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Fragment-based drug discovery (FBDD) is an innovative approach, progressively more applied in the

academic and industrial context, to enhance hit identification for previously considered undruggable

biological targets. In particular, FBDD discovers low-molecular-weight (LMW) ligands (<300 Da) able to

bind to therapeutically relevant macromolecules in an affinity range from the micromolar (mM) to

millimolar (mM). X-ray crystallography (XRC) and nuclear magnetic resonance (NMR) spectroscopy are

commonly the methods of choice to obtain 3D information about the bound ligand–protein complex,

but this can occasionally be problematic, mainly for early, low-affinity fragments. The recent

development of computational fragment-based approaches provides a further strategy for improving

the identification of fragment hits. In this review, we summarize the state of the art of molecular

dynamics simulations approaches used in FBDD, and discuss limitations and future perspectives for

these approaches.
Introduction
Over the past few decades, the advent of high-throughput screen-

ing (HTS) methodologies has contributed to revolutionizing the

entire drug discovery process, making the identification of new

candidates more efficient [1]. Given a relevant pharmaceutical

target, thousands of compounds can nowadays be evaluated

through robotic screening infrastructures, a number that reaches

the impressive value of 177 million screenable molecules if

computational approaches are also exploited [2]. Despite the

undeniable improvements in the field, the drug-like chemical

space magnitude, the dimension of which has recently been

approximated to 1063 organic molecules, highlights how even

current HTS methodological state of the art is barely able to scratch

its surface [3,4].

An important paradigm change occurred �20 years ago with the

birth of FBDD, an approach that has become as a robust screening

methodology in both the academic and industrial world, allowing

the rapid discovery of many clinical candidates and the market

approval of two drugs [5,6]. Although there is no unambiguous
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definition, fragments are small organic molecules usually compris-

ing <20 nonhydrogen atoms, the physicochemical properties of

which respect the so-called ‘rule of three’ (RO3) [7,8]. Despite the

smaller dimension differentiating the fragment-like chemical

space from the drug-sized one, a canonical FBDD campaign in

which a few thousand compounds are screened provides better

coverage of the chemical diversity compared with a canonical HTS

[9]. Given that fragments recognize their molecular targets in an

affinity range from mM to mM, their identification only represents

the starting point of an iterative medicinal chemistry optimization

process [6,9]. Detection of such weak binders depends on the

implementation of high-sensitivity biophysical techniques, such

as, isothermal titration calorimetry (ITC), surface plasmon reso-

nance (SPR), NMR, and XRC, with only the two latter methodolo-

gies able to provide structural information. However, many of

these orthogonal techniques, apart from being expensive, have

drawbacks that could limit their routine application, making at the

same time the parallel implementation of computational meth-

odologies appealing [10].

In silico tools have proven to be crucial in many steps of the

FBBD pipeline, such as the identification and characterization of
-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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putative binding sites on the target of interest, the fragment

screening procedure, and the candidate hit to lead optimization

process [11]. However, an accurate and reliable description of the

molecular recognition mechanism of the fragment is complicated

by the peculiar nature of these low-affinity binders. Fragments

usually present transient interactions with their biological targets

and are often characterized by a population of different binding

modes, rather than just one. Only recently, a series of technologi-

cal and methodological revolutions have made it possible to

reconcile the massive implementation of physics-based molecular

simulations approaches, and of molecular dynamics (MD) simula-

tions in particular, with the strict timing characterizing FBDD

campaigns.

Here, we provide a general overview of the most innovative

methodological implementations of molecular simulations to the

field of FBDD, discussing how these approaches can affect all the

relevant steps of the drug discovery pipeline flanking faster but less

accurate structure-based in silico techniques. We also provide

insight into the practical advantages and limitations of each

computational protocol.

