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Even though the lateral geniculate nucleus of the thalamus (LGN) is associated with form vision, that is not its sole role.
Only the dorsal portion of LGN (dLGN) projects to V1. The ventral division (vLGN) connects subcortically, sending inhibitory
projections to sensorimotor structures, including the superior colliculus (SC) and regions associated with certain behavioral
states, such as fear (Monavarfeshani et al., 2017; Salay et al., 2018). We combined computational, physiological, and anatomi-
cal approaches to explore visual processing in vLGN of mice of both sexes, making comparisons to dLGN and SC for perspec-
tive. Compatible with past, qualitative descriptions, the receptive fields we quantified in vLGN were larger than those in
dLGN, and most cells preferred bright versus dark stimuli (Harrington, 1997). Dendritic arbors spanned the length and/or
width of vLGN and were often asymmetric, positioned to collect input from large but discrete territories. By contrast, arbors in
dLGN are compact (Krahe et al., 2011). Consistent with spatially coarse receptive fields in vLGN, visually evoked changes in spike
timing were less precise than for dLGN and SC. Notably, however, the membrane currents and spikes of some cells in vLGN dis-
played gamma oscillations whose phase and strength varied with stimulus pattern, as for SC (Stitt et al., 2013). Thus, vLGN can
engage its targets using oscillation-based and conventional rate codes. Finally, dark shadows activate SC and drive escape
responses, whereas vLGN prefers bright stimuli. Thus, one function of long-range inhibitory projections from vLGN might be to
enable movement by releasing motor targets, such as SC, from suppression.
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Significance Statement

Only the dorsal lateral geniculate nucleus (dLGN) connects to cortex to serve form vision; the ventral division (vLGN) projects
subcortically to sensorimotor nuclei, including the superior colliculus (SC), via long-range inhibitory connections. Here, we
asked how vLGN processes visual information, making comparisons with dLGN and SC for perspective. Cells in vLGN versus
dLGN had wider dendritic arbors, larger receptive fields, and fired with lower temporal precision, consistent with a modula-
tory role. Like SC, but not dLGN, visual stimuli entrained oscillations in vLGN, perhaps reflecting shared strategies for visuo-
motor processing. Finally, most neurons in vLGN preferred bright shapes, whereas dark stimuli activate SC and drive escape
behaviors, suggesting that vLGN enables rapid movement by releasing target motor structures from inhibition.

Introduction
Even though the two divisions of the lateral geniculate nucleus
(LGN) receive input from the eye, they are vastly different, from
the level of the single cell to behavior (Monavarfeshani et al.,
2017), as follows. Each subdivision has a separate developmental
origin (Golding et al., 2014; Sabbagh et al., 2018). The composi-
tion of the dorsal portion of LGN (dLGN) is like that of other
primary thalamic nuclei, comprising a majority of excitatory
relay cells that project to cortex and a minority of inhibitory
interneurons with short-range axons (Bickford, 2019). While the
ratio of projection to local circuit cells is similar to that in dLGN
(Gabbott and Bacon, 1994), both types of neurons are
GABAergic in ventral LGN (vLGN) (Golding et al., 2014; Su et
al., 2020), and the main target structures are subcortical, includ-
ing many that serve sensorimotor or other behavioral roles
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(Monavarfeshani et al., 2017; Salay et al., 2018; Huang et al.,
2019). Further, each subdivision receives input from different
subsets of ganglion cells (Monavarfeshani et al., 2017), and the
sizes and complexity of retinal boutons are lesser in vLGN
(Hammer et al., 2014), as if scaled down to accommodate greater
convergence, than in dLGN. Our goal was to understand how
vLGN integrates the visual information it receives and how it
communicates with downstream targets.

In highly visual animals, such as cat (Spear et al., 1977) and
monkey (Babb, 1980), dLGN often dwarfs vLGN (called the pre-
geniculate nucleus in primate). By contrast, the two divisions are
approximately the same size in rodent (Harrington, 1997), sug-
gesting comparable importance. Thus, we chose to explore visual
processing in vLGN using mouse. We studied the nucleus from
two perspectives, by comparing vLGN to the principal nucleus of
the form vision pathway (dLGN) and to the main station of the
retinotectal pathway (superior colliculus [SC]), a sensorimotor
interface. Our experimental approach involved whole-cell re-
cording and intracellular labeling in vivo combined with stand-
ard and novel computational tools. In accord with previous
accounts (Spear et al., 1977; Harrington, 1997), we found that
receptive fields in vLGN were much larger, on average, than
those in dLGN. The disparity in receptive field size was mirrored,
and perhaps explained, by the dramatically larger breadth of den-
dritic arbors of cells in the ventral versus dorsal division. EPSCs
were smaller and more variable in shape in vLGN than dLGN as
well, indicating that cells in the ventral division integrate retinal
inputs across long lengths of the dendritic arbor (Fatt and Katz,
1951).

Consistent with the spatially broad receptive fields character-
istic of vLGN, spike timing with respect to the stimulus was less
precise there than in SC and dLGN, and the amount of informa-
tion conveyed by single spikes was lesser too. Further, roughly
one-third of cells we sampled in vLGN encoded visual signals by
spike timing relative to network oscillations. Oscillation phase
was entrained by visual stimuli and oscillation strength waxed
and waned as different sequences of natural images moved across
the receptive field. Characteristics of oscillations in vLGN were
closer to those recorded in SC (Brecht et al., 2001; Sridharan et
al., 2011) than in dLGN (Koepsell et al., 2009; Storchi et al.,
2017). Thus, although vLGN provides a spatiotemporally coarse
version of visual images, it is able to engage with the intrinsic
rhythms of downstream sensorimotor targets.

Materials and Methods
Experimental protocols
Preparation
Adult, pigmented, male and female mice (C57BL/6) were sedated with
chlorprothixene (5mg/kg, i.m.) after which anesthesia was initiated and
maintained with urethane (0.5-1 g/kg, 10% w/v in saline, i.m.) (Niell and
Stryker, 2008). After the head was cleaned and shaved, an incision was
made to expose the skull so that a metal headpost could be affixed to
hold the animal in place. Next, a small craniotomy centered around the
LGN or SC was made. All wound margins were infiltrated with lido-
caine, the brain and eyes were kept moist with saline, and body tempera-
ture was maintained at 37°C. All procedures were approved by the
Institutional Animal Care and Use Committees of the University of
Southern California following guidelines from the National Institutes of
Health.

Recordings
Whole-cell and cell-attached recordings were made using biocytin-filled
pipettes as described previously (X. Wang et al., 2007); pipette resistan-
ces were 5–20 MV. For whole-cell (intracellular) recordings, the mem-
brane was held slightly below the firing threshold (in the absence of

visual stimulation) to resolve subthreshold membrane currents. Neural
signals were recorded with a Multiclamp 700B amplifier (Molecular
Devices), digitized at 10–20 kHz using a Power 1401 data acquisition
system (Cambridge Electronic Design), and stored.

