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Synergism between IL7R and CXCR4 drives
BCR-ABL induced transformation in Philadelphia
chromosome-positive acute lymphoblastic
leukemia
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Gunnar Cario2, Martin Schrappe2, Markus Müschen 3, Christina Halsey 4, Medhanie A. Mulaw 5,

Denis M. Schewe 2, Elias Hobeika1, Ameera Alsadeq 1,6 & Hassan Jumaa 1,6✉

Ph+ acute lymphoblastic leukemia (ALL) is characterized by the expression of an oncogenic

fusion kinase termed BCR-ABL1. Here, we show that interleukin 7 receptor (IL7R) interacts

with the chemokine receptor CXCR4 to recruit BCR-ABL1 and JAK kinases in close proximity.

Treatment with BCR-ABL1 kinase inhibitors results in elevated expression of IL7R which

enables the survival of transformed cells when IL7 was added together with the kinase

inhibitors. Importantly, treatment with anti-IL7R antibodies prevents leukemia development in

xenotransplantation models using patient-derived Ph+ALL cells. Our results suggest that the

association between IL7R and CXCR4 serves as molecular platform for BCR-ABL1-induced

transformation and development of Ph+ALL. Targeting this platform with anti-IL7R antibody

eliminates Ph+ALL cells including those with resistance to commonly used ABL1 kinase

inhibitors. Thus, anti-IL7R antibodies may provide alternative treatment options for ALL in

general and may suppress incurable drug-resistant leukemia forms.

https://doi.org/10.1038/s41467-020-16927-w OPEN

1 Institute of Immunology, Ulm University Medical Center, 89081 Ulm, Germany. 2 Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts
University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany. 3 Department of Systems Biology and City of Hope Comprehensive Cancer
Center, Monrovia, CA, USA. 4 Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. 5 Institute
of Experimental Cancer Research, Medical Faculty, University of Ulm, Ulm, Germany. 6These authors contributed equally: Ameera Alsadeq, Hassan Jumaa.
✉email: hassan.jumaa@uni-ulm.de

NATURE COMMUNICATIONS |         (2020) 11:3194 | https://doi.org/10.1038/s41467-020-16927-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16927-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16927-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16927-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16927-w&domain=pdf
http://orcid.org/0000-0002-6035-2265
http://orcid.org/0000-0002-6035-2265
http://orcid.org/0000-0002-6035-2265
http://orcid.org/0000-0002-6035-2265
http://orcid.org/0000-0002-6035-2265
http://orcid.org/0000-0002-6064-8613
http://orcid.org/0000-0002-6064-8613
http://orcid.org/0000-0002-6064-8613
http://orcid.org/0000-0002-6064-8613
http://orcid.org/0000-0002-6064-8613
http://orcid.org/0000-0001-5449-5246
http://orcid.org/0000-0001-5449-5246
http://orcid.org/0000-0001-5449-5246
http://orcid.org/0000-0001-5449-5246
http://orcid.org/0000-0001-5449-5246
http://orcid.org/0000-0002-2501-6952
http://orcid.org/0000-0002-2501-6952
http://orcid.org/0000-0002-2501-6952
http://orcid.org/0000-0002-2501-6952
http://orcid.org/0000-0002-2501-6952
http://orcid.org/0000-0002-1070-0217
http://orcid.org/0000-0002-1070-0217
http://orcid.org/0000-0002-1070-0217
http://orcid.org/0000-0002-1070-0217
http://orcid.org/0000-0002-1070-0217
http://orcid.org/0000-0003-0568-9890
http://orcid.org/0000-0003-0568-9890
http://orcid.org/0000-0003-0568-9890
http://orcid.org/0000-0003-0568-9890
http://orcid.org/0000-0003-0568-9890
http://orcid.org/0000-0003-3383-141X
http://orcid.org/0000-0003-3383-141X
http://orcid.org/0000-0003-3383-141X
http://orcid.org/0000-0003-3383-141X
http://orcid.org/0000-0003-3383-141X
mailto:hassan.jumaa@uni-ulm.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The Philadelphia chromosome (Ph) is the most frequent
abnormality among adults with acute lymphoblastic leu-
kemia (ALL) (25–30%) and results in BCR-ABL1 fusion