Hotspots and binding site identification
In a structure-based drug discovery (SBDD) pipeline, the identifica-

tion and characterization of druggable binding sites represent a key

element in determining screening success. Different experimental

biophysical approaches, such as XRC or NMR, have highlighted the

importance of cosolvent molecules in probing the distribution of

hotspots on the surface of proteins and nucleic acids [12,13]. Begin-

ning with this evidence, in silico protocols (e.g., GRID, MCSS, and

FTMAP) were developed to exhaustively sample and map putative

binding cavities, exploiting a set of chemically diverse LMW molec-

ular probes that configure them as fragments [14–16].

However, many of these grid-based methodologies lack an

adequate description of target conformational flexibility, an aspect

that could limit the discovery of cryptic binding pockets, as well as

neglect entropic and desolation effects, thus affecting the

accuracy and reliability of computational predictions. The recent

implementation and validation of molecular simulation-based

approaches, such as molecular dynamics (MD) simulations, repre-

sented a breakthrough in binding site identification, overcoming

some of the aforementioned limitations and, at the same time,

guaranteeing competitive computational times.

MD simulations
MD simulations describe the time-dependent evolution of a fully

solvated molecular system with an atomistic detail, through the

numerical solution of Newton’s second law of motion. The inte-

gration is partitioned into the discrete interval (usually 1 or 2 fs)-

defined time step, chosen in such a way to guarantee a correct

description of the fastest degrees of freedom of the system and

efficient calculations [17]. The interatomic forces are approximat-

ed using mathematical models based on classical mechanics,

define force fields (FF), which have been extensively parameterized

to reproduce experimental or quantum-mechanics (QM) data.

Therefore, MD is a computational tool with an impressive tempo-

ral resolution, able to describe events spanning a range of 12 orders

of magnitude among the molecular timescale, from bond vibra-

tion (fs) to the folding of small proteins (ms) [18].
1694 www.drugdiscoverytoday.com
About 10 years ago, Barril and MacKerell and their research

groups independently began to investigate the use of mixed-

solvent MD simulations (MSMD) to assess the ‘druggability’ of

different biological targets, developing MixMD and SILCS proto-

cols, respectively [19,20]. The SILCS approach differs from MixMD

in that it uses unphysical organic solvent concentrations close to

saturation conditions, an artifact that improves the effectiveness

of sampling, but also requires the introduction of a repulsive

potential between the probe molecules to avoid their aggregation

[21,22]. Both protocols start from a series of nanosecond-long MD

trajectories that extrapolate solvent occupancy maps, which can

be used not only to characterize the interactivity nature of the

binding cavity, but also to improve the accuracy of fragment

posing, to rationally drive the optimization process and to esti-

mate fragment binding affinity [23]. In a retrospective study based

on 21 protein-protein interactions (PPIs) interfaces with known

small molecules inhibitors bound, the performances of MSMD

approaches in detecting druggable hotspots were compared with

those of traditional, less demanding, grid-based protocols,

highlighting a greater accuracy of the former [24]. By contrast,

multiple simulations or extensive sampling are required to ensure

the convergence of the results, an aspect that might limit their

routine implementation. Thus, the CrypticScout platform was

recently released on the PlayMolecule webserver to make the

set-up, collection, and analysis of MSMD simulations available

on a large scale, regardless of the computational infrastructure

available to each research group, exploiting the distributed com-

puting power of the GPUGRID project [25,26].

MSMD simulation performances have often been calibrated on

their ability to quantitatively identify experimental known bind-

ing sites. However, as recently highlighted by Astex Pharmaceu-

ticals, qualitative and accurate discrimination between ‘warm’ and

‘hot’ spots, reflecting a modest or high fragment affinity, respec-

tively, is even more important [27]. Thus, MD was combined with

the grand-canonical Monte Carlo approach (GCMC-MD) by the

MacKerell group to assess the druggability profile of the different

binding sites. In detail, a multi-step protocol was design to collect

via MC posing the configurations of hundreds of drug-like frag-

ments on the target surface, which are then geometrically discre-

tized and ranked, exploiting the previously calculated MSMD

occupancy maps [28]. In addition, by exploiting nanosecond

timescales, GCMC-MD simulations enhance the sampling of the

probe within buried and cryptic pockets, which are otherwise

poorly accessible [29]. The identification of these ancillary sites

is becoming increasingly important from a pharmaceutical per-

spective, especially in cases of so-called ‘undruggable’ targets or in

the development of allosteric modulators.