Visual stimuli
Visual stimuli were generated using a ViSaGe (Cambridge Research
Systems) stimulus generator and displayed on a gamma-corrected Dell
U2211H LCD monitor; the refresh rate was 70Hz and the viewing dis-
tance was 180 mm, as for a previous study of mouse dLGN (Suresh et al.,
2016). The stimulus set included sparse noise, dense noise, full-field
luminance steps, expanding disks, and natural movies. The sparse-noise
stimulus, adapted from Jones and Palmer (1987), was individual dark or
bright squares (2°–20°) shown in pseudorandom order 8 or 16 times
each at 50% or 100% contrast on a 16� 16 grid; grid spacing was 2°–5°
(Suresh et al., 2016); dense noise was also as described previously (Suresh
et al., 2016). Dark or bright expanding disks were stepped from 0° to 40°
(Zhao et al., 2014) or 5° to 100° and displayed at 50% or 100% contrast.
Full-field luminance steps ranged from 50% to 100% contrast, and natural
moviesweredisplayed at a single contrast (X.Wanget al., 2007, 2011).

Histology and verification of recording site
Brains were perfused with 3% PFA, cut in coronal sections, 100mm
thick, and processed to visualize labeled cells with standard procedures
(Hirsch et al., 1998). 3D reconstructions of single cells were made using
Neurolucida software (MBF Bioscience). In the instances for which cells
were not recovered, electrode position was estimated from stereotaxic
coordinates and depth measurements (Suresh et al., 2016).

Statistical analyses
Construction and quantification of receptive fields
Receptive fields were constructed from responses to sparse noise from
membrane currents or from spikes. To form On (responses to bright
stimuli) and Off (responses to dark stimuli) maps of receptive fields
from subthreshold responses, action potentials were removed using a
median filter (medfilt2 function, MATLAB, The MathWorks) (for fuller
explanation, see X. Wang et al., 2007; Suresh et al., 2016). Next, inward
or outward currents evoked from each On or Off pixel on the grid were
averaged and integrated during a manually selected time window
(Martinez et al., 2005). For spikes, standard spike-triggered averaging of
the stimulus ensemble (Schwartz et al., 2006) was used to generate spa-
tiotemporal maps. These were displayed as smoothed 2D contour plots
made from the frame (or average of nearby frames) with the peak pixel.
The sizes of receptive fields were quantified using the semimajor and
semiminor axes, as well as the area, of the 1s contours of 2D Gaussian
fits to the receptive field (X. Wang et al., 2007). For cells that responded
to both stimulus contrasts, the map for the dominant contrast was used
to determine receptive field size. The receptive fields of several cells
could not be fit; for these, we report preference for stimulus contrast but
not receptive field size.

Neuronal morphological analysis
The extents of the dendritic arbors were characterized in two ways. The
first was classical Sholl analysis (Sholl, 1953), which measures the num-
ber of dendritic intersections at progressive distances from the soma
(step size, 5mm). To quantify the symmetry of neuronal arbors, we
devised a new measure called the Arbor Isotropy Index (AII). The AII is
the ratio of a neuron’s actual convex hull volume (CHV), which is the
total volume spanned by a given neuronal arbor, to the maximum possi-
ble CHV. Index values range from 0 to 1; low index values indicate that
processes extend for different lengths along different axes, and high val-
ues indicate symmetrically distributed processes as follows:

AII ¼ ConvexHull Volume
Upper Bound for ConvexHull Volume ðndistal; dmaxÞ (1)

where ndistal is the number of distal points anchoring the convex hull
and dmax is the maximal distance of any point from the soma in the neu-
ronal arbor.
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The CHV was obtained using Neurolucida software. To compute the
hypothetical upper limit for each neuron’s CHV, we created a synthetic
arbor that had the same number of distal points as the neuronal CHV
but with each point placed at the maximum distance from the soma. To
meet the challenge of computing the maximal possible CHV in 3D, we
chose a well-studied approach, the Thomson problem (Thomson, 1904),
(optimized using the lbfgs function, MATLAB Poblano toolbox, Sandia
National Laboratories). We ran the optimization process repeatedly,
using different initial values, and then selected the configuration that
generated the maximal CHV.

Temporal precision and information content of neuronal responses
To quantify the temporal precision of neuronal responses across stimu-
lus repetitions, we used a reliability measure (Schreiber et al., 2003) that
reflects the correlation between pairs of filtered spike trains (Rcorr), as
follows:

Rcorr ¼ 2
NðN� 1Þ

XN
i¼1

XN
j¼i11

~si:~sj
~jsij ~jsjj

(2)

where N and~si indicate the number of stimulus repetitions and the fil-
tered spike trains for individual repetitions, respectively. Note,~si is com-
puted as the convolution of the binary spike train with a Gaussian filter
set to have a standard deviation of 10ms.

Neuronal information was calculated in bits per spike as described
by Brenner et al. (2000). This information measure (I) is defined as
follows:

I ¼ 1
T

ðT
0

r tð Þ
r

log2
rðtÞ
r

� �
dt (3)

where T, t, r(t), and r indicate stimulus duration, time, average firing
rate as a function of time, and average firing rate throughout the stimu-
lus, respectively. Data limitations (finite number of repetitions of finite
length) and narrow time bins can lead to artificially high information
values, so we used the linear extrapolation method to address this issue
(Brenner et al., 2000; Koepsell et al., 2009).

To estimate lower bounds for temporal precision and information
content within a given spike train, we created artificial spike trains based
on a homogeneous Poisson process with constant firing rate. We then
ran simulations that spanned the range of physiological firing rates.

Model fitting and comparison of temporal precision and information
across populations of cells
Both the reliability and information measures are systematically influ-
enced by mean firing rate. Thus, one cannot compare these measures
across cells or populations without taking the mean spike rate into
account. To address this issue, we were able to devise simple models,
with only a single free parameter, that capture the relationship between
each of the measures (reliability, information) and mean firing rate, as
follows:

Rcorr a; rið Þ ¼ r � a

11r � a
(4)

I a; rið Þ ¼ affiffiffi
r

p (5)

where r and a indicate average firing rate and the free parameter (a),
respectively. For each mean firing rate, the distribution of data points
was modeled as a Gaussian centered around the value of the fitting
curve; the width of the Gaussian was set to be the same for all firing rates.
To fit these models, we used maximum likelihood (L) estimation, as
follows:

L x1 � � � xn;a;sð Þ ¼
Yn
i¼1

Nðxi; f a; rið Þ;sÞ (6)

where N(x;m, s ) is the normal probability density function, f(a, r) is the
fitting function (Eqs. 4, 5) for the mean, and xi denotes a measurement
(either reliability or information) and n is the number of data points.
Optimization was performed using a gradient descent approach with a
line search strategy.

We used these models to compare response properties across popu-
lations of cells from vLGN to dLGN or SC. To determine whether
response properties differ significantly across nuclei, we compared joint
versus separate models. The joint model used the same set of fitting pa-
rameters to describe two populations, whereas the separate model opti-
mized individual parameter sets for each population. Rather than just
using the likelihood to compare the joint versus separate models, we
used the Akaike information criterion (AIC) (Akaike, 1974) to account
for the differences in complexities between the two models as follows:

AIC ¼ 2k � 2ln ðL̂Þ (7)

where k represents the number of free parameters and L̂ the maximum
likelihood value for this model. The model with the lower AIC was
defined as the better model.

