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Fast and sensitive flow-injection mass
spectrometry metabolomics by analyzing sample-
specific ion distributions
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Mass spectrometry based metabolomics is a widely used approach in biomedical research.
However, current methods coupling mass spectrometry with chromatography are time-
consuming and not suitable for high-throughput analysis of thousands of samples. An
alternative approach is flow-injection mass spectrometry (FI-MS) in which samples are
directly injected to the ionization source. Here, we show that the sensitivity of Orbitrap FI-MS
metabolomics methods is limited by ion competition effect. We describe an approach for
overcoming this effect by analyzing the distribution of ion m/z values and computationally
determining a series of optimal scan ranges. This enables reproducible detection of ~9,000
and ~10,000 m/z features in metabolomics and lipidomics analysis of serum samples,
respectively, with a sample scan time of ~15 s and duty time of ~30's; a ~50% increase versus
current spectral-stitching FI-MS. This approach facilitates high-throughput metabolomics for
a variety of applications, including biomarker discovery and functional genomics screens.
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ARTICLE

etabolomics and lipidomics enable the detection of

numerous molecules in biological samples and are

extensively used to explore the dynamic response of
living systems to diverse physiological and pathological condi-
tions!2. Untargeted metabolomics and lipidomics are especially
important for unbiased detection of a wide range of molecules,
providing an important tool for new discoveries in metabolic
studies3-3.

Metabolomics is typically performed via nuclear magnetic
resonance and mass spectrometry (MS)>10. MS is typically cou-
pled with liquid or gas chromatography, separating metabolites
within a complex sample before ion detection!:12. This enables
separating isobaric compounds, determine structural information,
and further increases the overall sensitivity of the analysis by
minimizing the effect of ion suppression!>13, However, the major
limitation of this approach for metabolomics analysis is that
chromatographic separation is time-consuming (typically
requiring 20-60 min per sample), preventing its usage for high-
throughput metabolomics and lipidomics screens of thousands of
samples—required for large scale biomarker discovery studies and
functional genomics screens!>14. Ultrashort columns provide
shorter chromatographic separation times (5 min or less), though
are typically limited in terms of the capability to separate complex
mixtures.

An alternative analytical approach is flow-injection mass
spectrometry (FI-MS), in which the analytes are directly injected
into the mass spectrometer ionization source without prior
chromatographic separation. FI-MS via modern high-resolution
mass spectrometers such as Orbitrap and time-of-flight (ToF) was
shown to enable the determination of hundreds to thousands of
m/z features in biological samples!>~17, FI-MS based on Orbitrap
and ToF provide complementary analytical capabilities, con-
sidering the inherent differences between the two mass spectro-
meters; e.g., with Orbitrap providing higher resolution for low
mass ions and ToF for high mass ions!8. FI-MS based on ToF MS
was shown to enable metabolomics analysis time of ~1 min per
sample!®. This was recently applied to perform metabolomics
screens in cancer cell lines and study the metabolic response to
drug treatment in cancer cells and bacterial®-23. Recently, a FI-
MS method using a high-resolution Orbitrap mass spectrometer
was proposed, enabling metabolomics and lipidomics analysis of
~9000 m/z features in ~5 min per sample!”. This method, referred
to as spectral stitching, aims to minimize the ion overload of the
mass spectrometer by configuring a quadrupole to separately pass
ions within consecutive m/z intervals to the Orbitrap analyzer.
This increased the overall sensitivity fivefold, compared with a
naive approach in which the entire m/z range of interest is
scanned at once!”-24, However, splitting the mass spectrometer
scanning to a large number of small ranges increased the overall
scanning time to several minutes—limiting the applicability of
this approach for high-throughput screening!”.

Here, we present a method for improving the sensitivity of
rapid FI-MS with a high-resolution Orbitrap mass spectrometer,
determining the optimal scan ranges that would maximize the
number of reproducibly detected metabolites and lipids. The
method is based on first running FI-MS with consecutive and
narrow scan ranges to inspect the distribution of reproducibly
detected m/z features within an m/z scan interval of interest.
These measurements are then used to divide that m/z scan
interval of interest into a small set of scan ranges that would
maximize the overall sensitivity (aiming to achieve a uniform
number of reproducibly detected m/z features in each scan
range). We demonstrate the applicability of this approach in
untargeted analysis of metabolites and lipids in serum samples as
well as of metabolites extracted from cancer cells grown in tissue
culture. We explore the trade-off between analysis time and

sensitivity, analyzing how the number of analyzed scan ranges
determines the number of reproducibly detected m/z features. For
example, we show that with eight optimized scan ranges, the
metabolomics and lipidomics analysis (each with a scan time of
155s) is sufficient to reproducibly detect a total of ~19,000 m/z
features; ~50% higher than the number of features detected with a
similar number of uniform size scan ranges. We expect this
approach, facilitating rapid and high-sensitivity FI-MS analysis,
to be highly useful for high-throughput metabolomics and lipi-
domics applications; e.g., for population-level disease screening
and functional genomics screens aiming to assess gene metabolic
activities and drug effects.

Results

Ion competition lowers the sensitivity of FI-MS metabolomics.
FI-MS involves simultaneous infusion of numerous ions to the
mass spectrometer which typically lowers the sensitivity of
the measurement (as the presence of highly abundant ions mask
the detection of other lowly abundant ions). This may involve two
distinct effects: (1) ion suppression at the ionization source
(electrospray ionization (ESI) source, in our case). (2) Ion com-
petition in the detection system, typically having a limited
capacity in terms of the number of accumulated ions; in our case,
a curved linear trap (C-trap), capturing up to 5 x 10 ions prior to
their transfer to the Orbitrap analyser (see “Methods”). Ion
competition in the detection system can be lowered by config-
uring a quadrupole to limit the range of ion m/z that are trans-
ferred to the Orbitrap analyser at a given time, as performed with
the spectral-stitching approach!”. Here, we aimed to assess the
extent of ion suppression in the ESI source versus ion competi-
tion in the detection system, as a mean to evaluate the potential of
spectral stitching to improve the sensitivity of FI-MS analysis.