gene1. Furthermore, 3–5% of children harbor this translocation
which is associated with a poor prognosis2,3. As this oncogene
confers constitutive kinase activity, addition of tyrosine kinase
inhibitors (TKIs) such as imatinib mesylate to intensive che-
motherapy has improved the outcome of BCR-ABL1-positive
leukemia to a 5-year disease-free survival rate in children (70 ±
12%, n= 28)3. Nevertheless, Ph+ ALL patients still suffer from
poor prognosis in both children and adults as relapse frequently
occurs after stem cell transplantation. A deep understanding of
the molecular mechanisms which are associated with BCR-ABL1
transformation is of high importance in order to provide better
treatment for these patients and to overcome TKI-resistance.
Recently, our group has shown that interleukin 7 receptor (IL7R)
is widely expressed in B cell precursor-ALL (BCP-ALL), and that
high expression levels of IL7R are correlated with central nervous
system involvement (CNS) and may predict CNS-relapse4.

The cytokine IL7 binds to IL7Rα chain that hetero-dimerizes
with the common gamma chain (γc) to form the IL7 receptor and
induces the kinase activity of JAK1/JAK35. Alternatively, the
IL7Rα chain hetero-dimerizes with the cytokine receptor-like
factor 2 (CRLF2) to form the thymic stromal lymphopoietin
receptor and mediate activation of JAK1/JAK26. The constitutive
expression of IL7R7,8 in ALL together with the high frequency of
mutations affecting IL7R signaling point to a key role of IL7R in
disease pathogenesis9–11. Thus, investigating the regulation of
IL7R function is important for understanding its role in the
pathogenesis of ALL. Moreover, characterizing the molecular
interaction of IL7R might provide crucial insights into the
mechanisms of malignant transformation.

Available data suggest that IL7R expression is controlled by the
Forkhead box transcription factor 1 (FOXO1) in lymphocytes12.
Importantly, FOXO1 is essential during early B cell development
and its activity is negatively regulated by phosphatidylinositol-3-
kinase (PI3K) signaling13. Therefore, FOXO1 function depends
on the lipid phosphatase PTEN (phosphatase and tensin homo-
log) which counteracts PI3K function14.

The C-X-C chemokine receptor 4 (CXCR4) is a G-protein-
coupled receptor which is widely expressed on hematopoietic
stem cells and hematopoietic cancers. Together with its ligand
CXCL12 (also known as stromal-derived factor 1), CXCR4 plays
an important role in tumorigenesis by regulating survival,
migration, homing, and interaction of leukemia cells with their
microenvironment15. High CXCR4 protein expression is corre-
lated with an increased risk of relapse and poor outcome in
pediatric ALL patients16. Interestingly, CXCL12 was initially
identified as a soluble factor that collaborates with IL7 to activate
the proliferation of progenitor B cells17,18.

In this study we have investigated the molecular mechanisms,
which are regulated by the oncogenic kinase BCR-ABL1 and are
required for malignant transformation or for rescue from kinase
inhibitor treatment. We show that IL7R and CXCR4 interact on
the cell surface and that both are crucial for malignant trans-
formation of early B cells by BCR-ABL1. Importantly, we show
that anti-IL7R antibody can efficiently eliminate inhibitor-
resistant Ph+ patient ALL in preclinical xenograft model.