Quantifying oscillatory neuronal activity
To quantify the strength of oscillations in spike trains and membrane
currents, we used the oscillation score method (Mureşan et al., 2008).
This score is based on the Fourier transform of the smoothed autocorre-
lation function in which the central peak and the segment corresponding
to the refractory period are removed. Then, to calculate the oscillation
score, the frequency with the highest amplitude in the range of interest
(the gamma band, 25-100 Hz) is selected, and its amplitude normalized
by the averaged amplitude across frequencies. The oscillation score,
along with the confidence score (the consistency of the oscillation score
across stimulus repetitions), is used to test the significance of oscillatory
activity. Significant oscillations were defined as having oscillation scores
.5 and confidence scores.0.65. We excluded responses without a clear
peak in the gamma range; the lack of a gamma peak may have been due
to data limitations (,200 spikes total) in some cases.

To analyze oscillatory activity in membrane currents, we performed
a Fourier transform of spike-subtracted membrane currents. Because the
amplitude of the frequency components of the resulting spectra obeyed a
power law, we needed to adapt the oscillation score method, as this
method assumes little to no general trend in the Fourier transform.
Hence, we plotted amplitude versus frequency using logarithmic axes to
yield a linear trend that could be fit with a line in the logarithmic do-
main. It was then possible to use the resulting fit to normalize the spec-
trum so that we could discern the frequency with the highest amplitude
and proceed to compute the oscillation score. Using a sliding window,
we characterized oscillation strength before, during, and after stimulus
onset and determined significance by bootstrapping with resampled
datasets matched in size to the original dataset. Thresholds for the oscil-
lation score were determined from the 200ms window preceding stimu-
lus onset and by using Bonferroni correction (for the number of samples
in the window analyzed) at a significance level of 0.01.

To compute the distribution of oscillation phases in the membrane
currents at which spikes occurred, we convolved the membrane currents
with a complex Morlet waveform and computed the phase of this com-
plex signal to estimate the phase of the intracellular signal, as we have
done previously for studies of cat (see Koepsell et al., 2009). The oscilla-
tion frequency derived from membrane currents was the frequency pa-
rameter and the period of that frequency was the temporal width
parameter for the Morlet waveform.

To determine whether the stimulus entrained oscillations, we first
computed oscillation phase over time for each repetition. Then, we fit
the cross-trial distribution of phases with a von Mises function to obtain
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a concentration parameter (see Koepsell et al., 2009). In order to deter-
mine the statistical significance of entrainment, we compared the width
of phase distributions obtained from each biological dataset to a simu-
lated distribution of concentration parameter values computed for
phases drawn randomly from a range of 0° to 360°. The threshold for
significance was determined as above, a = 0.01 with Bonferroni correc-
tion. The latency for entrainment was taken as the time from stimulus
onset to the initial significant peak value of the concentration parameter.

Linear encoding model for the oscillation score
To investigate how the oscillations we recorded reflected local (within
the receptive field) versus full-field changes in the stimulus, we per-
formed the following analysis. The image features used were the average
intensity of the full image or the average intensity of the image patch
inside the receptive field (determined from a rectangular kernel tightly
enclosing the 1s contour of the fit made to the receptive field map
obtained with sparse noise). We reasoned that if changes in the movie
influence the oscillation score, then one should be able to use image fea-
tures to predict changes in the oscillation score. Thus, we modeled the
oscillation score as the weighted average of the image features computed
from the preceding 214ms movie segment. Then, the model parameters
were estimated using ridge regression (ridge function, MATLAB, The
MathWorks) for regularization. The model parameters were then used
to predict the oscillation score.

To estimate model performance, we used leave-one-out cross-valida-
tion (one stimulus repetition is reserved for testing and all other trials
are used for training, with the process repeated to leave out each trial).
We then calculated the Pearson correlation between the oscillation
scores that the model predicted and those obtained directly from record-
ings. The mean correlation across trials was calculated for a wide range
of values of the ridge parameter, and the value that gave the maximum
mean correlation was selected for each model. This entire analysis was
done separately for the mean contrast of the full image and within the
region demarcated by the receptive field. Finally, to provide a practical
upper bound for model performance, we calculated the average correla-
tion between the oscillation scores of individual repetitions and the aver-
age oscillation score across trials.

Additional statistics
In addition to the analyses described above, statistical variation for a
given data set is reported as mean 6 SEM, unless otherwise noted as
mean 6 SD. Significance values were calculated using a Wilcoxon rank
sum test unless otherwise noted.

Results
Here, we used an interdisciplinary approach to study the mouse
vLGN, including extracellular and whole-cell recording in vivo,
anatomy, and computational tools. Further, to gain a functional
perspective, we compared the results from vLGN to those
obtained in dLGN and SC, subcortical structures that receive
direct retinal input and are part of either the form vision (genicu-
lostriate) or the visuomotor (retinotectal) pathways. Our dataset
includes 39 visually responsive neurons from vLGN (or adjacent
intergeniculate leaflet [IGL]). Unless otherwise noted, we
included the few cells we identified in IGL with those from
vLGN in the population statistics as no differences emerged in
anatomical measures, synaptic physiology, receptive field size,
temporal precision, or oscillatory activity. The remaining sample
includes 11 neurons from superficial SC and 59 from dLGN that
were part of an earlier study (Suresh et al., 2016). We were
unable to test all cells with all stimuli. Also, although all the cells
we labeled in our studies of dLGN and vLGN resembled projec-
tion cells, our sample may have included local circuit cells.

Comparison of receptive field structure and scale in dLGN
versus vLGN
While receptive fields in dLGN have been quantified for several
taxonomic orders (primate, carnivore, and rodent) (Bullier and
Norton, 1979; Shapley and Lennie, 1985; Piscopo et al., 2013;
Suresh et al., 2016), there are only scant and qualitative descrip-
tions of receptive fields (Spear et al., 1977; Sumitomo et al., 1979)

A

C

B

Figure 1. Receptive field structure in dLGN and vLGN. A, Contour plots of two sample
receptive fields from dLGN derived from membrane currents of an On-center (red, left) and
Off-center relay cell (blue, right). The stimulus was sparse noise. Yellow box at top left corner
of each contour plot indicates stimulus size. Overlays are 1s contours from 2D Gaussian fits
of the receptive fields. B, Sample receptive fields in vLGN for three On cells (top left, top
right, bottom right) and an Off cell (bottom left); conventions as in A. C, Plot of the 1s con-
tours for receptive fields of relay cells in dLGN (purple, dotted lines) and cells in vLGN/IGL
(green, dashed lines); the contours are aligned at each receptive field center.
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or overall luminance preference (see, e.g., Thankachan and
Rusak, 2005) in vLGN. Thus, we used a sparse-noise stimulus to
map On and Off components of neural receptive fields in murine
vLGN and quantified their sizes with 2D Gaussian fits. Then we
compared receptive fields in vLGN with those in dLGN.
Typically, neural receptive fields in dLGN were smaller (Fig. 1A)
(see Suresh et al., 2016) than those in vLGN (Fig. 1B); receptive
fields are shown as contour plots with an overlay representing
the 1s contour of the Gaussian fit. Even in vLGN, however,
there was a range of spatial extents from smaller to larger (Fig.
1B). To visualize population differences, the 1s fits of maps for
all cells in vLGN (green) and the same number of (randomly
selected) cells in dLGN (purple) were aligned at their centers and
superimposed (Fig. 1C). To quantify differences between recep-
tive fields in the dLGN versus vLGN, we used two measures.
First, we compared the average of the extent of the semimajor
and semiminor axes obtained from the Gaussian fits: vLGN,
33.996 2.05°; dLGN, 13.636 1.35°, p= 2.3� 10�8, n= 25 for

each subdivision. Second, we compared the area (°)2: vLGN,
897.836 102.24; dLGN, 173.756 41.51, p= 2.3� 10�8, n= 25
for each subdivision. Both measures show that receptive field
size in vLGN is significantly larger than in dLGN.