Hit fragment identification and characterization
The identification and characterization of putative binding sites

represent a fundamental but preparatory step in the complex in

silico FBDD pipeline, with the subsequent screening phase having a

pivotal role in selecting, among the vast chemical space, new

chemotypes for which experimental evaluation should be priori-

tized. Molecular docking is a relatively fast computational proto-

col exploited to sample and score ligand binding modes, the

application of which has long been debated also in the case of

the FBDD. The pioneering work of Shoichet in 2009 laid the
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foundation for validating docking-based fragment screening,

allowing the identification of ten millimolar-range CTX-M b-lac-
tamase inhibitors. Despite many other positive examples, impor-

tant drawbacks in docking-based approaches have started to

emerge, some of which are intrinsic to the methodology, such

as a limited consideration of target flexibility or the lack of an

accurate treatment of solvent contribution to binding, whereas as

others are related to the nature of these low-affinity compounds.

Most docking scoring functions have been empirically trained

based on potent lead compounds and, thus, concerns have arisen

about their ability to distinguish active from nonactive fragments,

or native from other low-energy fragment-binding modes [30].

Therefore, the progressive development and validation of more

sophisticated physics-based molecular simulation approaches, the

most relevant of which are discussed herein, could improve the

reliability of in silico predictions in fragment screening.

Nonequilibrium candidate Monte Carlo and molecular dynamic
simulations
As early as the 2000s, MD simulations began to be explored as a

postprocessing tool to refine and characterize molecular docking-

predicted complexes, an approach often identified as ‘post-docking’

[31]. However, it is now clear how the timescale required to exten-

sively sample binding-mode transition and to realistically estimate

the distribution of fragment populations massively exceeds ms, thus

resulting in computationally expansive simulations. To deal with

this problem,Mobley’s research grouprecently developeda protocol

called ‘Binding Modes of Ligands Using Enhanced Sampling’

(BLUES), which improves the sampling of the metastable binding

modes of fragments, allowing the simulations to easily escape from

local minima of the potential energy surface [32]. The BLUES proto-

col is based on nonequilibrium candidate Monte Carlo (NCMC), an

algorithm that increases the efficacy of configurational sampling

concerning classical MD simulation, while providing a higher ac-

ceptance rate compared with traditional MC simulation. In detail,

BLUES collects a sequence of perturbation steps in which a fragment

is alchemically annihilated within its binding site and randomly

rotated, followed by propagation steps in which the ligand interac-

tions are restored and the molecular system is relaxed through

Langevin MD. In the end, the whole NCMC step is then accepted

or rejected based on the nonequilibrium work accumulated during

the different perturbation and propagation iterations. The protocol

effectiveness was firstly validated on the T4 lysozyme model system,

showing an improvement of two orders of magnitude in toluene-

binding mode population prediction, in terms of brute-force MD

simulations [32]. Subsequently, the pharmaceutically more relevant

soluble epoxide hydrolase (SEH) case study was considered, investi-

gating BLUES accuracy in identifying the experimental binding

mode of 12 fragments in which structures were solved by Astra

Zeneca [33]. Also in this case, the BLUES protocol outperformed

the traditional in silico methodologies, recovering the fragment

crystallographic binding modes in 86% of cases and providing a

reliable estimationoftheir relativepopulation(whereasdockingand

MD provided only 7% and 48% of correct predictions, respectively).