Results
BCR-ABL1 alters IL7R and CXCR4 regulated genes expression.
To better understand the molecular mechanisms regulating BCR-
ABL1-induced transformation and the development of Ph+ ALL,
we performed RNA-sequencing (RNA-Seq) and compared tran-
scriptome profile of transformed cells with wildtype (WT) pre-B

cells. To this end, six individually generated control WT pre-B
cell lines and six BCR-ABL1-transformed pre-B cell counterparts
were analyzed. Global transcription profile based principal com-
ponent analysis (PCA) showed clear segregation of WT and BCR-
ABL1-transformed cells (cumulative explained variance= 86.1%;
Supplementary Fig. 1a). Gene Ontology (GO) analysis for bio-
logical processes was performed and genes which were differen-
tially regulated between the two groups were further investigated,
particularly genes related to lymphocyte activation, proliferation,
and migration (Fig. 1a and Supplementary Data 1). The analysis
showed a differential regulation in multiple signaling pathways
related to IL7R signaling (Fig. 1a and Supplementary Fig. 1b). To
assess the importance of IL7R signaling related pathways and
processes in BCR-ABL1, we performed Gene Set Enrichment
Analysis (GSEA) on IL7R related KEGG and REACTOME
MSigDB gene sets (Broad Institute, Inc., Massachusetts Institute
of Technology (MIT), and Regents of the University of Cali-
fornia). Of the eight gene sets analyzed, five showed statistically
significant upregulation in BCR-ABL1 as compared with control
samples (false discovery rate (FDR) < 0.25; Fig. 1b, Supplemen-
tary Fig. 1b, and Supplementary Table 1). Interestingly, genes
involved in JAK/STAT signaling, signaling by interleukins, and
cytokine signaling were among the most significantly altered gene
sets (Fig. 1b and Supplementary Fig. 1b). CXCR4 pathway,
though not statistically significant, showed positive correlation to
the BCR-ABL1-transformed samples (Supplementary Fig. 2). In
addition, the expression of several cytokine signaling regulators
such as the transcription repressor Bcl6 as well as several phos-
phatases including Ptpn6, Ptpn22, and Dusp10 were deregulated
by BCR-ABL1 (Fig. 1a). In this work, we focused on the role of
IL7R and CXCR4.

IL7 rescues BCR-ABL1+ cells from inhibitor treatment. Our
data suggest that the signaling pathways of IL7R and CXCR4 are
tightly regulated by the activity of the oncogenic kinase BCR-
ABL1 and therefore we hypothesized that they might be directly
involved in malignant transformation. To test whether the
expression of IL7R and CXCR4 is also correlated in primary ALL,
we analyzed a cohort of 68 Ph+ BCP-ALL patients (patients’
characteristics are given in Supplementary Table 2) and found
significant correlation of IL7R and CXCR4 gene expression
(Spearman r= 0.6264; p < 0.0001; Fig. 2a), suggesting that our
sequence analysis of BCR-ABL1-transformed pre-B cells is in
accordance with in vivo condition. In addition, searching in a
mixed leukemia gene expression study19 using the R2 database
(http://r2.amc.nl) showed that IL7R and CXCR4 are expressed at
reduced levels in BCR-ABL+ ALL (t9; 22) in comparison with
other BCP-ALL entities (Supplementary Fig. 3a and Supple-
mentary Table 3). Similar results were also observed in RNA-seq
dataset of 1223 BCP-ALL patients20 (Supplementary Fig. 3b and
Supplementary Table 3).