Most of the cells we mapped in vLGN preferred bright stim-
uli. All in all, there were 17 On, 3 Off, and 4 On-Off (3 On-domi-
nant, 1 Off-dominant) cells. Four remaining cells were inhibited
rather than excited by the presentation of visual stimuli; 3 of
these were inhibited by bright stimuli, and an additional cell was
inhibited by bright or dark stimuli. The receptive fields of some
of these cells appear in subsequent figures.

Neuronal morphologies in different divisions of the LGN
The large size of receptive fields in vLGN suggested that single
cells were able to pool input arriving from broad retinal territo-
ries. By labeling and reconstructing cells in vLGN, we were able
to show that the dendritic arbors were wide-ranging. Of the 8
cells we labeled well, 4 had dendrites that spanned the full

A B C

D

Figure 2. Morphological differences between neurons in dLGN versus vLGN. A, Reconstructions of a Y (top) and an X relay cell (bottom) in dLGN projected in the coronal plane. Somas are
outlined in black, and the contour surrounding each cell indicates the boundary of dLGN at the location of the soma. B, Drawings of two different cells in vLGN; conventions as in A. C, Plot of
the distribution of processes as a function of distance from the soma computed using Sholl analysis for dLGN (purple, dotted line) and vLGN (green, dashed line). The values for each neuron
were normalized before calculating population statistics. Shading represents the SEM. Dashed vertical lines indicate the mean distance from the soma for each LGN subdivision. Horizontal error
bars indicate the SEM. Top right, Inset, Plot of the percentage of neurons that had processes that reached the distances indicated along the abscissa. Arbors of all neurons in vLGN extended far-
ther than those of relay cells in dLGN. D, Left, Plot of AII values in vLGN (green dots) and dLGN (purple squares) and (right) a graphical depiction of the AII in 2D. For a neuron with four den-
drites of equal length along four cardinal directions, the AII value is 1, with progressively smaller values when the relative lengths of dendrites extending along each axis differ as illustrated.
Dashed lines indicate the convex hull. For reference, the AII values for the four neurons illustrated in this figure were as follows: A, top, 0.339; A, bottom, 0.279; B, top, 0.042; B, bottom,
0.042.
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mediolateral extent of the nucleus and another spanned the
entire dorsoventral axis. Furthermore, 6 cells had processes that
spread outside of vLGN or IGL. In dLGN, by contrast, previous
work, including our own, had shown that the dendritic arbors of
all subtypes of relay cells are compact (Dhande et al., 2011;
Krahe et al., 2011; Suresh et al., 2016). Reconstructions for 2 sam-
ple cells each from dLGN (Fig. 2A) and vLGN (Fig. 2B) illustrate
the difference in arbor size between subnuclei.

Next, we placed cells in a template vLGN, as we had done pre-
viously for dLGN (Suresh et al., 2016) and measured the ratio of
the distance of the soma from the lateral border to the full extent
of the nucleus at a given anteroposterior position; these values
were as follows: 0.61, 0.53, 0.53, 0.49, 0.45, 0.13, 0.13, and 0.05.
From this analysis, it seems likely that the somas of most or
all of our labeled cells lay in the retinorecipient (lateral) zone
of vLGN, which occupies more territory than the medial zone
in mouse (Monavarfeshani et al., 2017; Sabbagh et al., 2018).
In addition, labeled neurons resembled projection cells, which
are multipolar and begin to branch near the soma, versus local
interneurons, which are typically bipolar and branch distally
(Brauer and Schober, 1982; Gabbott and Bacon, 1994). It
remains possible, however, that some unlabeled cells in our
sample were local interneurons or were visually responsive
cells that lay in the medial zone (Thankachan and Rusak,
2005). We also filled 3 cells in IGL; their arbors spanned the
leaflet, and their statistics are pooled with vLGN in the analy-
ses described below.

In order to quantify the difference between the extent of neu-
ronal processes in each subnucleus, we first used Sholl analysis
(Sholl, 1953), which counts how many processes intersect each
of a series of concentric rings centered on the soma. Dendrites in
vLGN sampled distances as far as 600mm from the soma,
whereas arbors of relay cells in dLGN rarely extended beyond
150mm. The average intersection distance for neurons in vLGN
was roughly double that for cells in dLGN: vLGN, 116.1 6 14.8
mm; dLGN, 52.76 1.3mm, p=8.2� 10�5, n= 11 for each subdi-
vision (the cells in dLGN were randomly selected from the larger
dataset). Histograms of the results of the Sholl analysis for each
neuron were normalized before calculating population statistics
(Fig. 2C). A companion plot shows the percentage of neurons
with processes that reached a given distance from the soma (Fig.
2C, inset). Overall, arbors of relay cells in dLGN tended to have
similar diameters, whereas there was considerable variation
among cells in vLGN.

Further, the arbors of cells in vLGN had a markedly asym-
metric appearance. Previous studies of dendritic anisotropies in
dLGN used Sholl-based methods that assigns dendrites into two
perpendicular planes (Krahe et al., 2011). This work showed that
arbors in dLGN core are compact, with a degree of variation in
radial symmetry that recalls the division between Y cells and a
subset of X cells in cat (cat X cells arbors vary widely in shape, so
this cell class is defined by diverse criteria) (Friedlander et al.,
1981; Humphrey and Weller, 1988; Krahe et al., 2011); separate
analysis restricted to the perimeter of the dLGN identified a
third, W-like, class of cells for which dendrites preferred one
hemisphere over the other. We wished to measure anisotropies
in vLGN in 3D (Sholl analysis is limited to 2D) without having
to group dendrites into specified planes. Thus, we devised an
index that took all three dimensions into account and that was
free of assumptions about the trajectory of the dendritic arbor.
We call the new measure the AII (see Materials and Methods).
The value of the index is 1 for perfect symmetry and decreases as

the preference for particular axes grows stronger. A 2D graphical
depiction of how the AII reflects directional biases in arbors is
provided for 3 sample configurations, shown to the right of the
population data in Figure 2D. As per our initial impression, val-
ues for vLGN were significantly lower than for dLGN: vLGN,
0.0726 0.015; dLGN, 0.2296 0.024, p= 3.0� 10�4, n=11 for
each subdivision (the cells in dLGN were randomly selected
from the larger dataset published in Suresh et al. (2016); this
dataset did not include interneurons. One might have thought
that the narrow profile of IGL would have enforced greater arbor
asymmetry than the boundaries of the (far larger) subdivisions of
LGN. This was not the case, however, because dendrites of cells
in IGL spread into neighboring structures.