However, evenexploitingthis innovative protocol, simulation time-

scales close to ms are required to ensure the accuracy of results,

making BLUES implementation in a real HTS scenario challenging.
Molecular dynamics simulation and Markov state models
An aspect that needs to be addressed when performing MD simu-

lations is represented by the huge amount of computing time

required to sample pharmaceutically relevant events, such as, the

molecular recognition of a single fragment with its macromolecu-

lar target, from the unbound to the bound state, while ensuring

the stability of numerical integration. Alternatively to the use of

unphysical fragment concentrations, as previously described with

MSMD, dedicated hardware infrastructures have also been engi-

neered to improve the sampling of long-timescale events. A pio-

neering example is represented by the Anton supercomputer,

exploited by the Shaw research group to characterize the recogni-

tion of a small library comprising six fragments towards FKBP, a

prolyl isomerase protein [34]. Multiple equilibrium simulations

reaching the microsecond timescale were collected for each com-

pound, long enough to sample the binding and unbinding mo-

lecular events at least a hundred times repeatedly. These

trajectories were analyzed to estimate, with a great degree of

accuracy with respect to the experimental values, the fragment

equilibrium dissociation constants (KD), thus allowing the high

confidence ranking of the candidates. This represented the first

limited, but promising attempt to perform unbiased MD-based

fragment screening [35].

A change in paradigm occurred with the extraction of stochastic

information regarding long-timescale events from multiple short

simulations, rather than from a single long one [36]. This was

achieved by applying Markov state model (MSM) analysis, a

framework of a statistical model that discretizes and describes

the configurational space sampled by a biomolecular system

through, for example, an ensemble of MD simulations. A MSM

is constructed by clustering the trajectories into relevant states and

then monitoring the transition among each of these states during

a specific lag time t, chosen to ensure memoryless behavior

(Markovian) to the system [37,38]. A transition probability matrix

approximating the real dynamics of the molecular system is then

derived, from which thermodynamic and kinetic quantities can be

extracted, as well as phenomena that occur on timescales longer

from those sampled by a single simulation. This approach was

recently applied by Boehringer Ingelheim against two targets of

pharmaceutical interest, neutrophil elastase (NE) and a proline-

isomerase domain of FKBP51, which had both been the subject of

an FBDD screening [39]. A combination of unbiased MD simula-

tions with MSM analysis was exploited, stressing the methodology

performance in reproducing crystallographic binding modes of

five molecules. For each fragment–protein complex, an ensemble

of 50 ms of simulations was first sampled, and the trajectories were

then geometrically clusterized depending on the coordinates of

fragment heteroatoms. To improve the accuracy of the results,

MSMs were iteratively generated by changing the number of

clusters exploited to discretize the simulations and the relative

lag time t, until the most populated state for every parameter

combination converged. The procedure ensured not only a reliable

fragment-binding mode prediction, but also an estimation of the

relative confidence. This work highlighted how the combination

of unbiased MD simulation and MSMs significantly improves the

posing accuracy concerning molecular docking, correctly antici-

pating the binding mode of four of the five fragments examined,
www.drugdiscoverytoday.com 1695
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whereas docking was unable to yield a prediction within 3 Å from

the X-ray reference [39].

Although these examples corroborate the methodological ac-

curacy characterizing MD-MSM approaches, it is difficult to rec-

oncile their application to a more traditional drug discovery

scenario. For this reason, an MD-based fragment screening of a

library containing 129 candidates was recently performed by the

De Fabritiis group against a relevant oncological target, the che-

mokine CXCL12 monomer [40]. In this case, the MSM framework

was applied only to perform the analysis of the MD trajectories

ensemble, but also to actively drive the sampling, in a protocol-

defined adaptive sampling approach. For each fragment–protein

complex, a series of short MD simulations [70-nanoseconds (ns)

long] was initially collected and exploited to iteratively build

MSMs, identifying undersampled regions of the phase space from

which to start new simulations [40–42]. Through this adaptive

scheme, an average of 45 ms of simulations was collected for each

fragment, obtaining 5.85 ms of total MD simulation time if the

entire library is considered. This huge amount of data was

exploited to build the final MSM, from which both kinetic and

thermodynamic information describing ligand binding was

extracted. This work represents a first attempt to automate the

screening of a small fragment library exploiting molecular simu-

lation, even if the lack of experimental validation does not enable

the evaluation of the predictive performances or the accuracy of

the methodology [40].