Toward this end, we utilized FI-MS with a high-resolution
Hybrid Quadrupole Orbitrap mass spectrometer with an ESI
source and performed the following experiment: we injected a
series of serum samples in which the ion flow was gradually
induced by adding increasing concentrations of a highly ionizable
compound, taurocholic acid (TC), [M — H]~—514.28 m/z; from
10 to 250 uM (Supplementary Fig. 1a; “Methods”). We configured
two ranges in the quadrupole: a 24 m/z scan range that spans this
compound, and a smaller 20 m/z scan range (enclosed within the
previous scan range) in which the m/z signal of TC is excluded
(Fig. 1a; “Methods”). The effect of ion suppression in the ESI was
assessed based on the drop in the number of reproducibly
detected m/z features in the 20 m/z scan range (which excludes
m/z signal of TC) when adding TC (see definition of reproducible
m/z features in “Methods”); showing a drop of no more than 25%
when adding a maximal concentration of 250 uM TC (blue line,
Fig. 1b). The total effect of ion competition in the detection
system and ion suppression in ionization source together was
assessed based on the drop in the number of detected m/z features
when configuring a 24 m/z range (that includes the m/z signal of
TC) when adding TC (considering only on m/z features within
the smaller 20 m/z interval, without TC). This showed a markedly
larger effect of ion competition in the detection system than of
ion suppression in the ESI, with a drop of up to 90% in the
number of reproducibly detected m/z features when adding the
maximal concentration of TC (red line, Fig. 1b).

The overloading of the detection system with TC is only
observed when the quadrupole is configured with the wider 24 m/z
scan range that spans TC based on a drop in the ion injection
(accumulation) time within the C-trap when adding increasing
concentrations of TC (Fig. 1c); controlling the injection time
enables the MS to prevent overloading of the Orbitrap analyser,
while the automatic gain control (AGC) limits the maximal
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Fig. 1lon competition in the detection system explains the reduced sensitivity of FI-MS. a An experimental scheme for investigating ion suppression and
ion competition effects in FI-MS analysis: gradually increasing the ion flow by adding increasing concentrations of some compound to the analyte, while
configuring the mass spectrometer to scan for two overlapping ranges that include or exclude the added compound; here, taurocholic acid (TC) was added
to metabolite extracts from serum samples, while a 20 m/z scan range, which excludes this compound and an overlapping 24 m/z scan range that includes
it are scanned. b The number of reproducible m/z features found (within the narrower scan range) when scanning for the 20 m/z scan range (in blue) and
for the 24 m/z scan range (in red), adding increasing concentrations of TC; black horizontal line represents the number of m/z features detected without
adding TC. ¢ Observed injection time of curved linear trap as a function of the concentration of the added TC. d The median intensity of m/z features (n >
15; £SEM; measured without adding TC; y axis) which become undetected when adding increasing concentrations of TC (x axis), scanning for the 20 m/z
scan range (in blue) and for the 24 m/z scan range (in red); black horizontal line represents the median intensity of m/z features detected without adding
TC. lon intensity (y axis) and m/z (x axis) detected in serum when scanning for the 20 m/z scan range (e) and the 24 m/z scan range (f); ions undetected
when adding 100 pM of TC are marked with red crosses. Distributions of the number of reproducible m/z features found by spectral-stitching FI-MS
method (20 m/z scan ranges; in blue) versus scanning using a single range (in red) for metabolomics (g) and lipidomics (h) analysis (negative ionization
mode). i The total number of reproducible m/z features found by spectral-stitching FI-MS (in blue) versus scanning using a single scan range (in red), for
metabolomics and lipidomics, in positive and negative ionization modes. Source data are provided as a Source data file.

number of jons that will be transferred to the detection system (in
our case configured to a maximal value of 5 x 106 ions). When the
quadrupole is configured with the narrower 20 m/z scan range
that excludes TC, a maximal ion accumulation time of 100 ms was
realized (in accordance with our configuration of the MS method).
Expectedly, the ion competition effect observed when scanning for
the 24 m/z range spanning TC masks the detection of low-
abundant and/or poorly ionized compounds having low intensity
(Fig. 1d-f); gradually increasing the concentration of TC leads to
the loss of m/z features having higher and higher intensities
(Fig. 1d). The markedly larger effect of ion competition in the

detection system rather than ion suppression in the ESI on the
number of reproducibly detected m/z features was further found
when adding other compounds (sodium dodecyl sulfate (SDS),
caffeine, Met-Arg-Phe-Ala (MRFA) peptide, and p-nicotinamide
adenine dinucleotide (NAD)), and when configuring the quadru-
pole for passing ions within different scan ranges (Supplementary
Figs. 1-3). Overall, our results suggest that ion competition in the
detection system is the prime reason for the drop in sensitivity in
Orbitrap-based FI-MS.

Ion competition in the detection system can be addressed by
configuring the quadrupole to limit the scan range of m/z features
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Fig. 2 Optimizing the sensitivity of rapid flow-injection mass spectrometry via nonuniform scan ranges. a An experimental scheme for investigating the
effect of scan range width on the number of reproducibly detected m/z features: FI-MS analysis of metabolite extracts from serum samples is performed
with a series of scan ranges with increasing sizes around a point of 500 m/z (where the mass-stitching revealed numerous reproducible features; in red)
and a point of 1650 m/z (where a small number of features are observed; in green). Specifically, using a series of ranges of size 40-700 m/z, in steps of
40 m/z units. b The percent of reproducible m/z features identified around the points of 500 (in red) and 1650 m/z (in green), as a function of the scan
range width (out of the total number of features with the minimal 40 m/z scan range). ¢ The distribution of the number of reproducible features found for
metabolomics analysis of serum samples by FI-MS in negative mode; and the optimized eight scan ranges represented by vertical lines. d The optimized
scan ranges for metabolomics and lipidomics FI-MS-based analysis of serum samples in positive and negative ionization modes. e The number of
reproducible m/z features identified with the optimized eight scan ranges (in green), eight uniform scan ranges (in blue), and using a single scan range (in
red). *p < 0.004 by two-sample two-sided t-test. Data are mean = SD, n =5 independent repetitions of the FI-MS analysis. f The total number of
reproducible m/z features (y axis; metabolomics and lipidomics analysis via positive and negative ionization modes) identified when scanning using
optimized scan ranges (in green) versus when using uniform width scan ranges (in blue), considering different numbers of scan ranges (x axis); the black
horizontal line marks the number of reproducible features observed when scanning using the exhaustive 20 m/z scan ranges. Source data are provided as a

Source data file.

that are transferred to the C-Trap at any given time. Accordingly,
we set up spectral-stitching FI-MS-based metabolomics and
lipidomics methods for the analysis of serum samples, scanning
an m/z interval of 70-2500, via a series of 122 consecutive 20 m/z
scan ranges (involving multiple injections of each sample to scan
a subset of these m/z ranges; see “Methods”). The 70-2500 m/z
interval was chosen considering that the vast majority of serum
metabolites and lipids are within this mass range, according to the
Human Metabolome Database (HMDB)2> and LIPID MAPS
Structure Database (LMSD)?° (Supplementary Fig. 4). The
metabolomics method detects 6815 and 8713 m/z features in
positive and negative ionization modes, respectively, while the
lipidomics method detects 6695 and 9138 m/z features in the
positive and negative ionization modes, respectively (Fig. 1g-i).
This represents a marked improvement in overall sensitivity
compared with scanning a single range between 70 and 2500 m/z;
with approximately tenfold increase in the number of reprodu-
cible m/z features for the metabolomics analysis and approxi-
mately sixfold increase for the lipidomic analysis (Fig. 1i).
However, a major limitation of this approach is that the
high number of scanned ranges result in a long running time
which is on the order of minutes (considering a scan rate of 1.3
Hz at a high-resolution of 70,000 and the requirement of 3 micro
scans to achieve stable and reproducible measurements; see
“Methods”).