Interestingly, the inhibition of BCR-ABL1 kinase by imatinib
treatment resulted in an upregulated expression of both the
chemokine receptor CXCR4 and the IL7R together with down-
stream signaling elements such as Jak1 and Stat5a (Fig. 2b, c, and
Supplementary Fig. 4a). To test whether the upregulation of IL7R
or CXCR4 expression upon BCR-ABL1 kinase inhibition affects
the survival of BCR-ABL1-transformed cells, we investigated
imatinib-induced cell death in the presence of the respective
cytokine/chemokine. We found that treatment with IL7 counter-
acted imatinib-induced cell death and restored the cell cycle
progression (Fig. 2d and Supplementary Fig. 4b). However,
treatment with CXCL12, the ligand for CXCR4, or its antagonist
AMD3100 did not affect imatinib treatment (Fig. 2e and
Supplementary Fig. 4b, c). Likewise, treatment with TSLP, the
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ligand for CRLF2, was also unable to rescue BCR-ABL1-
transformed cells from inhibitor-induced cell death (Supplemen-
tary Fig. 4c). Interestingly, human Ph+ ALL SUP-15 cells also
upregulated IL7R and CXCR4 in response to imatinib treatment
(Supplementary Fig. 4d). Together, these data suggest that Ph+

ALL cells upregulate growth factor receptors including IL7R
which might enable the survival of Ph+ cells in microenviron-
ments containing IL7 despite ABL1 kinase inhibitor treatment.

BCR-ABL1 transformation requires IL7R expression. The
upregulation of IL7R under imatinib treatment raised the ques-
tion whether IL7R expression is required for BCR-ABL1 induced
pre-B cell transformation and ALL development. Therefore, we
generated BCR-ABL1-transformed BM-derived pre-B cells from
mice homozygous for loxP-flanked Il7rα alleles (Il7rαfl/fl)21.
Usually, pre-B cells proliferate in the presence of growth factors
such as IL7. However, the expression of BCR-ABL1 results in
growth factor-independent proliferation in the absence of IL7
(Fig. 3a, b). For inducible deletion of the Il7rα gene, we intro-
duced a tamoxifen (Tam)-inducible Cre (Cre-ERT2) into the
BCR-ABL1-transformed Il7rαfl/fl cells. Inducible deletion of the
Il7rα gene led to cell death of the BCR-ABL1-transformed pre-B
cells (Fig. 3c–e). To determine the role of IL7R expression in vivo,
we injected BCR-ABL1-transformed Il7rαfl/fl pre-B cells into

NOD-SCID immunodeficient recipient mice. Il7r deletion by
Tam treatment in vivo reduced leukemic cell burden and sig-
nificantly prolonged the survival of xenograft mice injected with
BCR-ABL1-transformed cells (Fig. 3f, g). In support of these
results, BM-derived cells from Il7rα-deficient mice22 did not give
rise to BCR-ABL1-transformed pre-B cells, while BCR-ABL1-
transformed myeloid cells (CD11b+) can readily be generated
from the same cells (Supplementary Fig. 5). Together, our data
suggest that IL7R expression is specifically required for the
initiation and the maintenance of pre-B cell transformation and
ALL development.

IL7R synergizes with CXCR4 for BCR-ABL1+ transformation.
Since CXCR4 regulated genes were also altered, we tested whether
CXCR4 is also required for BCR-ABL1-induced transformation.
Therefore, we generated BCR-ABL1-transformed pre-B cells from
mice homozygous for Cxcr4 loxP-flanked alleles23 (Cxcr4fl/fl).
Deleting Cxcr4 in these cells using Cre-ERT2 resulted in rapid cell
death and inability of BCR-ABL1 cells to form colonies in vitro
(Supplementary Fig. 6).

Since BCR-ABL1 was reported to be involved in crosstalk with
CXCR424, we investigated whether the requirement for IL7R and
CXCR4 in BCR-ABL1-induced transformation is mediated by
spatial receptor colocalization. We first examined the effect of
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BCR-ABL1 recruitment on CXCR4-mediated Ca2+ mobiliza-
tion25. Therefore, the CXCL12-induced Ca2+ flux in WT as
compared with BCR-ABL1-transformed cells was tested. While
WT cells showed a negligible CXCL12-induced Ca2+ flux, BCR-
ABL1-transformed cells showed a robust Ca2+ response (Fig. 4a).
Inhibiting the BCR-ABL1 kinase activity by either imatinib or
dasatinib blocked the CXCL12-induced Ca2+ response with
dasatinib showing an effective inhibition at much lower
concentrations than imatinib, which is most likely caused by
the additional effect of dasatinib on Src kinases26 (Fig. 4a).
Importantly, inducible deletion of Cxcr4 in BCR-ABL1-
transformed cells or treating them with AMD3100, an antagonist
of CXCL12, prevented the Ca2+ response (Supplementary Fig. 7a).
These data are in full agreement with the view that BCR-ABL1 is
recruited to CXCR4 and can be activated by the respective ligand
CXCL12.