Synaptic physiology in different divisions of the LGN
Given that receptive fields were larger and dendritic arbors wider
in the vLGN versus dLGN, we asked whether there were
commensurate differences in synaptic physiology. To explore
this possibility, we assessed recordings of membrane currents.
Sample recordings from dLGN and vLGN reveal differences in
the pattern of EPSCs in each subdivision (Fig. 3). In dLGN, in-
tracellular currents recorded from relay cells were dominated by
trains of sharp, unitary EPSCs that can be distinguished by eye
(Fig. 3A) and easily labeled using machine learning tools, such as
a support vector machine, as we have published previously
(Suresh et al., 2016). These EPSCs almost certainly come from
retinal inputs (X. Wang et al., 2007, 2011; Koepsell et al., 2009;
Suresh et al., 2016), which are large and proximal (Hamos et al.,
1987; Morgan et al., 2016). The recordings from vLGN were
more complicated, however. Localizing individual EPSCs in the
recordings from vLGN was challenging because events, when
visible, were small, slow, or overlapping, as seen for 2 representa-
tive cells in Figure 3B. This difference in synaptic physiology is
consistent with the idea that neurons in vLGN pool a larger
number of inputs than in dLGN (Turrigiano et al., 1998) and
receive retinal inputs over long lengths of dendrites (Fatt and
Katz, 1951; Bloomfield et al., 1987). While we have illustrated
results from only 2 cells in each nucleus, these are characteristic
of the entire sample as can be seen in additional figures in this

A B

Figure 3. The shapes of membrane currents recorded from dLGN and vLGN. Membrane
currents recorded from (A) two cells in dLGN (purple) and (B) two cells in vLGN (green).
Retinogeniculate EPSCs (*first EPSC) are easily visible in traces from relay cells in dLGN. By
contrast, individual synaptic events are difficult to discern in records from vLGN.
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Figure 4. Temporal precision and information content of spike trains evoked by natural scene movies for vLGN, dLGN, and SC. Responses of (A) two cells in vLGN (green), (B) one cell in
dLGN (purple), and (C) one cell in the superficial SC (orange) to three different natural movies. Receptive fields (spike-triggered averages) made with sparse noise are shown to the left of
raster plots showing spiking responses to repeated stimulus trials for each movie for each cell. D, Left, Scatter plot of the correlation-based reliability measure against spike rate.
Each point was calculated from a given cell’s response to one of the three movies. Green dots represent vLGN. Purple squares represent dLGN. Orange diamonds represent SC.
Various styles of broken lines indicate best fits, as indicated in the legend. Green short dashes represent vLGN. Purple dotted lines indicate dLGN. Orange long dashes indicate SC.
See legend for the fitting function used. Thin gray line indicates results from a simulation with homogenous Poisson spike trains; gray dashed line indicates the corresponding fit.
Right, Plot of bits per spike against firing rate; conventions as for D (left).
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manuscript and in our previous study of dLGN (Suresh et al.,
2016).

Receptive field structure and response timing in vLGN, SC,
and dLGN
Unlike dLGN, which innervates cortex, vLGN projects subcorti-
cally, with a main target, SC, a hub for sensorimotor behaviors
(Monavarfeshani et al., 2017; Cang et al., 2018). SC projects back
to vLGN in turn (Harrington, 1997). To understand how vLGN
might interact with visuomotor brainstem regions, we compared
receptive field structure and spike timing in vLGN to that in the
superficial (retinorecipient) SC. For this analysis, receptive fields
were estimated from spike-triggered averages made using sparse
noise, and their sizes quantified with 2D Gaussian fits (while
receptive fields had been mapped previously in the mouse SC
(L. Wang et al., 2010; Gale and Murphy, 2014; Ellis et al., 2016),
it was important to collect a dataset with a standardized stimu-
lus). The receptive fields in vLGN were larger than those in the
superficial SC as illustrated in Figure 4A, C. The 2D extent was
as follows: vLGN, 32.486 2.47°, n= 24 cells; SC, 15.45 6 1.96°,
n= 11 cells, p=3.5� 10�5; mean area in (°)2: vLGN,
853.706 160.10, n=24 cells; SC, 176.306 35.85, n=11 cells,
p=1.3� 10�5.

Our next question was whether or not the size of receptive
fields and the degree of temporal precision in a given area covary.
That is, since small receptive fields often correlate with high vis-
ual acuity, we wondered whether they might also correlate with
high temporal precision (i.e., reliability across trials). Temporal
precision has implications for the amount of information con-
veyed within spike trains (de Ruyter van Steveninck et al., 1997;
Brenner et al., 2002; Schreiber et al., 2003). Hence, after mapping
each receptive field, we recorded responses to natural scene mov-
ies. Since natural images share 1/f statistics (they are dominated
by low spatial frequencies) (Field, 1987), these movie stimuli
mimic the statistics of the animal’s environment. Sample recep-
tive fields and raster plots of responses to repeated presentations
of three different movies illustrate the approach for vLGN (Fig.
4A), dLGN (Fig. 4B), and SC (Fig. 4C). Although the level of
temporal precision changed throughout the stimulus and from
cell to cell, at the population level, the spike trains recorded from
SC and dLGN seemed more reliable than for vLGN.

In order to quantify potential differences in temporal preci-
sion across structures, we used a correlation-based reliability
measure (Schreiber et al., 2003) (see Materials and Methods).
This measure reflects differences in spike timing from one stimu-
lus trial to another; values range between 0 and 1, with 1 indicat-
ing maximal precision. Because the measure is influenced by
firing rate, we chose to plot index values against this parameter.
The resulting scatterplot (Fig. 4D, left) indicated that cells in SC
(orange) and dLGN (purple) fire more reliably than those in
vLGN (green) at a given spike rate. Eachmarker in the plot repre-
sents an index value computed for an individual cell’s response to
a singlemovie stimulus (maximal number of points per cell is 3).

To perform a statistical comparison across populations, we
used an approach that models the reliability score as a function
of firing rate. We optimized the fit for the distribution of points
for each brain structure using maximum likelihood estimation
(Fig. 4D, left, dashed lines) (see Materials and Methods). The fits
for SC (orange) and dLGN (purple) lay above that for vLGN
(green), indicating a higher degree of temporal precision in both
dLGN and SC than in vLGN. Finally, all neural responses were
more reliable than simulated, homogeneous Poisson spike trains
(Fig. 4D, left, gray dashed line).

We next used the AIC (Akaike, 1974) to determine whether
the results from SC and dLGN were significantly different from
those in vLGN. This criterion takes into account the likelihood
of data given a particular statistical model, as well as model com-
plexity. It is a standard tool to compare the relative performance
of statistical models; lower values correlate with better model
quality. We began by comparing vLGN with SC. A model that
used separate parameter sets (separate model) for fitting SC and
vLGN data performed better than a model with shared parame-
ters (joint model) for fitting both datasets. The AIC for the sepa-
rate model was �123.4 and for the joint model was �82.1
(vLGN, n= 37 responses; SC, n= 18 responses). This means that
the increase in the logarithm of the likelihood for the model that
fit both datasets separately was greater than the penalty intro-
duced by adding the free parameters required to fit this model.
When we restricted the analysis to datasets from responses to a
single movie only (the movie we used was of snow monkeys, see
Movie 1, Fig. 4); the difference between the separate versus joint
model was similar; the value for the separate model was �67.6
and that for the joint model was �46.4 (vLGN, n=25 cells; SC,
n= 10 cells).