m/z ranges optimization improves the sensitivity of FI-MS. We
hypothesized that controlling scan range widths would provide
the needed flexibility to minimize the number of scan ranges
while maximizing the overall number of detected m/z features. To
explore how the width of the scanned range affects the resulting
number of detected features, we performed the following
experiment: we configured FI-MS method to scan for series of
ranges with increasing size, centered around a point of 500 m/z
(a high-density spectral region where the above mass-stitching
analysis revealed numerous reproducible features) and around a
point of 1650 m/z (a low-density spectral region where a sig-
nificantly lower number of features were found; Fig. 2a). Speci-
fically, around each of the center m/z points, we scan a series of
ranges of size 40 m/z to 700 m/z, in steps of 40 m/z units.
Expectedly, for both scans performed within high- and low-
density spectral regions, the number of detected m/z features
gradually dropped when increasing the scanning range widths
due to ion competition effect in the detection system described
above (compared with the number of features detected with a
40 m/z scan range, Fig. 2b). However, the drop in the number of
reproducibly detected m/z features was markedly larger around
the more dense region of 500 m/z versus the low-density region
around 1650 m/z. Specifically, to detect more than 70% of the
features found using the 40 m/z range, a maximal scan range size
of ~140 m/z could be used for high-density spectral region; versus
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a maximal range size of ~620 m/z for low-density spectral region.
Overall, these results demonstrate that low-density spectral
regions tolerate wider scan range, but in mass ranges with a high
ion density dense sampling is crucial.

Considering the above, we developed a method to determine
the optimal set of scan ranges that aims to maximize the total
number of reproducibly detected m/z features by achieving a
uniform number of m/z features in each scan range. The method
takes as input the distribution of the number of reproducibly
detected m/z features within a certain m/z interval (as determined
via an exhaustive spectral-stitching method with small and
uniform scan ranges described above) as well as the number of
requested scan ranges (determining the overall FI-MS analysis
time). It then finds the set of scan ranges that achieve a uniform
number of reproducible m/z features in each scan range. For
example, applying this method to determine an optimal set of
eight scan ranges for metabolomics analysis of serum samples
with negative ionization mode identified the ranges shown in
Fig. 2c (where the number of reproducible m/z features within
each scan range is equal). Performing the analysis also for
metabolomics analysis in positive ionization mode resulted in
different optimal scan ranges; and similarly, applying it for
lipidomics analysis resulted in different scan ranges (Fig. 2d,
Supplementary Fig. 5). Notably, applying this method to several
serum samples from different donors (and to several different
mice brain samples) showed that different samples of the same
type produce a similar characteristic distribution of m/z features
(Supplementary Fig. 6); and hence scan range optimization
should be performed once for every sample type of interest.

The scan time for metabolomics or lipidomics analysis with eight
scan ranges in both positive and negative ionization required a total
of ~15s (duty time of ~30s; time between two consecutive
injections). The eight optimal scan ranges for metabolomics and
lipidomics analysis enabled the detection of a total of ~19,000 m/z
features in serum samples. This represents a significant approxi-
mately fivefold increase in the number of reproducible features
versus utilizing a single scan range (p value < 10710, two-sample
t-test) and a significant ~50% increase compared with utilizing eight
uniform scan ranges (p value<10~7; Fig. 2e). Overall, the
metabolomics and lipidomics analysis with eight scan ranges
identify 60% of the m/z features detectable by the exhaustive 20 m/z
scan ranges spectral-stitching (~5min of scanning time). As an
alternative approach for determining the scan ranges, we tested a
method that aims to achieve a uniform total ion count (TIC) within
each range, though this leads to a significantly lower overall number
of reproducible m/z features (Supplementary Fig. 7).

We comprehensively evaluated the trade-off between the
number of scan ranges and the number of reproducibly detected
m/z features with our approach (Fig. 2f). We found that 4 scan
ranges are sufficient to detect ~1/3 of the total number of
reproducible m/z features identified with the exhaustive 20 m/z
scan ranges spectral-stitching FI-MS experiment; on the other
hand, 16 scan ranges are sufficient to identify >75% of the
reproducible m/z features detectable with the exhaustive analysis.
Opverall, the advantage of the optimized scan ranges is evident
across a wide number of potential scan ranges.

We further evaluated the analytical performance of the FI-MS
method in terms of sample-specific matrix effect that may bias
metabolite concentration measurements and linearity of response
to changes in metabolite composition. Sample-specific matrix
effect was evaluated by applying the optimized eight scan ranges
FI-MS-based metabolomics and lipidomics methods to analyze
20 serum samples from different donors while injecting internal
standards (glucose 6-phosphate (G6P), [M — H]~—259.02 m/z;
and MRFA, [M + H]T—524.26 m/z; Fig. 3a). We injected 250 nM
of G6P and 150 nM of MRFA, such that their measured intensity
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matches the median intensity of all reproducibly detected m/z
features in these samples. For both internal standards in
metabolomics and lipidomics, the relative standard deviation
(RSD) in the measured intensity across the 20 serum samples was
<14%, supporting the ability of our method to overcome sample-
specific matrix effect and correctly detect that the same
concentration of these compounds was injected to all samples.
To examine the linearity of the measurements, we applied
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Fig. 3 Sample-specific matrix effect and a linear response observed with
optimized FI-MS. a Applying FI-MS method with 8 optimized ranges in
negative ionization mode for metabolomics and lipidomics analysis of
serum samples from 20 donors and adding 250 nM of glucose 6-phosphate
(G6P); and in positive ionization mode, adding 150 nM of Met-Arg-Phe-Ala
tetrapeptide (MRFA); y axis represents the RSD% of the measured
intensity of these compounds across the 20 analyzed samples. Applying FI-
MS with eight optimized ranges in positive ionization mode for
metabolomics analysis of serum samples, adding increasing concentrations
of taurocholic acid (b) and lipidomics analysis in positive ionization mode
adding increasing concentrations of 18:1 lyso phosphocholine (LPC) (¢),
demonstrating a linear response in both cases. Data are mean values £ SD,
n=>5 (10 for LPC measurement) independent repetitions of the FI-MS
analysis. d Correlation between FI-MS and LC-MS-based concentration
measurements of nine amino acids and two lipids in serum. Error bars show
95% confidence intervals. Source data are provided as a Source data file.

metabolomics based FI-MS to analyze a serum sample injected
with a series of increasing concentrations of TC, and lipidomics
based FI-MS for serum samples injected with 18:1 Iyso
phosphocholine. In both cases, the calibration curves showed a
highly significant linear response over a concentration range
spanning two orders of magnitude (R?>0.99; p value< 107>
Fig. 3b, c¢). A Similar linear response spanning a concentration
range above two orders of magnitude was found for nine other
injected standards in metabolomics and lipidomics analysis
(Supplementary Table 1; “Methods”), supporting the ability of
our method to quantify relative changes in metabolite abun-
dances between samples. To test the ability of our FI-MS method
to quantify the absolute concentration of metabolites, we utilized
the standard addition method to determine the concentration of
nine amino acids; and utilized internal calibration curves with
stable isotope labeled standards to determine the concentration of
two lipids in serum. The inferred concentrations by our FI-MS
method are significantly correlated with those determined via
standard addition performed with LC-MS (Pearson r=0.95, p
value < 107>, Fig. 3d; Supplementary Table 2; “Methods”).

