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Abstract

[18F]-labeled aryl fluorides are widely used as radiotracers for positron emission tomography 

(PET) imaging. Aryl halides (ArX) are particularly attractive precursors to these radiotracers, as 

they are readily available, inexpensive, and stable. However, to date, the direct preparation of 

[18F]-aryl fluorides from aryl halides remains limited to SNAr reactions between highly activated 

ArX substrates and K18F. This report describes an aryl halide radiofluorination reaction in which 

the C(sp2)–18F bond is formed via a copper-mediated pathway. Copper N-heterocyclic carbene 

complexes serve as mediators for this transformation, using aryl halide substrates with directing 

groups at the ortho position. This reaction is applied to the radiofluorination of electronically 

diverse aryl halide derivatives, including the bioactive molecules vismodegib and PH-089.

Graphical Abstract

Late-stage methods for constructing 18F–(hetero)aryl bonds are highly valued for the 

synthesis of positron emission tomography (PET) radiotracers.1,2 Historically, 18F-labeled 

aromatic substrates have most commonly been prepared via SNAr reactions between 

electron deficient aryl halide precursors and K18F (Scheme 1A).3,4 Aryl halides are 

particularly attractive radiofluorination precursors because they are abundant, stable, and 

synthetically accessible. However, the substrate scope of SNAr (radio)fluorination reactions 

remains narrow, as resonance electron withdrawing substituents on the aromatic ring are 

required to stabilize Meisenheimer-type intermediates.1,5 Furthermore, even with such 

highly activated substrates, SNAr pathways often require long reaction times and forcing 

conditions, which renders them ill-suited for many late-stage radiofluorination applications.
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6,7 As such, a key objective for the field is to develop complementary methods for the 

radiofluorination of (hetero)aryl–halides and pseudohalides.8,9

Our approach to this challenge has focused on developing Cu-mediated methods for C(sp2)–
18F coupling reactions.1,2b Recent studies have shown that Cu salts such as Cu(OTf)2 and 

Cu(CH3CN)4PF6 mediate the nucleophilic radiofluorination of aryl stannane,10 aryl boron,11 

diaryliodonium,12 and aryl C–H substrates13 with K18F. In these systems the key C(sp2)–18F 

bond is formed via reductive elimination from an organometallic Cu(aryl)(18F-fluoride) 

intermediate.11f,14 This organometallic pathway is mechanistically distinct from an SNAr 

reaction. As such, it enables the radiofluorination of a wide scope of electronically diverse 

aryl groups.

Despite this progress, analogous Cu mediators have proven ineffective at engaging aryl 

halide substrates in radiofluorination reactions. Two reports have documented the Cu-

promoted nucleophilic 19F-fluorination of aryl halides (e.g., the work of Liu in Scheme 1B). 

However, both require superstoichiometric AgF as the fluoride source,15,16 and neither has 

proven translatable to radiolabeling with 18F– (vide infra). This report describes the use of 

N-heterocyclic carbene (NHC) Cu complexes as mediators for ligand-directed aryl halide 

radiofluorination (Scheme 1C). The discovery of this transformation in the context of 19F-

fluorination and its subsequent translation to radiofluorination are described in detail.

Our initial studies attempted to translate Liu’s 19F-fluorination of 2-(2-

bromophenyl)pyridine (Scheme 1B) to a radiolabeling protocol. However, as shown in eq. 1, 

under the standard conditions (with CuI(CH3CN)4PF6, Ag18F, and NBu4PF6 in CH3CN at 

120 °C), no trace of product 1-18F was detected by radio-TLC or radio-HPLC after 0.5 h. 

Furthermore, no improvement was observed upon variation of the 18F source, solvent, 

additives, or temperature (Table S7). We note that, in contrast to the 19F-fluorination, the 

radiofluorination reaction requires the use of Ag18F as the limiting reagent at sub-

micromolar concentrations. We hypothesize that this renders CuI(CH3CN)4PF6-mediated 

radiofluorination prohibitively slow relative to the decay of the radionuclide (t1/2 ~110 min).