To address any biases that might have been introduced by dif-
ferences in firing rates across nuclei, we performed additional
tests. First, we analyzed a subset of data in which firing rates
were similar for both regions (4.4-28.7Hz in this case). Again,
the separate model outperformed the joint model, the AIC values
were�85.6 and�39.7, respectively (vLGN, n=19 responses; SC,
n= 15 responses). Second, we calculated statistics for reliability;
these were also significantly higher in SC (0.5606 0.035, n=15)
than in vLGN (0.3186 0.030, n=1); p = 1.2� 10�4.

We performed the same analysis to compare vLGN with
dLGN; the responses from dLGN were more reliable. For the
data from all movies, the AIC values were �137.0 for the sepa-
rate model and �97.3 for the joint model (n= 37 responses for
each LGN subdivision). For a single movie, the criterion value
was �83.1 for the separate model and �63.5 for the joint model
(n= 25 responses for both LGN subdivisions). For the dataset
associated with the range of firing rates common to both subdivi-
sions (2.5-28.7Hz in this case), the criterion value was �130.2
for the separate model and �79.4 for the joint model (vLGN,
n= 28 responses; dLGN, n= 36 responses). The difference in reli-
ability between vLGN (0.2706 0.025, n= 28) and dLGN
(0.5036 0.033, n= 36) was significant (p=8.2� 10�6).

Information in spikes of vLGN, SC, and dLGN
In general, the amount of information that a single spike contrib-
utes decreases as firing rate increases, and we quantified this rela-
tionship for our data. We computed the information in bits per
spike (Brenner et al., 2002) (see Materials and Methods), using
the dataset obtained with natural movies. The results (Fig. 4D,
right) show that the amount of information per spike was usually
higher for SC than vLGN for comparable firing rates. We mod-
eled bits per spike as a function of firing rate and plotted the fits
of these results as dashed lines (Fig. 4D, right). The curves for SC
lay above those for vLGN. The AIC value was 45.4 for the sepa-
rate model and 68.2 for the joint model (vLGN, n=37 responses;
SC, n=18 responses). When we split the datasets into responses
for individual movies, the differences in the AIC were similar.
The value for the separate model was 32.6, and for the joint
model 50.0 (vLGN, n= 25 responses; SC, n=10 responses).

We next recalculated these values using firing rates for which
there was substantial overlap between SC and vLGN (4.4–
28.7Hz). Again, the criterion value (10.9) for the separate model
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was better than that (49.2) for the joint model (vLGN, n = 19;
SC, n = 15). Values of bits per spike, independent of firing rate,
were higher in SC (1.2456 0.100, n=15 responses) than in
vLGN (0.5676 0.028, n=19 responses); p= 1.0� 10�6. For ref-
erence, we calculated information in bits per spike from simu-
lated Poisson spike trains (Fig. 4D, right, dashed gray lines); in
almost all cases, values from biological spike trains were higher.

We repeated the analyses for the two divisions of the LGN.
As expected, values for dLGN were higher than vLGN at compa-
rable firing rates (Fig. 4D, right). The AIC value was 101.8 for
the separate model and 155.2 for the joint model (n= 37
responses for both subnuclei). For a single movie type, the crite-
rion values for separate and joint models were 67.0 and 100.1
respectively (n= 25 for both structures). For the dataset associ-
ated with the overlapping range of firing rates (2.5–28.7Hz), the
criterion was 62.9 for the separate model and 140.8 for the joint
model (vLGN, n=28 responses; dLGN, n=36 responses). The
information in bits per spike was as follows: vLGN, 0.689 6
0.043, n= 28; dLGN, 1.5816 0.079, n= 36; p=2.98� 10�10.
Thus, single spikes in vLGN convey less information about the
stimulus than those in dLGN or SC.

Oscillatory neural responses in vLGN and SC
Neurons can encode information about the stimulus in two
ways: changes in spike rate with respect to an extrinsic signal
(i.e., the stimulus) and spike timing with respect to intrinsically
generated rhythms, such as oscillations (Koepsell et al., 2010).
The analyses that we illustrated in Figure 4 pertain to the rate
code. However, there was reason to explore potential roles of
oscillations in vLGN. Visually evoked oscillations are reported in
SC (Brecht et al., 2004; Sridharan et al., 2011; Stitt et al., 2013).
Further, in earlier work, we (Koepsell et al., 2009, 2010) and
others (Saleem et al., 2017; Storchi et al., 2017) showed that some
cells in dLGN use both rate and oscillation-based coding
schemes. There is, however, a difference between oscillation-
based coding in dLGN and SC. In dLGN, oscillations typically
reflect ongoing activity in the retina and their phase is rarely, if

ever, entrained by visual stimuli (Saleem et al., 2017; Storchi et
al., 2017). By contrast, oscillations in SC are evoked and
entrained by visual stimuli and, hence, seem to be generated by
local, extraretinal, networks (Brecht et al., 2004; Sridharan et al.,
2011; Stitt et al., 2013).

We often recorded visually evoked oscillations from vLGN
that resembled those reported in SC. Full-field stimuli evoked
oscillations in the spike trains of 9 cells (6 of 19 On cells and 3 of
7 Off [or On inhibited] cells), as illustrated in Figure 5A. Bright,
but not dark, expanding discs evoked oscillations in 2 of 3 cells
(Fig. 5B). By contrast, in SC, either full-field dark stimuli (Fig.
5C) or expanding (e.g. looming) (Fig. 5D) dark discs drove oscil-
lations. Here, oscillation frequency, strength, and significance
were computed using the oscillation score method (Mureşan et
al., 2008) (see Materials and Methods). We might have underes-
timated the percentage of oscillating spike trains in our sample
because of data limitations. For example, there may have been
instances in which the number of spikes recorded from a given
cell was insufficient to generate a significant oscillation score.

Oscillatory membrane currents in response to visual
stimulation in vLGN
It was natural to assume that oscillatory activity recorded in spike
trains reflected oscillations in underlying membrane currents. To
test this assumption, we obtained whole-cell patch recordings,
such as those shown in Figure 6A, and modified the oscillation
score method for subthreshold responses (see Materials and
Methods). Our modified analysis revealed oscillatory mem-
brane currents similar in frequency to that observed for spike
trains (Fig. 6B). Thus, we calculated phase coherence between
membrane currents and spikes using a concentration parame-
ter; higher values indicate greater coherence (Koepsell et al.,
2009) (see Materials and Methods). Our results show that
spikes phase-lock to membrane oscillations faithfully (Fig. 6C).
The concentration parameter for this cell was 1.15, similar to
the population average of cells with oscillating membrane
currents and that fired a sufficient number of spikes (�100

A B

C D

Figure 5. Visually evoked oscillatory spike trains in vLGN and SC. Examples of oscillatory spike trains in vLGN (green [A]) and SC (orange [C]) evoked by a full-field stimulus. Receptive fields
are shown to the left of spike rasters of responses to repeated trials of the stimulus that is depicted above each raster plot. Plots of oscillation strength against frequency are shown to the right
of the rasters, with insets containing values for the oscillation score (OS) and frequency (f). B, D, Same as in A, C, except the stimulus was an expanding spot, as indicated in the figure. Spot
size was stepped from 5° to 100° for vLGN and from 0° to 40° for SC.

Ciftcioglu et al. · Coding of Visual Stimuli in vLGN J. Neurosci., June 24, 2020 • 40(26):5019–5032 • 5027



spikes) to compute the concentration parameter (1.296 0.48,
mean 6 SD, n=11 cells).