We obtained putative annotations for m/z features detected
with our FI-MS method, based on the high-accuracy Orbitrap MS
measurements, compared with HMDB and LMSD (see “Meth-
ods”; level 2 annotations2’). For example, several metabolite
classes which are known to be present in blood were annotated,
including lipids (fatty acids and esters, phospholipids, sterols, and
ceramides) and polar compounds (amino acids, pyrimidine
nucleosides, peptides, and carbohydrates). The number of m/z
features detected with our optimized ranges FI-MS method with a
putative annotation is significantly higher (approximately twofold
increase) than for the set of m/z features detected with uniform
range FI-MS (two-sample t-test p value < 107); and is signifi-
cantly higher (~3.5-fold increase) than for the set of m/z
features detected with FI-MS with a single rage (p value <1079
Supplementary Fig. 8). Notably, more than 30 fatty acids,
20 steroids, and 15 carbohydrates are nondetectable with uniform
scan ranges but could be detected using the optimized FI-MS
method (Supplementary data 1).

We applied our FI-MS method to analyze inter-subject
variability in serum metabolome within a group of 98 healthy
individuals (“Methods”). Our analysis shows variability in the
abundance of ~3500 m/z features across the analyzed population
(i.e., number of m/z features whose inter-subject RSD is 50%
higher than the RSD in repeated injection of QC samples?3); this
number of biologically important m/z features is only ~20% lower
than that detected in a recent study via standard LC-MS analysis,
though the FI-MS analysis is ~100-fold faster?8. We find that the

distribution of inter-subject RSD is skewed to lower values, in
accordance with the LC-MS-based results (Supplementary Fig. 9;
Supplementary data 2)28; with a similar median inter-subject RSD
of ~40% and maximum RSD of ~700%. Specifically, in
accordance with the LC-MS results, we find that aromatic amino
acids (tryptophan, phenylalanine, and tyrosine) have low inter-
subject RSD (<~35%); fatty acids (tetradecanoic and hexadece-
noic acids) have intermediate RSD values (66 and 71%,
respectively); and, expectedly, drug metabolites (paracetamol,
sitaxentan) have the highest RSD (>300%). Utilizing the entire set
of serum FI-MS measurements to reproduce a study of gender-
specific metabolite fingerprints performed with LC-MS, resulted
in overall similar results (Supplementary Fig. 10; “Methods”).

FI-MS metabolomics analysis of cancer cells. We applied our
method to determine the optimal scan ranges for FI-MS analysis
of metabolites from cultured cancer cells: first, we applied FI-MS-
based metabolomics in positive and negative mode with
exhaustive 20 m/z scan ranges on metabolite extracts from cul-
tured HeLa cells and from the cell culture media. This was used to
derive distributions of the number of reproducible m/z features
within the m/z interval of 70-2500 m/z for intracellular and
media metabolites with positive and negative ionization mode.
These distributions were utilized to determine sets of eight
optimal scan ranges for the metabolomics analysis in each ioni-
zation mode (Fig. 4a). The resulting FI-MS-based metabolomics
method detects a total of ~3800 and ~7200 m/z features in cells
and media extracts, respectively (in both polarity modes com-
bined). This represents a major improvement compared with
utilizing uniform scan ranges; with a significant approximately
twofold and ~2.5-fold increase in the number of m/z features
detected in positive ionization mode with our optimized ranges
versus with uniform ranges for cell and media extracts, respec-
tively (p value < 10711 and <10~7; Fig. 4b, c). More than 1300 m/z
features were putatively annotated based on the accurate mass
measurement (using HMDB; level 2 annotations?’), including
purines, pyrimidines, amino acids, and sterols (Supplementary
data 3).

To evaluate the performance of our FI-MS method in
accurately determining metabolite abundances across cancer
cells, we systematically applied it to analyze metabolite extracts
from ten cell lines (HeLa, Hek293, HepG2, MiaPaca2, HCT116,
Panc-1, A549, WM266-4, Jurkat, and CCRF-CEM) and com-
pared the results to those obtained with untargeted LC-MS
analysis (“Methods”). We found a total of 815 m/z features that
are identified by both LC-MS and FI-MS within at least seven cell
lines, in positive and negative ionization modes combined
(utilizing MAVEN?? to extract reproducibly intense MS peaks
with intensity > 15,000 in negative and positive ionization
modes). Ion intensity measurements performed by our FI-MS
method across the cell lines are significantly correlated with those
made by LC-MS for a total of 367 m/z features in negative and
positive modes (FDR corrected Pearson p < 0.05; Supplementary
data 4). For FI-MS with uniform ranges, a significant correlation
with LC-MS measurements was obtained for only 216 m/z
features; and for FI-MS with a single range for only 86 m/z
features (Supplementary Fig. 11). Furthermore, the correlations
between LC-MS intensity measurements and those made via our
optimized ranges FI-MS are significantly higher than with those
made with FI-MS with uniform ranges and with FI-MS with a
single range (Wilcoxon rank-sum p value< 1073 and <1077,
respectively). For example, for uridine diphosphate N-acetylglu-
cosamine, the correlation between measurements performed with
our optimized ranges FI-MS (negative jonization mode) and LC-
MS (r=0.95, FDR corrected p value < 107) is markedly higher
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Fig. 4 FI-MS-based metabolomics with optimized scan ranges applied for cultured cancer cells. a The optimized eight scan ranges for metabolomics FI-
MS-based analysis of metabolite extracts from cancer cells and from culture media in positive and negative ionization modes. The number of reproducible
m/z features observed when utilizing the eight optimized scan ranges (in green), compared with eight uniform scan ranges (in blue), and a single scan
range (in red), analyzing metabolite extracts from cancer cell (b) and from culture medium (c). *p < 10— by two-sample two-sided t-test. Data are mean
values £ SD, n=5 independent repetitions of the FI-MS analysis. Source data are provided as a Source data file.

than that for uniform range FI-MS (r=0.87, FDR corrected
p value < 0.05) and single range FI-MS (r =0.78, FDR corrected
p value > 0.05).