Interestingly, the Cxcr4-deficient pre-B cells showed an
increased differentiation capacity as measured by the elevated
ratio of cells expressing the immunoglobulin kappa light chain
(Supplementary Fig. 7b). These data suggest that CXCR4
cooperates with IL7R in preventing pre-B cell differentiation27.
Similarly, IL7R seems to act together with CXCR4 in directing cell
migration, as both Cxcr4-defcient and Il7r-defcient BCR-ABL1-
transformed cells show an impaired migration towards a CXCL12
gradient (Supplementary Fig. 7c).

To study further how IL7R and CXCR4 act synergistically
to regulate pre-B cell differentiation and proliferation, we

investigated the interaction between IL7R and CXCR4 by
proximity ligation assay (PLA). Adjacent binding of the ligands
IL7 (7 kD) and CXCL12 (15 kD) suggests that the corresponding
receptors are localized on the cell surface at a proximity below
10 nm in precursor B cells (Fig. 4b and Supplementary Fig. 8a).
Interestingly, BCR-ABL1-transformed pre-B cells show an
increased number of IL7R/CXCR4 foci as compared with
untransformed WT pre-B cells (Fig. 4c and Supplementary
Fig. 8b). This association is also detected in human BCR-ABL+

pre-B ALL cells (Supplementary Fig. 8c). The interaction between
CXCR4/IL7R and BCR-ABL was further confirmed by immuno-
precipitation (Supplementary Fig. 8d). Together, these findings
suggest that the interaction between IL7R and CXCR4 is
increased in BCR-ABL1-transformed pre-B cells. Hence, we
postulated that this interaction recruits IL7R-associated signaling
proteins into close proximity to CXCR4 thereby enabling
activation by BCR-ABL1 which then leads to pre-B cell
transformation. To directly test this hypothesis, we investigated
the association of JAK3 with CXCR4 in BCR-ABL1-transformed
cells as compared with WT control. Usually, JAK3 is associated
with the γc subunit of IL7R but not with CXCR4. In fact,
CXCL12/CXCR4 signaling was shown to be independent of
JAK328. Interestingly, a significant IL7R-dependent increase in
JAK3 association with CXCR4 was observed in BCR-ABL1-
transformed pre-B cells (Fig. 4d). Similarly, an IL7R-dependent
association of CXCR4 with pJAK3 was observed in BCR-ABL1-
transformed cells (Supplementary Fig. 8e). In contrast, the
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association between IL7R and JAK3 showed no significant change
suggesting that BCR-ABL1-induced transformation has no effect
on IL7R interaction with its downstream signaling elements
(Supplementary Fig. 8f).

As expected, JAK kinases show increased phosphorylation in
BCR-ABL1-transformed cells and imatinib treatment reduces this
phosphorylation (Fig. 4e). In full agreement with the hypothesis
that the interaction between CXCR4 and IL7R enables CXCR4 to
utilize the downstream signaling machinery of IL7R, inducible
inactivation of either IL7R or CXCR4 expression results in
decreased activity of JAK1, JAK2, and JAK3 as shown by their
reduced phosphorylation (Fig. 4e).

Together, these data suggest that BCR-ABL1 interaction with
CXCR4 recruits this oncogene into the proximity of IL7R-
associated JAK kinases thereby enabling their BCR-ABL1-
mediated activation and pre-B cell transformation.