Literature reports suggest that aryl-bromide bond activation (via oxidative addition at CuI) is 

likely the slow step in this transformation.16,17 We reasoned that the introduction of a 

strongly electron donating NHC ligand at the CuI center would accelerate this key step.18,19 

Furthermore, since (NHC)CuI(F) complexes can be generated directly from KF,20 this 

approach should eliminate the requirement for excess AgF. Finally, sterically bulky NHC 

ligands are known to stabilize CuI–fluoride complexes to dimerization or disproportionation,
19,21 which are likely competing decomposition pathways for the Cu mediator.22

To test this hypothesis, we initially examined the reactivity of a series of (NHC)CuI(19F) 

complexes with 2-(2-bromophenyl)pyridine (Scheme 2A). As summarized in Table S3, the 

yield of fluorinated product 1-19F varied from 3–65% as a function of the structure of the 

NHC ligand,19,23 with 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidine (IPr) affording the 
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optimal result. Notably, (IPr)CuI(19F) (A-19F) is available in nearly quantitative yield from 

the reaction of (IPr)CuI(OTf) (A-OTf) with K19F (Scheme 2A),20 thus precluding the 

requirement for Ag salts in this transformation. Importantly, control studies revealed that 

other group 11 metal salts including CuI(CH3CN)4PF6/KF, CuF2,24 or AgF afforded ≤3% of 

1-19F under otherwise identical conditions (Table S4). Furthermore, no reaction was 

observed between the aryl bromide substrate and K19F under these conditions in the absence 

of copper.

A time study with A-19F shows that the fluorination reaction is complete within 2 h at 140 

°C and affords 40% yield after just 30 min (Scheme 2B). This suggests the feasibility of 

achieving radiofluorination with this system. Finally, a preliminary survey of substrates 

revealed that A-19F-mediated fluorination has a significantly enhanced scope versus that of 

Liu’s CuI(CH3CN)4PF6/Ag19F system (Scheme 1B). For instance, the sterically hindered 

pyridine substrate 2-(2-(bromo)phenyl)-6-methylpyridine was unreactive under Liu’s 

conditions, but affords 2-19F in 34% yield with A-19F as the Cu mediator (Scheme 2C). 

Similarly, the oxazoline and imine substrates were unreactive under Liu’s conditions, but 

afford 30% and 37% yield of 3-19F and 4-19F, respectively, using A-19F.25

We next focused on translating these preliminary results to radiofluorination. The reaction of 

(IPr)CuI(OTf) (A-OTf) with 2-(2-bromophenyl)pyridine and K18F for 30 min at 140 °C in 

DMF afforded 1-18F in 10% radiochemical conversion (RCC) as determined by radio-TLC 

and radio-HPLC (Table 1, entry 1).26,27 The reaction was optimized by exploring additives 

that have been shown to enhance yields in other Cu-mediated C(sp2)–18F coupling reactions 

(e.g., phase transfer reagents, nitrogen heterocycles, Table 1, entries 2–5).1,11a,13,28 Of the 

surveyed additives, 1 equiv of 4-dimethylaminopyridine (DMAP) relative to the aryl 

bromide precursor proved optimal, affording 1-18F in 65% RCC.

With these optimized conditions in hand, we next explored the scope of the A-OTf-mediated 

radiofluorination of aryl halides. As shown in Figure 1, the chloro-, bromo-, and iodo-2-

phenylpyridine precursors all reacted to afford 1-18F in RCCs ranging from 10–65%. In 

contrast, no 19F/18F exchange was detected with 1-19F under these conditions. It is currently 

unclear why 1-I affords lower yield than 1-Br; however, this observation is in line with Liu’s 

results for the Cu-catalyzed [19F]-fluorination of halophenylpyridines.16 Substitution on 

either the pyridine or aryl ring was tolerated to afford products such as 2-18F, 6-18F, and 

7-18F. Other nitrogen-donors, including oxazoline, pyrazole, cyclohexyl imine, and mesityl 

imine, served as effective directing groups, affording 3-18F, 8-18F, 4-18F, and 9-18F, 

respectively. The scope of cyclohexyl imine derivatives was most thoroughly explored, as 

this directing group is straightforward to install and remove starting from readily available 

benzyaldehyde derivatives. Various substitution patterns on the (hetero)arene ring were well 

tolerated, affording compounds 10–16-18F in RCCs ranging from 16–74%. An 

intramolecular competition reaction between an ortho-chloride and bromide resulted in 

selective radiofluorination of the bromide to form 13-18F. This selectivity is consistent with 

that expected for a metal-mediated activation of a C(sp2)–X bond.29

Importantly, a variety of control reactions were conducted in these systems. First, the 4-

substituted aryl bromides in the pyridine and cyclohexyl imine series were subjected to the 
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reaction conditions. These are electronically similar, but do not benefit from the directing 

effect. As shown in Figure 1, these substrates did not afford detectable 17-18F or 18-18F 
under the optimized conditions.30 In addition, all of these reactions were conducted in the 

absence of Cu to test for background SNAr reactivity. As shown in Table S12, ≤1% of 

compounds 1–16-18F were detected under these conditions. Finally, substituting simple CuI 

or CuII salts for (IPr)CuI(OTf) afforded yields of ≤5% for representative substrates (Table 