As a model system for further testing whether our FI-MS
method could capture important biological alterations in cellular
metabolome, we reproduced a study on the effect of oxygen level
on intracellular metabolites performed via LC-MS30. We applied
the developed FI-MS method to measure the metabolome of
HCT116 cancer cells grown in hypoxia (1% O, see “Methods”)
and normoxia (20% O,). We find that for a set of 31 metabolites
whose concentration was reported to increase under hypoxia
based on LC-MS, our FI-MS analysis also shows a significant
increase in abundance in hypoxia (Wilcoxon rank-sum p value <
10~7; comparing the fold change in the abundance of these
metabolites in hypoxia versus hypoxia with that of other
detectable metabolites; Supplementary Table 3).

Discussion

We presented an approach for optimizing Orbitrap FI-MS ana-
lysis of specific samples for both high speed and sensitivity—
making FI-MS suitable for high-throughput metabolomics and
lipidomics applications. We showed that while both ion compe-
tition and ion suppression hinder the sensitivity of FI-MS-based
metabolomics and lipidomics analysis, ion competition is the
predominant factor. To overcome the effect of ion competition in
the mass spectrometer detection system while minimizing the
overall scan time, we developed a method for identifying a pre-
defined number of m/z scan ranges that would maximize the
overall sensitivity for a specific sample type of interest—aiming to
achieve a uniform number of reproducibly detected m/z features
in each m/z scan range (i.e., practically assigning narrow ranges
around m/z regions having a high number of features and wider
ranges around sparse m/z regions). This was shown to increase
the number of reproducibly detected m/z features by ~50% and
>100% in metabolite extracts from serum and cultured cells,
respectively, compared with spectral-stitching FI-MS with uni-
form m/z scan ranges.

Reproducibly detected m/z features by FI-MS do not necessa-
rily reflect distinct metabolites in the analyte, considering the
presence of adducts, in source fragments, and natural isotopes.
Several methods were proposed to group multiple ions detected
with LC-MS based on a likely association with the same meta-
bolite in the analyte. For example, clustering of m/z peaks based
on high correlation between peak shapes (i.e., time-dependent
intensity measurement throughout the chromatographic separa-
tion)31. Analogously, we performed clustering of m/z features

detected with FI-MS based on a high correlation between their
measured intensity across a series of different analyzed samples
(“Methods”). Applied to cluster m/z features identified by our
optimized ranges FI-MS method across a series of 98 serum
samples, we obtained a total of ~3900 m/z feature clusters
(Supplementary Fig. 12). A markedly lower number of ~1200 m/z
clusters was obtained by the uniform ranges FI-MS and only ~250
clusters with a single range FI-MS, further supporting the higher
metabolite coverage of our optimized ranges FI-MS method.

Metabolite annotation is a major challenge in both untargeted
LC-MS and FI-MS-based metabolomics and lipidomics. Here, we
obtained putative annotations for identified m/z peaks based on
the high mass accuracy of the Orbitrap mass spectrometer
(compared with public metabolite databases); level 2 annotations,
as defined by the MSI?’. We showed that the number of detected
m/z features for which a putative annotation could be obtained is
significantly higher for measurements performed with our opti-
mized ranges FI-MS method than with FI-MS with uniform
ranges or a single range. Obtaining higher confidence annotations
for m/z features detected by FI-MS is possible via MS/MS ana-
lysis>»33. Applying FI-MS/MS with data-dependent analysis
(DDA) to induce collisional fragments for high intensity ions, we
derive high confidence (level 1) annotation for 83 m/z features,
including 22 polar compounds annotated based on METLIN MS?
spectra and 61 nonpolar compounds annotated based on LMSD
(Supplementary data 5). For many of the latter, FI-MS enables the
annotation of lipid class, total length of acyl chains, and total
number of unsaturated bonds, while more specific annotation
would require an extra level of separation beyond m/z. Numerous
additional m/z features detected by FI-MS could be annotated
with parallel reaction monitoring, systematically utilized to
acquire MS/MS spectra for m/z features of interest.

We show that for different sample types (serum, mice brain
extracts, intracellular and media metabolites) and analysis type
(metabolomics and lipidomics; positive and negative ionization
mode), our method finds different sets of optimal m/z scan
ranges, suggesting that it would be highly useful to utilize this
approach to determine optimal m/z ranges for future applications
of FI-MS-based metabolomics and lipidomics. Overall, our FI-MS
method is expected to be an important tool for metabolomics and
lipidomics based functional genomics and biomarker discovery
studies.

Methods

Chemicals. Water, methanol, acetonitrile, and 2-propanol—LiChrosolv LC-MS
grade Merck & Co. (Germany), buffer additives ammonium carbonate (for HPLC)
and ammonia solution, 25% (for LC-MS) were purchased from Fluka Analytical
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Sigma-Aldrich (Germany) and Merck & Co. (Germany), respectively. Compounds
for investigation of ion competition and suppression effects and MS m/z accuracy
were received from Sigma-Aldrich (Germany). Amino acids and stable isotope
labeled lipids standards were obtained from Biological Industries, Inc. (USA) and
Avanti Polar Lipids, Inc. (USA), correspondingly.

Biological Samples. FI-MS method optimization was performed with commer-
cially available serum, Human AB Serum (Biological Industries USA, Inc., USA).
Matrix effect experiments and biological applications were performed with

98 serum samples of healthy individuals obtained from Rambam Hospital, Haifa,
Israel (Supplementary Table 4). All serum samples of healthy individuals were
purchased from Midgam Biobank during December 2018. All participants pro-
vided their informed consent and the study protocol was approved by the Ethics
Committee of Rambam Health Care Campus, Technion—Israel Institute of
Technology (IRB 0481-18-RMB). This study complies with all relevant ethical
regulations for studies involving human subjects. Mice brain extracts were obtained
from Yaron Fuchs Laboratory, Technion, Israel.

Cell lines. HeLa (CCL-2), Hek293 (CRL-1573), HepG2 (HB-8065), MiaPaca2
(CRL-1420), HCT116 (CCL-247), Panc-1 (CRL-1469), A549 (CCL-185), and
WM266-4 (CRL-1676) cells (purchased from ATCC, USA) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, high glucose, Biological Industries
USA, Inc., USA) supplemented with 10% (v/v) dialyzed fetal bovine serum
(Hyclone Laboratories Inc., USA), 4 mM glutamine, 100 UmL~! penicillin, and
100 pg mL~! streptomycin. Jurkat (CRL-2899) and CCRF-CEM (CCL-119) cells
(purchased from ATCC, USA) were cultured in RPMI medium (Biological
Industries USA, Inc., USA) supplemented with 10% (v/v) dialyzed fetal bovine
serum (Hyclone Laboratories Inc., USA), 4 mM glutamine, 100 U mL~! penicillin,
and 100 pg mL~! streptomycin.