Supervised molecular dynamics simulations
Along with MSMs, other approaches have been implemented to

improve the performance of classical molecular simulations for

the characterization of long-timescale events. For example, an

algorithm called supervised molecular dynamics (SuMD) was de-

veloped, which differs from other enhanced sampling approaches

because it does not perturb the free energy surface of the system

[43–45]. SuMD allows exploration of the entire ligand–receptor

recognition pathway, from the unbound to the bound state, in a ns

timescale, reducing the computational efforts needed by up to

three orders of magnitude. This is achieved by collecting short

unbiased MD simulations and monitoring how the protein–ligand

distance changes over time (Fig. 1). A tabu-like algorithm accepts

all the productive steps, simulations in which an approach of the

ligand is sampled, rejecting and simulating again from the previ-

ous coordinates set those steps describing instead a diffusion of the

ligand far from the target. Once the binding site vestibule has been

reached, the supervision algorithm is turned off, allowing classic

MD simulation to relax the final state. This methodology has

proven to be reliable not only in reproducing crystallographic

complexes with great geometric accuracy, but also in elucidating

the entire recognition pathway for both mature and fragment-like

molecules [43,46,47].

SuMD application in the context of FBDD was recently investi-

gated, in a screening of a fragment library containing 400 mole-

cules against the target Bcl-xL, an antiapoptotic protein member of

the Bcl-2 family [62]. A computational protocol defined as ‘high-

throughput supervised molecular dynamics’ (HT-SuMD) was de-

veloped to control in a fully automated fashion both the phase of

simulation collection and the subsequent analysis of raw data.

Given that fragments usually recognize their molecular target
1696 www.drugdiscoverytoday.com
through weak and transient interactions, which can determine

multiple ligand-binding modes, a specific set of analyses were

tailored. The ensemble of SuMD trajectories was geometrically

discretized through a density-based clustering algorithm

(DBSCAN) to highlight well-populated families of molecule con-

formations from background noise (Fig. 1) [48]. Each cluster was

then characterized based on four geometric or energetic observable

(Fig. 1, panel i to iv), which can help to reveal the more stable

fragment conformation. Hit fragments were identified by applying

a consensus scoring strategy to all the clusters analyzed. The

accuracy of the in silico calculation was cross-validated through

a comparative but independent NMR study, which highlighted

impressive convergence between the hit candidates identified by

the two orthogonal methodologies. In particular, all the first-

choice hits predicted by HT-SuMD were also confirmed as Bcl-xL
binders in the mM range by NMR experiments. To date, this

represents the largest fragment screening completely driven by

MD simulation reported in the literature, showing how it could be

possible to reconcile the use of molecular simulations, even on a

large scale, with the tight timing characterizing FBDD. However,

HT-SuMD screening protocol requires, contrarily to unbiased MD

approaches, a priori knowledge of the binding site localization,

thus benefiting from a combined use with methodologies capable

of identifying putative binding hotspots.

Steered molecular dynamics simulations
Understanding the molecular determinants underneath protein–