S11), underscoring the central role of the NHC ligand in these transformations.

18F-analogues of several bioactive molecules could also be accessed using this approach. In 

a first example, the bromide analogue of vismodegib (19-Br), a basal cell carcinoma 

treatment,31 underwent radiofluorination to afford 19-18F (Scheme 3). In a second example, 
18F-labeled PH-089 (20-18F in Scheme 3), an MK-2 inhibitor,32 was synthesized in 5% 

RCC from the chloride precursor.

A final set of studies focused on automating the radiosynthesis of 1-18F using a 

TRACERLab FXFN synthesis module. Initial automated studies using 241.1 mCi (8.93 × 109 

Bq) of K18F gave 57 ± 8 % radiochemical yield (RCY; n = 2), demonstrating the 

compatibility of the method with automation. Further investigations coupled automated 

synthesis with semi-preparative HPLC purification to afford 1-18F in 14.3 ± 3.2% RCY 

(decay-corrected; 119.9 mCi ± 28; n = 2) with good molar activity (1614 ± 353 Ci/mmol; n 

= 2) and radiochemical purity. While unoptimized, this result demonstrates the potential of 

this method for PET applications.

In conclusion, we have developed a Cu-mediated protocol for the 19F- and 18F-fluorination 

of diverse aryl halide substrates. Strategic design of the Cu mediator was necessary to 

achieve the reaction rates/yields required for efficient radiofluorination, and an NHC-ligated 

Cu complex ultimately proved optimal in this system. A wide scope of nitrogen-containing 

directing groups and substituted aryl halide derivatives underwent 18F-fluorination, and the 

reaction proved effective for the synthesis of biologically relevant molecules such as 19-18F 
and 20-18F. More broadly, this work demonstrates that NHC-type ligands enable new 

C(sp2)–F coupling reactions at Cu. As such, this work opens up opportunities for designing 

next-generation Cu mediators for the radiofluorination of currently inert substrates (e.g., aryl 

halides that lack a directing group).
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Figure 1. 
Substrate scope of Cu-mediated radiofluorination of aryl halides.

Conditions: aryl halide (0.005 mmol, 1 equiv), A-OTf (1 equiv), DMAP (1 equiv), K18F, 

DMF (0.015 M), N2 atmosphere, 140 °C for 30 min.27 RCC determined by radio-TLC (n ≥ 

3). aReaction conducted at 160 °C.
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Scheme 1. 
Strategies for direct fluorination of aryl halides.
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Scheme 2. 
NHC-Cu-mediated 19F-fluorination of aryl bromides

(A) Conditions: A-OTf (0.006 mmol, 1 equiv), KF (1.5 equiv), DMF (0.01 M), 140 °C for 

30 min, then aryl bromide (0.006 mmol), 140 °C for 21 h. (B) Conditions: A-19F (0.01 

mmol, 1 equiv), aryl bromide (1 equiv), DMF (0.015 M), 140 °C for 21 h. (C) Conditions: 

A-19F (0.006 mmol, 1 equiv), aryl bromide (1 equiv), DMF (0.01 M), 140 °C for 21 h. 

Yields determined by 19F NMR spectroscopic analysis of crude reaction mixtures.
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Scheme 3. 
Radiofluorination of bioactive molecules.
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Table 1.

Cu-mediated radiofluorination of aryl halides.

entry Additive RCC (%)

1 none 10

2 Kryptofix 26

3 pyridine 23

4 DBU 30

5 DMAP 65

Conditions: aryl bromide (0.005 mmol, 1 equiv), A-OTf(1 equiv), additive (1 equiv), K18F, DMF (0.015 M), N2 atmosphere, 140 °C, 30 min.27 

RCC determined by radio-TLC (n ≥ 2).
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