Because intracellular responses provide a sensitive measure of
neural response, we used these to explore the evolution and du-
ration of visually evoked oscillations. Oscillation strength lagged
the initial neuronal response, likely because it took time for the
network dynamics to change state (Fig. 6D). During the stimulus,
the oscillation score remained high overall and then began a
steady decline to baseline after the stimulus ended. Thus, oscilla-
tions, once engaged, were maintained throughout stimulus dura-
tion. This example was from an On cell, and the responses
displayed were evoked by a full-field bright stimulus. Various
full-field or expanding-disk stimuli evoked significant (see
Materials and Methods) oscillatory membrane currents in 18 of
29 cells, including On-inhibited and On-Off cells.

The nature of the information that the oscillations convey
depends, in part, on how strongly they are entrained by the stim-
ulus. Thus, we asked whether oscillations phase-lock to stimulus
onset and found that this was most often the case. After stimulus
onset, the phase of membrane currents across repetitions began
to synchronize (see Materials and Methods), as illustrated in
Figure 6E. We observed significant entrainment for 13 of the
18 cells (72%) that oscillated in response to the full-field or
expanding-disk stimuli; the mean latency of entrainment was
98 6 63ms (mean 6 SD); n=13. Last, because we hyperpolar-
ized cells slightly to visualize membrane currents, firing rates
were too low to provide sufficient data for a parallel analysis
with spikes.

Oscillatory membrane currents during naturalistic
stimulation
Simple flashed stimuli evoke strong responses but are far from
the spatiotemporal patterns the animal experiences in the envi-
ronment. Thus, we investigated the potential role of oscillations
for vision by making whole-cell recordings during the presenta-
tion of natural movies. Oscillation strength in membrane cur-
rents waxed and waned during specific stimulus sequences; we
quantified those changes using the oscillation score (Fig. 7).
Figure 7A plots receptive field maps (obtained using sparse
noise) for a single cell above a graph of oscillation strength over
time made from responses to a movie. Certain transitions in the
image sequence, either abrupt variations (segment indicated by
the dotted horizontal line, Fig. 7A) or smooth gradual ones (seg-
ment indicated by the solid horizontal line, Fig. 7A), preceded
changes in oscillation strength. Example membrane responses to
each of the different sample sequences are shown in Figure 7B,
where markers (t1-7) indicate corresponding time points in the
plot of oscillation score. We wondered whether the oscillations
were driven locally from the portion of the image falling within
the receptive field, or globally, by the entire visible image. Thus,
we modeled the oscillation score either as a linear function of av-
erage stimulus intensity for the entire image, or as the portion
within the receptive field. These models were fit using ridge
regression, and the fitted models were used to generate an oscil-
lation score waveform. The correlation between this prediction
and the oscillation scores from individual repetitions spared for
testing was calculated, along with realistic upper bounds of per-
formance (see Materials and Methods), (Fig. 7C). This analysis
suggested that stimulus features in the receptive field had more
predictive power for oscillations than features pooled across the
full field. Overall, this simple model was able to achieve

A
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C

Figure 6. Flash-evoked gamma band oscillatory currents for a sample ON cell in vLGN. A,
Top, Contour plot of the receptive field; conventions as in Figure 1. Middle, Icon depicting a
full-field bright stimulus. Bottom, Two individual responses to the stimulus, and the average
across trials, bolded and at 2� gain. B, Illustration of how the oscillation score analysis was
adapted for membrane currents. The oscillation frequency is computed by taking the fre-
quency that has the highest amplitude (dotted vertical line) with respect to the linear trend
(dashed line) in the spectrum (plotted on a logarithmic scale). The oscillation score is then
computed as the relative spectrum amplitude, normalized by the trend, at the oscillation fre-
quency. C, Histogram of phase coherence between intracellular currents and spikes during
the stimulus reveals temporal locking between synaptic input and neural output. D, Plot of
the mean6 SEM of the oscillation score of membrane currents over time across trials; val-
ues were calculated using a 204.8 ms sliding window (n= 25 repetitions). *p, 0.01. E, Plot
of the mean6 SD of the phase concentration parameter (k ) over time (computed by boot-
strapping with resampled datasets matched in size to the original dataset). Dashed horizon-
tal line indicates the threshold for significant entrainment (a = 0.01).
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Figure 7. Changes in the strength of membrane oscillations during the presentation of natural scene movies in vLGN. A, On and Off maps of the receptive field of an On-Off cell and an illus-
tration of the stimulus are shown above the oscillation score computed continuously from membrane currents recorded during the movie (n= 10 repetitions). Solid curve indicates the mean.
Shading represents the SEM. The 1 s segments of the curves marked by the dotted and solid horizontal lines correspond to responses illustrated in B, as do the vertical dashed lines labeled
t1-7. *p, 0.01. B, Top, Image sequences (every 10th frame of the movie) for the interval marked by the dotted line in A, with the position of the On and Off receptive field maps, indicated
by overlays, shown above sample membrane currents (two individual traces with the average of all trials bolded at 2� gain). Bottom, Same as for the top panel but for the interval marked
by the solid line. C, Bar plots of correlations between predicted oscillation scores (made using ridge regression analysis) and oscillation scores computed from the biological data for the mean
contrast of the full field, or the mean contrast of the image patch that contained the receptive field. Error bars indicate mean6 SEM. Dashed line represents a heuristic upper bound for model
performance. D–F, Same analyses for a second cell (n= 20 repetitions).
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performances close to the realistic upper bound. A similar analy-
sis for a second cell is also illustrated (Fig. 7D–F).

Discussion
To learn about the role of vLGN in visual processing, we com-
pared it with dLGN, which projects to cortex to serve form
vision, and the superficial SC, a subcortical hub for sensorimotor
processing that is reciprocally connected with vLGN. Compa-
tible with past studies in different species (Spear et al., 1977;
Sumitomo et al., 1979; Harrington, 1997), receptive fields in
vLGN were larger than those in the other two structures. To
address the basis of the difference in receptive field size, we la-
beled individual neurons in both divisions of LGN. The length
and volume of the dendritic arbors were far larger in vLGN than
dLGN, and thus able to sample a wider distribution of inputs.
Also, the arbors of cells in vLGN usually extended along a pre-
ferred direction, consistent with the presence of sublaminae
within this subnucleus (Monavarfeshani et al., 2017). EPSCs
recorded from vLGN were smaller and more variably shaped
than those from dLGN (Suresh et al., 2016), supporting the view
that cells in vLGN collect greater numbers of retinal inputs along
the dendritic length (Hammer et al., 2014). In addition to quanti-
fying spatial receptive fields, we analyzed temporal properties of
sensory integration. Consistent with differences in receptive field
size across nuclei (Grubb and Thompson, 2004; L. Wang et al.,
2010; Piscopo et al., 2013; Gale and Murphy, 2014; Suresh et al.,
2016), neurons in SC and dLGN fired with greater temporal pre-
cision than those in vLGN. Further, some cells in vLGN
responded to visual images with gamma-band oscillations whose
phase could be entrained by the stimulus and whose strength
was modulated by changes in visual patterns moving across the
receptive field. Stimulus-entrained oscillations also occur in SC
(Brecht et al., 2001; Stitt et al., 2013), suggesting that vLGN can
engage its targets using both oscillation-based and rate-based
codes. Several cells in IGL are included in the vLGN dataset since
values for all properties we measured in these related structures
were similar. Finally, we highlight that neurons in vLGN usually
prefer large bright shapes (consistent with the scarcity of Off reti-
nal afferents) (Monavarfeshani et al., 2017), whereas expanding
dark stimuli activate the tectum and drive escape behaviors.
Thus, among other functions, vLGN might be able to gate rapid
movement by releasing its targets from inhibition and then reset
inhibitory tone and restore stability.