BCR-ABL1 controls IL7R expression by regulating FOXO1.
Activated JAK kinases phosphorylate the cytoplasmic domain of
cytokine receptors at specific tyrosine residues leading to the
recruitment and subsequent activation of signal transducer and
activator of transcription (STAT) proteins. Phosphorylated
STATs undergo dimerization and translocate to the nucleus

where they activate target genes involved in proliferation and
survival of lymphocytes29. As expected, increased STAT5 phos-
phorylation was detected in BCR-ABL1-transformed cells and
ABL1 kinase activity was required for this increase (Fig. 5a). Since
STAT5 is activated by IL7R signaling30, and also by BCR-ABL1,
we postulated that activated STAT5 might control IL7R expres-
sion in a negative feedback loop that prevents deregulated IL7R
expression. The transcription factor FOXO1 was shown to reg-
ulate the expression of IL7R12 as well as CXCR431,32. The fact
that STAT5 activates PI3K signaling33 which in turn suppresses
FOXO1 transcriptional activity by phosphorylation of specific S/T
sites, suggests that STAT5 activation can lead to increased
FOXO1 phosphorylation and subsequent downregulation of
IL7Rα expression. Indeed, imatinib treatment of BCR-ABL1-
transformed pre-B cells resulted in decreased FOXO1 phos-
phorylation (Fig. 5a). Moreover, introducing a constitutively
active STAT5 version (STAT5-CA)34 into pre-B cells resulted in
FOXO1 inactivation, as measured by increased S256 phosphor-
ylation, and decreased IL7Rα expression (Fig. 5b, c). In full
agreement of transcriptional repression, reverse transcriptase
PCR experiments revealed that Il7rα transcripts were almost
missing in STAT5-CA expressing cells (Fig. 5d). Interestingly, the
reduced IL7R expression was associated with loss of the cells
expressing STAT5-CA (Fig. 5e). These findings suggest that
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STAT5 regulates IL7R expression in a negative feed-backloop and
that fine-tuned STAT5 activity in transformed cells is important
to induce cell proliferation and, at the same time, avoid
destruction of IL7R expression by excessive STAT5 activity.
Altogether, we propose that BCR-ABL1 controls IL7R expression
by activating a common STAT5-regulated negative feedback
mechanism and that the observed downregulation of IL7R
expression by BCR-ABL1 guarantees a fine-tuned STAT5 activity.

FOXO1 is required for leukemogenesis. To further confirm the
requirement of FOXO1 transcription factor for BCR-ABL1-
mediated leukemogenesis, we generated BCR-ABL1-transformed
pre-B cells from mice homozygous for loxP-flanked alleles of
FoxO1 (FoxO1fl/fl). To induce FoxO1 deletion, we introduced into
the BCR-ABL1-transformed cells our Tam-inducible Cre-ERT2 by
retroviral transduction. Inducible deletion of FoxO1 led to cell
loss of the BCR-ABL1-transformed cells (Fig. 6a–c). Moreover,
deletion of FoxO1 resulted in concomitant downregulation of
FOXO1 and IL7R expression (Fig. 6d). To provide further evi-
dence for the important role of FOXO1 in leukemogenesis
in vivo, we injected BCR-ABL1-transformed FoxO1fl/fl cells into

sublethally irradiated NOD/SCID recipient mice and monitored
development of leukemia after deletion of FoxO1 as compared
with controls in vivo. We found that BCR-ABL1-transformed
FoxO1fl/fl caused fatal leukemia within 2 weeks, while deleting
FoxO1 by Tam-induced Cre-ERT2 activation reduced the leu-
kemic cell burden and prolonged the survival time of respective
mice (Fig. 6e, f).

Together, these data suggest that FoxO1 plays an essential role
in BCR-ABL1-induced transformation most likely through the
activation of IL7R expression (Supplementary Fig. 9).