fragment structural stability is becoming a crucial step in FBDD. As

a consequence, a large-scale analysis was recently performed on

489 high-resolution crystallographic structures, all containing

fragments. Remarkably, 92% of the complexes now available are

characterized by the presence of at least one intermolecular hy-

drogen bond and, more importantly, 88% of the hydrogen bonds

with the protein target are completely water-shielded [49]. Given

that it has been demonstrated how buried hydrogen bond inter-

actions enhance the structural stability of protein–fragment com-

plexes, acting as a kinetic trap, computational approaches have

recently been developed to evaluate the energetic contribution of

the aforementioned interactions [50]. For example, steered mo-

lecular dynamics (SMD) is a technique that takes its inspiration

from the experimental methodology atomic force microscopy

(AFM), allowing the investigation of force-probe events through

the application of an external force vector to the system [51]. A

ligand unbinding process can be described by centering the vector

on the fragment molecule and then pulling the dissociation

process, even though the results might be significantly influenced

depending on how the direction and magnitude of the force are

chosen. For this specific purpose, a form of SMD called dynamic

undocking (DUck) was recently developed. DUck simulations

control the application of a force vector on a key hydrogen bond

interaction known to stabilize the protein–fragment complex,

which is pulled at an approximate distance of 5 Å until the contact

breaks [52]. From each nonequilibrium steering process, a property

defined as quasi-bound work (WQB) is then calculated, which

represents the maximum amount of work characterizing the pro-

cess of hydrogen bond breaking. Even if it is not possible to

establish a direct correlation between the WQB value of a molecule

and its binding affinity, which in contrast to the former is an
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FIGURE 1

High-throughput supervised molecular dynamics (HT-SuMD), an automated protocol exploiting molecular simulation to perform fragment screening. The SuMD
methodology is summarized with a specific focus on the tabu-like algorithm controlling acceptance or rejection of short unbiased MD simulations, depending
on how the distance between the fragment under investigation and the binding site center of mass (dcm

n) changes during the trajectory. A density-based
clustering algorithm (DBSCAN) clustering algorithm is used to perform a geometrical discretization of SuMD trajectories and identify relevant fragment
conformations. Each cluster is then characterized based on four geometric and energetic indicators: (i) cluster size; (ii) hydrogen bond presence; (iii) hydrophobic
contribution of binding; and (iv) protein–ligand MMGBSA binding interaction energy. Once all clusters have been characterized, a consensus scoring filter is
applied to identify hit fragment molecules.
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equilibrium property, the Barril research group investigated the

application of DUck in a fragment screening campaign. The pro-

tocol was applied to a crystallographic set of 41 fragment-like

complexes of the cyclin-dependent kinase (CDK2), monitoring

the WQB required to break the key hydrogen bond contact with the

protein hinge region. As summarized in Fig. 2, the results showed

how WQB can accurately discriminate and classify strong

(IC50 < 1 mM) from weak fragment binders (IC50 > 1 mM), obtain-

ing a similar outcome towards a second pharmaceutically relevant

target, the BRD4-BD1 bromodomain. DUck methodology was also

investigated in a real fragment-screening scenario toward the

oncological target heat shock protein 90 kDa (Hsp90), combining

docking–undocking simulations. A subset of 139 candidates was
selected through conventional molecular docking and subse-

quently subjected to 100 DUck runs to ensure convergence of

the WQB values. Of the 21 fragments predicted as strong binders

(WQB > 6 kcal mol�1), eight were confirmed as true Hsp90 binders

based on NMR experiments, showing a hit rate value close to 40%

and, thus, supporting the implementation of DUck in FBDD

pipelines.

Hit to lead fragment optimization
Once a low-affinity hit fragment has been identified, a multistep

medicinal chemistry optimization process begins to improve can-

didate pharmacodynamic and pharmacokinetic properties. For

this purpose, a multitude of structure-based in silico protocols have
www.drugdiscoverytoday.com 1697
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FIGURE 2

Dynamic undocking (DUck) is a steered molecular dynamics (SMD)-based protocol in which a fragment unbinding pathway is sampled by pulling a key
stabilizing hydrogen bond interaction through the application of a directional force vector. The maximum amount of steering work required for the contact
rupture is exploited as a nonequilibrium property differentiating strong from weak fragment binding molecules.
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been developed over the past few decades. Fragment maturation

could be driven by exploiting core positional restraints, pharma-

cophoric models, grid-based approaches, or statistics/active learn-

ing techniques [53]. However, exploration of a focused region of

the chemical space, starting from an initial fragment seed, is only

useful if combined with in silico methodologies able to anticipate

the binding affinity of the candidate, thus guiding research deci-

sions and prioritizing the synthesis of the most promising lead

compounds. From this perspective, molecular simulation-based

binding free energy calculations are becoming a gold standard in

hit-to-lead optimization pipelines.