All cell lines were cultured using standard procedures in a 37 °C humidified
incubator with 5% CO,_ Cell lines were tested for mycoplasma using EZ-PCR
mycoplasma detection kit (Biological Industries USA, Inc., USA). We seeded 1.5
million from each cell line in six-well plates (three repeats for the cell type) with
6 mL of the media and grew them for 24 h before metabolite extraction. HCT116
were cultured using standard procedures in a 37 °C humidified incubator with 5%
CO, in high-glucose DMEM supplemented with 10% heat-inactivated fetal bovine
serum, 2 mM glutamine and 100 UmL~! penicillin, 100 ugmL~! streptomycin.
For the hypoxic experiments, 3.5 x 10° cells in 6 cm plate were plated under
normoxia conditions. Twenty-four hours after, half of the plates were moved in a
humidified Whitley H35 Hypoxistation chamber (Don Whitley Scientific, Shipley,
UK) at 37 °C with 1% O,, 5% CO,, and 94% N, for additional 38 h, another half
were incubated under 21% for the same time period.

Sample preparation. To extract metabolites and lipids from serum samples, we
mixed 20 pL of serum with an extraction solution for metabolomics analysis

and 10 L for lipidomics in 96-deep well plates. For lipidomics analysis, we utilized
100 pL of 2-propanol/methanol (6:1, v/v; slightly modified method?#); and for
metabolomics analysis, 100 puL. of methanol/acetonitrile/water (5:3:1, v/v/v). After
10 min of vortexing, 800 rpm, precipitated proteins were separated by centrifuga-
tion for 20 min at 4 °C and 4000 rcf; supernatants were stored at —80 °C prior the
analysis (Supplementary Fig. 13).

To extract metabolites from cancer cells, the previously published protocol3”
was employed. Metabolite extraction from media was obtained by mixing 50 uL of
culture media with 200 pL of methanol/acetonitrile (5:3, v/v) solution, prechilled at
—20°C. For the measurement of intracellular metabolites, cells were washed with
2 mL of ice-cold PBS twice on ice. The cells were extracted quickly in 5 mL volume
of methanol/acetonitrile/water (50:30:20, v/v/v) solution at —20 °C on dry ice by
scraping. All of the metabolite samples were stored at —80 °C for at least 2 h.
Protein free metabolite extractions were prepared by spinning the samples
at 20,000 g for 20 min at 4 °C twice. Samples were subsequently analyzed using
FI-MS.

Flow-injection mass spectrometry. The analysis was performed using a Q
Exactive Hybrid Quadrupole Orbitrap high-resolution mass spectrometer with an
ESI source (Thermo Fisher Scientific, Inc., USA). Samples were taken from an
autosampler and directly injected to the mass spectrometer via an HPLC system
(Ultimate 3000 Dionex LC system, Thermo Fisher Scientific, Inc., USA). All
method files were written and executed via Thermo Xcalibur 4.0 software (Thermo
Fisher Scientific, Inc., USA).

One stainless steel capillary (d—130 pm, I—900 mm) was used for the
connection of the LC system’s sample injection unit (injection volume—>5 uL) with
ionization source of mass spectrometer. A gradient of flow rate (Optimization of
gradient see below, Supplementary Fig. 14) was employed: after a linear decrease
from 0.8 to 0.075 mL min~! for 0.02 min constant flow rate of 0.075 mL min~! for
0.31 min was used for the analysis. For the washing of the system, a flow rate of
1.2 mL min~! was applied from 0.34 to 0.44 min followed by re-equilibration to the
starting condition resulting in a total run time of 0.45 min per sample. The mobile
phase consisting of 2-propanol/water (50:50, v/v) buffered with 10 mM ammonium
carbonate at pH 9 for metabolomics samples and 2-propanol/water (90:10, v/v)

buffered with 10 mM ammonium carbonate at pH 9 for lipidomics samples. Mass
spectra were recorded from 0.07 to 0.32 min with 3 micro scans, the AGC target
value—>5 x 106 and resolution—70,000. Eight scans in negative ionization mode
followed by eight scans in positive ionization mode were used for the analysis of
one sample within 15 s of total scanning time (Supplementary Fig. 15). Gases flow
rates in the ionization source were optimized during the preparation of mass
spectrometric analysis. Due to highly different flow rates during sample
examination, two different tune files were employed in order to prevent the
ionization source from getting wet: 10 units of auxiliary gas and 40 units of sheath
gas before injection and after 0.33 min of analysis, and with 0 units of auxiliary gas
and 10 and 15 units of sheath gas for lipidomics and metabolomics samples,
respectively, from injection of sample and to 0.33 min of analysis. Capillary
temperature was set to 350 °C for metabolomics samples and 400 °C for lipidomics
samples. Spray voltage was set to ESI (—)—3.30kV, ESI (—)—3.80kV and ESI
(=/4)—3.75kV for metabolomics and lipidomics analysis, respectively. The duty
time of the entire method (i.e., time between consecutive injections) is ~30s.

For all FI-MS experiments requiring more than eight scan ranges, we applied
the above method consecutively while splitting the set of desired ranges to groups
of eight or less scans each. Performing more than 16 scans (8 in positive and 8 in
negative ionization models) with a single injection would require a flow rate lower
than 75 pL min~1, which decreases the TIC and the overall sensitivity. For example,
to determine the distribution of reproducible m/z features in the range from 70 to
2500 m/z, based on 122 scan ranges of size 20 (with 4 m/z overlap between
consecutive ranges), we repeatedly applied the above FI-MS method 16 times, each
with a different set of 8 scan ranges.

Optimization of FI-MS gradient of glow rate. We aimed to derive a flow-
injection method with stable TIC for 16 s a minimal total cycle time; 16 s are
sufficient for eight scans in negative and eight in positive ionization models, with a
resolution of 70,000, each scan with 3 micro scans (using a Q Exactive Orbitrap
MS). To estimate the system dead volume (eluent volume ~65 pL) and washing
volume (solvent volume ~250 pL required for washing of the system after injec-
tion), we performed measurements of metabolomics extract in isocratic elution
mode with flow rate of 75 uL min~! (Supplementary Fig. 14a). Dead volume and
washing volume typically depend on type of connectors between LC injection
port and ESI source (in our case, with a single stainless steel capillary: d—130 pm,
[—900 mm).