Targeting IL7R prevents BCR-ABL1+ leukemia development.
Since the above results show that IL7R is crucial for the trans-
forming signals initiated by BCR-ABL1 in Ph+ ALL, we investi-
gated whether inhibition of IL7R signaling using ruxolitinib, a
JAK1/JAK2 kinase inhibitor, can interfere with the survival of
BCR-ABL1-transformed cells or enhance the effect of kinase
inhibitors on these cells. We found that treatment with ruxolitinib
along with imatinib prevented the IL7-driven rescue of BCR-
ABL1-transformed pre-B cells in vitro (Supplementary
Fig. 10a–c). To further study the consequences of ruxolitinib on
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leukemia cells in vivo, we injected human BCR-ABL+ ALL cells
into NSG mice and monitored the recipient mice under imatinib,
ruxolitinib, or combined imatinib/ruxolitinib treatment. We found
that combination treatment was unable to prolong the survival of
recipient mice or to reduce the percentage of leukemic cells in the
BM and in the spleen (Supplementary Fig. 10d–f) suggesting that,
in contrast to the in vitro results, ruxolitinib cannot support
imatinib in a xenograft model and therefore may not be suitable
for ALL treatment in vivo. Therefore, we tested whether direct
targeting of the IL7R using specific monoclonal antibodies may
interfere with its function in leukemia. To this end, we injected
imatinib-resistant BCR-ABL1+ ALL patient cells35 into NSG mice
and treated them with monoclonal antibody specific for human
IL7Rα4 (Fig. 7b–d). As expected, imatinib was unable to prevent
leukemia development and, therefore, the leukemia burden was
increased and the survival of imatinib-treated mice was reduced
similar to that of control mice (Fig. 7a, b). In contrast, anti-IL7R
antibody significantly delayed leukemia onset in vivo and led to a
significantly expanded survival time of the respective animals
(Fig. 7a, b and Supplementary Fig. 11a, b). Interestingly, the
xenograft patient material showed an upregulation in BCR-ABL1
expression compared with human BCR-ABL1+ cell lines TOM-1
and SUP-B15 (Fig. 7c) which may explain the imatinib-resistant

phenotype35. Indeed, we found that regulated long-term exposure
to imatinib can lead to upregulation of BCR-ABL1 expression and
to imatinib-resistance in vitro (Supplementary Fig. 12). The
xenograft patient material which was used lacked the BCR-ABL1
gate keeper mutation, known as T315I kinase domain mutation,
which leads to resistance against ABL1 inhibitors36,37. Therefore,
we repeated the experiment using T315I-positive, imatinib resis-
tant, xenograft patient material38. Treatment of recipient mice with
anti-IL7R antibody significantly delayed leukemia onset and led to
significant prolongation of the survival time of the respective
animals (Fig. 7d–f and Supplementary Fig. 11c). As NSG mice lack
NK cells, we excluded that it led to cell death via antibody-
dependent cell-mediated cytotoxicity as previously described by
other IL7R antibodies39. Similarly, the antibody which we used
does not block IL7 binding (Supplementary Fig. 13a), alternatively,
it disrupts the scaffold between IL7R and CXCR4 (Supplementary
Fig. 13b). In addition, antibody treatment seems to enhance
apoptosis as shown by increased cleavage of caspase-840 (Supple-
mentary Fig. 13c).