Binding free energy calculations
Calculation of absolute binding affinity (DG), defined as the free

energy difference between a ligand in its bound and unbound

state, still remains challenging. The impossibility of describing the

molecular system energetics with a quantum mechanics level of

accuracy, along with inadequate sampling of the system config-

urations, affect the prediction reliability [54]. The calculation of

relative binding free energy (DDG) instead, defined as the differ-

ence in free energy characterizing a series of congener compounds,

is becoming increasingly rigorous and efficient. Among the differ-

ent approaches based on statistical mechanics, free energy pertur-

bation (FEP) methods currently represent the state of the art for

DDG predictions. Instead of computing free energy changes as the

difference between two absolute DG values, FEP exploits a non-

physical thermodynamic cycle in which a ligand is perturbed

through an alchemical transformation into another, both in the

aqueous solution and within its protein binding site (Fig. 3). In

recent retrospective work by Schrödinger, the application of FEP

protocols to the FBDD field was extensively validated, investigat-

ing more than 90 fragment molecules recognizing eight pharma-

ceutically relevant targets [55]. Results showed a good correlation
1698 www.drugdiscoverytoday.com
between the experimental changes in binding affinity and the

predicted DDG values, with an R2 value of 0.65 and a root mean

square error (RMSE) of 1.14 kcal/mol. Moreover, in 89% of the

predictions, the FEP protocol correctly anticipated the sign of

DDG, thus allowing the researchers to discern the putative effect

of the chemical modification, that is, whether it improved the

candidate affinity. These results become even more interesting

when comparing FEP predictive performances with those of an

empirical scoring function (Glide SP) or with an FF-based scoring

method (MMGBSA), demonstrating how the first approach con-

sistently outperforms the latter two. The Carlsson group evaluated

the performance of FEP in a fragment optimization pipeline ap-

plying the protocol to A2A adenosine receptor (A2AAR), one of the

most investigated G-protein-coupled receptors (GPCRs) [56]. The

relative binding affinity of a series of 23 adenine compounds,

which explore two different cavities of the A2AAR orthosteric

binding site, was evaluated, also highlighting a strong correlation

between FEP prediction and experimental DDG, with an R2 value

of 0.78. Apart from the encouraging evaluation of FEP perfor-

mance and accuracy, some crucial issues could impact this proto-

col and, therefore, must be taken into consideration in an FBDD

project. Given that a typical fragment optimization usually results

in a modest perturbation of ligand-binding affinity (�1 kcal/mol),

the uncertainty that it is necessary to handle in free energy

calculations could be comparable or, in some case greater, to

the thermodynamic quantity of interest [54]. Furthermore, despite

the continuous improvements in FF, an inaccurate parameteriza-

tion of the ligand under investigation, especially as in terms of the

torsional energy profile, can negatively influence the reliability of

the prediction.

As the aforementioned studies have highlighted, the precise

knowledge of fragment-binding modes represents a crucial aspect

for FEP calculation correctness, with the most significant DDG
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Slow path with convergence issue

Fast alchemical path with greater convergence

FEP-driven fragment optimization

Alchemical
perturbation

ΔΔGbinding =  ΔG°B - ΔG°A

ΔΔGbinding =  ΔGprotein -  ΔGsolution
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FIGURE 3

Relative binding free energy calculation as a valuable tool for driving fragment optimization campaigns. On the left side of the panel, the traditional
thermodynamics cycle for DDG calculation exploiting molecular simulation is depicted. The physical path (vertical arrows) describing the absolute free energy
of binding (DG�) are affected by convergence because of the massive system perturbation sampled, making the calculation inefficient. On the right side, the
nonphysical alchemical path (horizontal arrow) is shown, in which a ligand is perturbed into another both in the bound and unbound state, providing greater
convergence. Abbreviation: FEP, free energy perturbation.
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deviations described for those fragments characterized by an

obscure modality of recognition. Moreover, in an FEP protocol,

it is usually assumed that a fragment maintains its original con-

formation even after a chemical perturbation; this does not always

correspond to reality and both ligand and protein, along with the

water hydration network organization, can be significantly al-

tered. In all these cases, an incorrect DDG prediction will be

obtained unless the FEP simulation allows sampling of an inter-

conversion of the binding mode [57]. Lastly, particular attention

must be paid before performing FEP calculations of fragments that

could undergo tautomeric or ionization equilibrium, a not so

infrequent event, because the interconversion cannot be sampled

through MD simulations, thus altering the molecular recognition

free energy profile [54].