To minimize the total cycle time, we utilize a maximal possible flow rate of
1.2 mL min~! for washing of the system after completing MS scanning. Drastic
changes in eluent flow rates require changing the flow rate of sheath and auxiliary
gases (high gas flow rates is needed for evaporating eluent when its flow rate is
high; low gas flows are needed for stable TIC scanning when eluent flow rate is
low). Toward this end, we configure two mass spectrometer tune files, switching to
low gas flow rates (0 units—auxiliary, 10 and 15 units—sheath for lipidomics and
metabolomics analysis, respectively) a time 0 min, and then to high gas flow rates
(10 units—auxiliary, 40 units—sheath) in 0.32 min (Supplementary Fig. 14b). After
switching to low gas flow rates at 0 min, the system requires 0.08 min to stabilize
flow rates; and hence we start MS scanning after 0.08 min.

The final flow rate gradients for the 0.45 min method were determined based on
the dead and wash volumes and time required for gases equilibration
(Supplementary Fig. 14c). Applied to analyze a serum sample, TIC remain stable
within 16 s (after the initial eluent and gases equilibration 0.08 min stage;
Supplementary Fig. 14d).

Investigating ion suppression and ion competition effects. We aimed to assess
the extent of ion suppression in the ESI source versus ion competition in the
Orbitrap detection system, as a mean to evaluate the potential of spectral stitching
to improve the sensitivity of FI-MS analysis. Toward this end, we evaluated the ion
suppression and competition effects by injecting metabolite extracts from a serum
sample, while gradually inducing the ion flow by adding increasing concentrations
of different compounds: 10-250 pM SDS, TC, and MRFA peptide; 10-1500 uM
caffeine; 10-3000 uM B-NAD. SDS and TC were used for investigation of ion
suppression and competition effects in negative ionization mode (in both FI-MS-
based metabolomics and lipidomics analysis) and caffeine, MRFA and NAD in
positive ionization mode (in FI-MS-based metabolomics analysis; Supplementary
Figs. 1 and 2).

For each of the above compounds, we performed a series of FI-MS runs while
gradually increasing its concentration in the analyte (considering 8-11
concentrations per compound within the ranges specified above; with six repeated
injections of the analyte for each concentration), configuring a 20 m/z scan range
which excludes this compound and an overlapping 24 m/z scan range that includes
it. We repeated the experiment twice: once, with both the 20 m/z and 24 m/z scan
ranges starting at the m/z of the ion of added compound minus 22 #/z units; and
once, when the 20 m/z and 24 m/z ranges end at the m/z of the ion of added
compound m/z plus 22 m/z units (see Supplementary Fig. 3). The effect of ion
suppression in the ESI was assessed based on the drop in the number of
reproducibly detected #1/z features in the 20 m/z scan range (which excludes the m/
z signal of the added compound) as higher and higher concentrations of the
compound were added to the analyte; for every concentration of the added
compound, the set of reproducibly detected m/z features was determined based on
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the six repeated injections as defined below. The total effect of ion competition in
the detection system and ion suppression in ionization source was assessed based
on the drop in the number of detected m/z features when configuring a 24 m/z
range (that includes the m/z signal of the added compound; considering only m/z
features within the smaller 20 m/z interval without the added compound).

Liquid chromatography mass spectrometry. Chromatographic separation for
polar metabolites was achieved on a SeQuant ZIC-pHILIC column (2.1 x 150 mm,
5 um, EMD Millipore) for polar metabolites. Flow rate was set to 0.2 mL min~1,
column compartment was set to 30 °C, and autosampler tray maintained 4 °C.
Mobile phase A consisted of 20 mM ammonium carbonate and 0.01% (v/v)
ammonium hydroxide. Mobile Phase B was 100% acetonitrile. The mobile phase
linear gradient (%B) was as follows: 0 min 80%, 15.0 min 20%, 15.1 min 80%, 23.0
min 80%. A mobile phase was introduced to Thermo Q Exactive mass spectrometer
with an ESI source working in polarity switching mode. Ionization source para-
meters were following: sheath gas 25 units, auxiliary gas 3 units, spray voltage 3.3
and 3.8kV in negative and positive ionization mode, respectively, capillary tem-
perature 325 °C, S-lens RF level 65, auxiliary gas temperature 200 °C. Metabolites
were analyzed in the range 72-1080 m/z.

For nonpolar metabolites, a Kinetex reversed phase C18 column (3 x 150 mm,
2.6 um, Phenomenex) was used. Flow rate was set to 0.5 mL min—!, column
compartment temperature controlled at 65 °C, and autosampler tray maintained
10 °C. Mobile phase A consisted of 10 mM ammonium formate in acetonitrile/
water (60:40, v/v) solution; mobile phase B consisted of 10 mM ammonium
formate in 2-propanol/acetonitrile/water (90:8:2, v/v/v) solution. For separation,
the following multi-step gradient (%B) was used: 0 min 15%, 2.0 min 30%, 2.5 min
48%, 11.0 min 82%, 11.5 min 99%, 20 min 99%, 20.1 min 15%. Total analysis time
25 min. Eluent was analyzed by Thermo Q Exactive mass spectrometer with an ESI
source working in polarity switching mode. Ionization source parameters were
following: sheath gas 50 units, auxiliary gas 15 units, spray voltage 3.5, and 3.3kV
in negative and positive ionization mode, respectively, capillary temperature
350 °C, S-lens RF level 70, auxiliary gas temperature 350 °C. Metabolites were
analyzed in the range 150-2000 m/z. Metabolite retention times were determined
by analyzing pure chemical standards, for analysis of LC-MS data MAVEN??

6.2 software was used.

Data processing and analysis of reproducible m/z features. To determine the
number of reproducibly detected m/z features by a specific FI-MS method con-
figuration, we performed six repeated injections of the biological sample from the
same vial followed by the injection of six blank samples (i.e., sample preparation
protocol applied to a water sample) and analyzed the measured data as following:
we converted raw mass spectrometer measurement files to mzXML using Pro-
teoWizard3®. Then mzXML files were loaded and further analyzed using Matlab
2017b (The MathWorks, Inc., USA); all code was made publicly available as a
GitHub repository at https://github.com/shovall/FlowInjectionMSOptimization. m/
z signals of all 12 injections were grouped based on a tolerance of 5 ppm. Then,
reproducible m/z features were identified based on the following criteria (in
accordance with previous studies!437-38): (1) observed in 90% of the biological
sample injections; (2) the median intensity of the biological sample injections is
above 1000 units; (3) signal-to-noise ratio above 4; i.e., the median intensity in the
biological sample injections divided by the maximal intensity of the blank injec-
tions. (4) RSD across the biological sample injections lower than 30%. The
annotation of the reproducible m/z features was done using publicly available
databases, LMSD?® for lipidomics analysis, and HMDB?> for metabolomics ana-
lysis. The annotation process was based on accurate mass considering [M + H]*
and [M — H]~ adducts, accounting for a tolerance of 5 ppm. The mass accuracy
was measured based on injection of internal standards (Supplementary Table 5).