Structure-function relationships in LGN
Our quantitative results showing that receptive fields in vLGN
are significantly larger than those in dLGN are consistent with
qualitative descriptions from earlier studies in cat and rodent
(Spear et al., 1977; Sumitomo et al., 1979; Harrington, 1997). To
explore the structural basis of this difference in receptive field
size, we labeled and reconstructed single cells in each main divi-
sion of the LGN. The dendritic arbors of cells in vLGN (our sam-
ple was likely located in the retinorecipient zone), and associated
IGL, were large and spanned the length and/or width of the nu-
cleus. The arbors in dLGN, by contrast, were relatively compact.
In addition, dendritic arbors in vLGN often extended along cer-
tain subsets of directions, a feature we quantified by developing a
new measure of directional symmetry in 3D. These results pro-
vide two insights. First, the anisotropy of the arbors comple-
ments the idea that different types of ganglion cells preferentially
target specific zones within vLGN (Monavarfeshani et al., 2017).
Second, cells in vLGN are positioned to aggregate input from

ganglion cells at a wider range of retinotopic distances than are
sampled by relay cells in dLGN. This greater convergence might
explain why cells in vLGN have receptive fields larger than those
of presynaptic ganglion cells (Monavarfeshani et al., 2017). Last,
local circuit neurons are small and scarce (Gabbott and Bacon,
1994; Charalambakis et al., 2019; Su et al., 2020), and we do not
seem to have labeled them; thus, we cannot speak to potential
differences in response properties between these cells in the two
divisions of the LGN.

The notion of greater convergence in the vLGN versus dLGN
fits with differences in the synaptic physiology, anatomy, and
receptive field size between the two subdivisions. A corollary of
the principle of synaptic scaling (Turrigiano et al., 1998) holds
that individual inputs grow weaker as their total number
increases. Accordingly, ultrastructural studies and work in vitro
show that retinal boutons are smaller and retinogeniculate
EPSCs are weaker in the vLGN versus dLGN (Hammer et al.,
2014; Monavarfeshani et al., 2017). These differences are
reflected in our in vivo finding that individual EPSCs have ster-
eotyped large, sharp profiles in dLGN but smaller, blended, and
variable shapes in vLGN (and IGL). The placement of retinal
inputs might also contribute to differences in EPSC shape across
LGN subdivisions. Retinal inputs concentrate on the proximal
dendrites of projection neurons in dLGN but may be distributed
across the length of dendrites in vLGN (Stelzner et al., 1976).
Filtering along the dendritic cable would yield a varied comple-
ment of EPSC size and shape at the soma (Fatt and Katz, 1951;
Bloomfield et al., 1987) in vLGN.

Temporal processing in vLGN versus the main subcortical
nuclei in the sensorimotor (SC) and form vision (dLGN)
pathways
We asked whether or not differences in the spatial scale of recep-
tive fields paralleled differences in temporal precision. Thus, we
compared spike trains recorded from vLGN, where receptive
fields are usually large, with those from cells in dLGN and super-
ficial SC, where receptive fields are usually smaller (Grubb and
Thompson, 2004; L. Wang et al., 2010; Piscopo et al., 2013; Gale
and Murphy, 2014; Suresh et al., 2016). Specifically, we used a
correlation-based method (Schreiber et al., 2003) to explore the
temporal precision of responses to natural movies. Overall, spike
trains in vLGN were not as precise as in dLGN and SC.
Consequently, the amount of information each spike carried in
vLGN was lesser than in the other two nuclei. These differences
in temporal precision are consistent with the idea that vLGN
modulates rather than instructs downstream targets.

Neurons can encode information by changes in spike timing
with respect to the stimulus, as above, or by spike timing with
respect to network oscillations. Neural oscillations serve diverse
functions, such as increasing the amount of information that
spike trains convey, resolving stimulus features and context, and
routing information from one structure to another (Koepsell et
al., 2010; Storchi et al., 2017). Oscillations take different forms.
Some, as in retina (Castelo-Branco et al., 1998; Ishikane et al.,
1999; Koepsell et al., 2010), are ongoing and are modulated
rather than evoked by the stimulus (Saleem et al., 2017; Storchi
et al., 2017). Other types are produced only after a stimulus acti-
vates a network (Sridharan et al., 2011). Both ongoing and
entrained forms of gamma oscillations, though often studied in
anesthetized animals, have also been recorded in awake animals
(Brecht et al., 2001; Saleem et al., 2017; Storchi et al., 2017).

We recorded stimulus-evoked oscillations from a subset of
cells in vLGN. These changes in oscillation strength could be
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evoked by gradual changes in the image, as would be caused by
object motion, or by abrupt changes, as would result from self-
motion. Further, our analysis suggested that the oscillations are
driven by stimuli falling within the receptive field and are, thus,
induced by local stimulus features. Interestingly, visually evoked
oscillations are also seen in the subcortical motor structures that
connect with vLGN, including SC (Brecht et al., 2001; Sridharan
et al., 2011; Stitt et al., 2013). Thus, communications between
vLGN and partner structures involve both rate-based and oscilla-
tion-based codes.

Potential functional roles of vLGN
The vLGN is positioned to play a role in visuomotor integration
given its dense interconnections with subcortical structures asso-
ciated with sensorimotor functions (Monavarfeshani et al.,
2017). It also resembles motor structures, such as the basal gan-
glia (Nelson and Kreitzer, 2014) in that it contacts remote struc-
tures via GABAergic synapses (Monavarfeshani et al., 2017). The
logic for these long-range inhibitory projections is that the mech-
anism by which they excite their targets, (release from inhibition)
is less likely than direct excitation to overstimulate (Whittington
and Traub, 2003) and cause unwanted movements (Nelson and
Kreitzer, 2014).

Large bright stimuli evoke activity in most cells in vLGN,
whereas large dark stimuli evoke excitation in SC (Cang et al.,
2018). This reverse preference for stimulus contrast between
structures is interesting in the context of the sensorimotor behav-
iors, such as the escape response, which involves tectal neurons
that are excited by looming dark stimuli (Gandhi and Katnani,
2011; Cang and Feldheim, 2013; Zhao et al., 2014). The inhibi-
tion vLGN provides in ambient conditions would be reduced as
a predator cast a shadow, disinhibiting SC to allow rapid flight.
This idea is also consistent with other roles proposed for vLGN,
including involvement with behavioral states such as fear (Salay
et al., 2018) and anxiety (Huang et al., 2019).

In sum, our and others’ results suggest that vLGN does not
convey the type of detailed spatial and temporal information that
dLGN provides to cortex or that SC provides to its targets, but
rather is wired to provide an express route for information
blended from diverse sources to coordinate and modulate activ-
ity in downstream sensorimotor structures.
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