Concluding remarks and perspectives
Starting from pioneering research by Karplus and McCammon in

1977, the year in which the first all-atom MD simulation of a

protein was performed, molecular simulations have begun to

acquire increasing importance among the scientific community

[58]. The progressive optimization of MD algorithms, together

with the advent of GPU architectures, has contributed to turning

molecular simulations in a computational microscope character-

ized by an impressive spatiotemporal resolution. Therefore, phys-

ics-based simulations have started to accompany classic structure-

based computational approaches in drug discovery pipelines and,

recently, have also found application in the field of FBDD. This

review offers an overview of the latest implementations of molec-

ular simulations in a typical FBDD campaign, highlighting how

these approaches can impact many crucial steps, from the identi-

fication of druggable binding sites, the screening of fragments
libraries, to subsequent hit to lead optimization phase (Fig. 4).

Many methodological applications have been described herein,

comparing both their applicability domain as well as the simula-

tion timescales required. Molecular simulation-based approaches

efficiently capture the highly dynamic nature of low-affinity frag-

ments and, contrary to many structural biology techniques, also

unveil vital information about the lowest populated conforma-

tional states. This knowledge could be particularly important to

rationally drive the fragment maturation process, suggesting dif-

ferent linking or growing directions. A further emerging aspect is

the better ranking ability of fragment compounds by using an MD-

based strategy compared with conventional rigid techniques.

Again, the possibility of investigating both protein flexibility

and desolvation effect will have a significant impact on improving

the fragment-screening procedure, both in terms of the initial

problem as well as the characterization of thermodynamics and

kinetics.

The implementation of molecular simulations in the field

of FBDD is becoming a consolidated practice. As evidence of

this, following the contemporary pandemic condition caused

by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) spread, a timely fragment screening against the Main

protease (Mpro) of the virus has made tens of crystallographic

structures available to the scientific community [63]. The

massive distributed computing power provided by the Foldin-

g@home project is currently being exploited to in silico screen

tens of thousands of promising inhibitors, using the state of

the art of binding free energy calculation to prioritize the

synthesis and the experimental validation of promising can-

didates, hopefully accelerating the discovering of new thera-

peutics [59,60].
www.drugdiscoverytoday.com 1699
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FIGURE 4

Summary of a canonical in silico fragment-based drug discovery (FBDD) pipeline, highlighting the applicability of different molecular simulation-based
approaches. For each computational methodology, the simulation timescale that is required is reported, as well as the main (black dot) or secondary (white dots)
applications. The table highlights the differences between approaches that can provide cross-cutting support to many FBDD phases (e.g., Markov state models;
MSMs) from those that, because of their specificity and complexity, have a more focused use (e.g., free energy perturbation; FEP). Abbreviations: HT-SuMD, high-
throughput supervised molecular dynamics; MSMD, mixed-solvent molecular dynamics; NCMC, nonequilibrium candidate Monte Carlo; SMD, steered molecular
dynamics.
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Despite the undeniable methodological improvements and suc-

cess described so far, the predictive accuracy of these methodolo-

gies remains an issue. Continuous optimization of the FF

parameters is desirable, for example through the implementation

of polarization effects, as is the necessary improvement of the

efficiency with which the configurational space of the molecular

system of interest is sampled [61]. In light of these issues and

considering the continuous and exponential improvements in

computational performance, ever greater implementation of
1700 www.drugdiscoverytoday.com
molecular simulations in the FBDD field can be envisioned, accel-

erating and making more efficient the entire process of rational

drug discovery.
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