A method for finding optimized scan ranges. Given an m/z interval of interest,
denoted [a, ], we run FI-MS analysis while configuring the quadrupole to sepa-
rately pass ions within a series of consecutive 20 m/z scan ranges, altogether
covering the entire scan range (i.e., ’32;00‘ scan ranges; performing six repeated
measurements of each scan range). The reproducible features in each 20 m/z scan
range are determined as described above. We denote by X; the number of repro-
ducible features found in the scan range [i, i + 1], and by C; the cumulative number
of reproducible features in the scan range [a, 1], computed by C; = ZJ':;XJ We
aim to determine the boundaries of n scan ranges with an equal number of
reproducible m/z features, denoting the j'th range by [r,_;, 7], where ro=a and

r,= . For every j2 1 and j<n, we set: r; = min({i| C; >]%)

Amino acids and lipids measurements in serum samples. We applied LC-MS
and FI-MS to quantify the absolute concentration of nine amino acids (alanine,
asparagine, aspartic acid, valine, lysine, phenylalanine, proline, tryptophan, and
tyrosine) in Human AB Serum (Biological Industries USA, Inc., USA). We ana-
lyzed metabolite extracts with increasing concentrations of internal standards for
all amino acids (see Supplementary Table 2a) using LC-MS and FI-MS, calculating
absolute concentrations via the standard addition method; using linear regression
to fit the measured intensities with the added metabolite concentrations and

extrapolating to the point of zero intensity (calculating a 95% confidence intervals).
We utilized the LC-MS method with chromatographic separation for polar
metabolites, as described above; and FI-MS-based metabolomics.

We applied LC-MS and FI-MS to quantify the concentration of two lipids (18:1
lyso phosphocholine and 18:1 lyso phosphoethanolamine) in the same commercial
serum sample. We analyzed metabolite extracts with increasing concentrations of
stable isotopic standards of these compounds with LC-MS and FI-MS and
quantified the absolute concentrations via internal calibration curves
(Supplementary Table 2b). We utilized the LC-MS method with chromatographic
separation for nonpolar metabolites, as described above; and FI-MS-based
lipidomics.

FI-MS analysis of 98 serum samples of healthy individuals. We analyzed

98 serum samples from healthy individuals using our optimized ranges FI-MS
method metabolomics method, uniform ranges FI-MS, and single range FI-MS.
Samples were obtained from the Israeli Midgam Biobank (IRB: 0481-18-RMB).
Sample preparation for metabolomics analysis was performed as described above;
adding a mix of internal standards to the extraction solution, enabling to infer MS
mass accuracy (UM of 13C;,-tryptophan (MW—215 Da), 0.5 uM of puromycin
dihydrochloride (MW—471 Da), and kiton red 620 (MW—580 Da)); inferred mass
accuracy was used for metabolite annotation. Quality control (QC) samples were
prepared by mixing 20 uL aliquots from each sample. A QC sample was injected
every 5th serum sample and a blank sample every 10th serum sample. Every sample
was injected four times, resulting in a total of 600 injections for each of the
metabolomics methods (including blank and QC sample injections).

Gender prediction via data obtained with FI-MS methods. We aimed to
reproduce an analysis of gender prediction performed with LC-MS-based meta-
bolomics analysis of serum samples?, using our and current FI-MS methods.
Reproducibly detected m/z features were identified based on repeated analysis of
the QC samples. Gender prediction was performed using a random forest model,
consisting of 100 decision trees>® constructed using the identified significant m/z
features. Model accuracy was calculated based on out-of-bag observations.

Clustering ions associated with distinct metabolites. For measurements per-
formed with each of the three FI-MS methods (our optimized ranges FI-MS,
uniform ranges FI-MS, and single range FI-MS), we clustered the set of identified
m/z features based on a high correlation in the measured intensity profiles across
the 98 analyzed samples. This was done using a greedy approach: starting with a set
of reproducibly detected m/z features by the FI-MS method (determined based on
repeated FI-MS analyses of QC samples) and an empty set of clusters, and then
iterating over the set of m/z features and adding them to either an existing or a new
cluster. An m/z feature is added to an existing cluster in case the Pearson corre-
lation between its intensity profile across samples and the intensity profile of an m/
z feature in the cluster is above a predefined threshold; alternatively, the m/z feature
is added to a new cluster.

Considering a threshold of a minimal Pearson correlation of 0.95, the derived
m/z feature clusters were indeed enriched with different isotopic forms and adducts
of the same metabolite; in both positive and negative ionization modes, the most
frequent difference in m/z values between features in a cluster is 1.003 m/z due to
the natural abundance of 13C and; and in positive ionization mode, a frequent
difference in m/z values between features in the same cluster is 21.985 m/z for
adduct [M + Na]*; and 18.010 m/z in negative mode for adduct [M — H,O — H] .

DDA FI-MS analysis of serum samples. We performed FI-MS analysis with DDA
MS/MS mode on Human AB Serum (Biological Industries USA, Inc., USA),
splitting the m/z interval from 70 to 990 m/z to 13 ranges of 80 m/z width. For each
range, we performed a separate FI-MS analysis, once in negative and once in
positive ionization modes (using the same injection volume, flow gradients, and
MS ionization source parameters as described in the paper for our optimized
ranges FI-MS method). Carrying out a longer injection with ESI by slowing down
the flow rate would lower the sensitivity of the method and damage reproducibility.

MS$? data were obtained for a total of 36 and 47 precursor ions in negative and
positive ionization modes respectively (with at least a single ion in the MS? spectra
with an intensity > 10,000). Annotation of precursor ions was performed based on
a match with publicly available METLIN MS? spectra (using the online fragment
similarity search tool) for polar compounds, and LMSD bulk Structure Search and
LMSD Product ion calculation tool for prediction of MS/MS fragments for
nonpolar compounds. Utilizing METLIN MS? spectra, we annotated 22 polar
precursor ions, 20 with a unique hit (with a match in 1-4 collisional fragments)
and 2 with 2 possible hits due to isomers. Using LMSD, we annotated another 61
nonpolar compounds (Supplementary data 5).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability

The metabolomics data generated and analyzed in this study is available in Metabolomics
Workbench with the identifier ST001380 [https://doi.org/10.21228/M8P41V]. The source
data underlying Figs. 1b-i, 2b-f, 3, and 4 and Supplementary Figs. 1, 2, 5-12, and 14a, b,
d are provided as a Source Data file. All other data are available from the corresponding
author on reasonable request. The Human Metabolome Database (HMDB)2% and LIPID
MAPS Structure Database (LMSD)?® were obtained from https://hmdb.ca/ and https://
www.lipidmaps.org/, respectively. Source data are provided with this paper.

Code availability
All code is publicly available as a GitHub repository at https://github.com/shovall/
FlowInjectionMSOptimization Source data are provided with this paper.
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