0.3 h method CVN, (b) Fandisk σ = 0.28 h method RN,
(c) Rocker Arm σ = 0.3 h, and (d) Octhaedron σ = 0.3 h.

Table 3 shows a comparison between four state-of-the-art methods, with three different levels of
noise, i.e., σ = 0.1 h, σ = 0.2 h, and σ = 0.3 h. We can see that the MAD grew as the noise increased.
Thus, if the noise level is high, the orientation error will be larger compared to the lower noise level.
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Table 3 shows that the proposed method achieved the best results for the MAD metric, with all levels
of noise, but for the level of noise σ = 0.1 h, RIMLS achieved the best MSE and SNR. However, for the
level of noise σ = 0.2 h and σ = 0.3 h, our method outperformed the competing methods. In all the
experiments, the proposed method achieved the best results on average in all three metrics and all
noise levels. The visual results of the experiment are shown in Figure 3. For each one of the objects,
we illustrated the original model, the noisy model, the results of the best method when comparing
methods, and the results of our approach.
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Figure 3. The first column shows the model from the original data. The second model is corrupted by
Gaussian noise. The third column shows most accurate result of the comparison methods using MSE
metric. The fourth column shows the result of correcting by the proposed method. The Gaussian noise
levels and the comparison method are (a) Cube σ = 0.3 h method CVN, (b) Fandisk σ = 0.28 h method
RN, (c) Rocker Arm σ = 0.3 h, and (d) Octhaedron σ = 0.3 h.
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4.3. Qualitative Analysis

For visual comparison, we used the ball pivoting algorithm (BPA) [35] to reconstruct the mesh
from the smoothed point cloud. The point clouds were contaminated with Gaussian noise along
random directions and normal directions, and impulsive noise along random direction.

Irregular Point Clouds

The Cube and the Fandisk objects had non-uniform density points corrupted by Gaussian noise
in random directions (σ = 0.28 h, σ = 0.3 h, and 0.3 h, respectively). Figure 4, shows that our method
could preserve the sharp features and not produce bumps in flat areas like the APSS [8], RIMLS [9],
and EAR [12] methods. GLR [19], MRPCA [3], RN [24], and GN [22] methods cleaned the noise
effectively over flat regions but produced over-smoothing in the corners and edges. CNV [25] properly
reconstructed the sharp features and cleaned the flat areas, but small artifacts appeared in some corners.
As seen in Figure 5, our method could reconstruct sharp features and shallow features. APSS smoothed
around the sharp features and did not remove the noise correctly. RIMLS and EAR preserved sharp
features but produced some bump features in the resulting models. MRPCA removed the noise and
preserved some sharp features but smoothed shallow areas around flat regions. GLR removed noise
effectively but over smoothed the sharp features and shallow areas. GN, RN, and CVN produced a
similar output to our method, but there were some artifacts on the borders and in corners.
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4.4. Impulsive Noise 

Figure 6 shows the results of handling a corrupted point cloud adding an impulsive noise of 
ߪ = 0.5 h along the normal direction. The Twelve model was smoothed by the proposed method and 
its edges were preserved. RIMLS, APSS, and EAR methods were not able to smooth the noise 
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Figure 4. The Cube model with non-uniform distribution of points, corrupted by Gaussian noise
(σ = 0.3 h) along all directions, where h is the average distance between the points of the point cloud.
We can see that the proposed method was able to preserve sharp features effectively when compared to
the state-of-the-art methods. The surface was reconstructed using the ball pivoting algorithm.
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Figure 5. The Fandisk model with non-uniform distribution of points, corrupted by Gaussian noise
(σ = 0.28 h). We can see that the proposed method was able to preserve sharp features effectively when
compared to the state-of-the-art methods.

4.4. Impulsive Noise

Figure 6 shows the results of handling a corrupted point cloud adding an impulsive noise of
σ = 0.5 h along the normal direction. The Twelve model was smoothed by the proposed method and
its edges were preserved. RIMLS, APSS, and EAR methods were not able to smooth the noise properly
and reconstruct the edges.
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Figure 7. The rabbit model, with natural noise. We can see that the proposed method was able to 
preserve sharp features effectively when compared to the state-of-the-art methods. The surface was 
reconstructed using the ball pivoting algorithm. 

Figure 6. The Twelve model corrupted by impulsive noise ( σ = 0.5 h) in the normal direction. We can
see that the proposed method was able to preserve sharp features effectively when compared to the
state-of-the-art methods. The surface was reconstructed using the ball pivoting algorithm.

4.5. Natural Noise of 3D Scan Objects

We also compared these approaches using real scanned data of free form objects. Figure 7 shows
the results of different methods applied to raw data scans. From the Rabbit object, it seems like our
method effectively removed the noise while preserving features when compared to APSS, RIMLS,
and EAR.
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Figure 7. The rabbit model, with natural noise. We can see that the proposed method was able to
preserve sharp features effectively when compared to the state-of-the-art methods. The surface was
reconstructed using the ball pivoting algorithm.

GLR and RN preserved features, but lost some fine details as the eye and grooves in the ear were
lost. GN and CVN preserved more detail than any of the other methods but they lost details in the eye
and nose. MRPCA and the proposed method produced very similar results. Figure 8 shows the ball
joint medical data. We can see that our method removed the noise, while details and sharp features
were preserved, and the spherical shape was effectively smoothed. The APSS and RIMLS methods
were not able to smooth the noise properly, and the resulting surfaces presented bumps. MRPCA, GN,
RN, and GLR effectively removed the noise component but smoothed the sharp features. The EAR and
CVN methods produced noise-free results, preserving the sharp features and smoothing the surfaces.
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Figure 8. The ball joint model. We can see that the proposed method was able to preserve sharp
features effectively when compared to the state-of-the-art methods. The surface was reconstructed
using the ball pivoting algorithm.

5. Conclusions

In this paper, we proposed combining the L1 median filter and the L1 norm regularization for
a point cloud-based denoising algorithm that preserves sharp features. The algorithm uses double
sparsity modeling both in the fitting term and in the regularization term. The L1 median is insensitive
to outliers and noise, while the L1 norm preserves the sharp features and smooths the surface. The
combined L1-median and L1-norm cost function was optimized with an alternating minimization
strategy using a proximal gradient and a descendent iterative schema, allowing the implementation of a
simple algorithm. The proposed method can handle models contaminated with Gaussian and impulse
noise. High noise levels can produce erroneous results as they affect the normals estimation. Another
issue is the concern with irregular point sampling models. While the irregular sampling remains low,
the output of our algorithm produces good results; but when the point cloud density is highly irregular,
the output quality decreases. To recover the sharp features, we introduce a border correction procedure
that helps to correct edges and corners, preserving the models’ original sharp features.

Experimental results reveal that our proposal can preserve sharp features when compared to
previous point cloud denoising methods, and the algorithm is robust in denoising both synthetic and
raw point scans. The method depends on some empirical parameters, σh and σd, defined by the user,
and which we tuned manually to obtain the desired results. How to determine these parameters
continues to be a challenge and is a direction we are going to investigate in our future research. The
implementation of a global solution for the cost function is another issue to be examined in future work.
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