Together, these experiments show that IL7R plays a pivotal role
in the survival of ALL and that targeting IL7R via specific
antibodies exerts a profound effect on elimination of kinase
inhibitor-resistant ALL in vivo.
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Discussion
Previous studies demonstrated remarkable outcome improve-
ments in Ph+ ALL patients upon imatinib integration into che-
motherapy41. However, acquired drug resistance is still a crucial
issue that leads to relapse of the disease and unfavorable
outcome3,42. A thorough understanding of the molecular
mechanisms involved in BCR-ABL1-mediated transformation is
required in order to provide therapeutic alternatives for Ph+ ALL
patients, particularly those who developed TKI-resistance. In this
study, we employed several genetically modified systems as well
as preclinical xenograft models to better understand BCR-ABL1-
induced transformation. Interestingly, our data show that BCR-
ABL1 oncogene regulates the expression and function of the
signaling pathways of IL7R and CXCR4 in a concerted manner.
This combined regulation is important because both receptors are
required for the growth and survival of BCR-ABL1-transformed
pre-B cells. Importantly, IL7R and CXCR4 act in close proximity
thereby allowing their downstream signaling pathways to syner-
gize and enable BCR-ABL1-induced pre-B cell transformation. In
this synergism, CXCR4 attracts the oncogenic kinase BCR-ABL1
while IL7R conveys the JAK/STAT signaling machinery. Impor-
tantly, this complex seems to act in a ligand-independent manner
to activate multiple downstream signaling pathways and is

required for the survival of mouse and human leukemia cells in
both in vitro as well as in vivo preclinical xenograft model.

Our results indicate that BCR-ABL1 utilizes the IL7R signaling
machinery for pre-B cell transformation and growth factor-
independent proliferation and that the feedback regulation of this
machinery is a crucial part of the transformation process. For
instance, deregulated BCR-ABL1 kinase activity may result in
uncontrolled STAT5 phosphorylation and negative feedback
regulation of IL7R expression leading to cell death. Previous
report suggested that BCR-ABL oncogene mimics pre-BCR sig-
naling by activating STAT5 on one hand and repressing BCL6
expression on the other hand7. STAT5 was also shown to directly
downregulate BCL6 expression in response to IL7 stimulation43.
This is in agreement with our data showing that BCR-ABL1
transformation downregulates the transcription repressor BCL6.
Thus, BCR-ABL1-mediated pre-B cell transformation requires an
equilibrium between kinase activity and negative feedback reg-
ulation of IL7R signaling. In full agreement, BCR-ABL1-trans-
formed pre-B cells require multiple phosphatases that are most
likely involved in stabilizing this equilibrium38 which can be
targeted for efficient treatment of Ph+ ALL. It is feasible that
additional players participate in regulating IL7R expression in
ALL. For example, it was previously shown that IKAROS
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negatively regulates IL7R promoter and that IKAROS deficiency
in ALL patients is correlated with increased IL7R expression44.
Similarly, the common IKZF1 deletion leading to dominant
negative IK6 isoform45 resulted in increased IL7R expression in
BCR-ABL+ cells46. Thus, co-occurring genomic alterations such
as IKZF1 deletion remain to be addressed in future studies.

Previous reports showed that combined targeting of BCR-
ABL1 and JAK2 using dasatinib and ruxolitinib, respectively,
reduced leukemia engraftment and prolonged survival47. How-
ever, these mice eventually relapsed and died from leukemia
which suggest that ruxolitinib treatment is inefficient in vivo47.
This is in agreement with our results showing that inhibition of
the kinases JAK1/JAK2 by ruxolitinib, applied either alone or in
combination with imatinib, was not able to provide any ther-
apeutic advantage for xenograft animal models injected with Ph+

ALL patient material. It is conceivable that reduced drug avail-
ability or insufficient inhibition of IL7R signaling, as ruxolitinib
mainly inhibits JAK1 and JAK2 while IL7R can also activate
JAK3, are responsible for the inability of ruxolitinib to block the
development of Ph+ ALL in vivo.

Intriguingly, our experiments point to an unpredicted escape
mechanism of transformed cells during TKI treatment. Since
leukemic cells maintain the expression of growth factor receptors
such as IL7R, which is used as scaffold for organizing the

oncogenic signaling machinery, the presence of IL7 in certain
niches might provide the transformed cells with escape
mechanisms upon treatment with inhibitors blocking BCR-
ABL148. This scenario is also possible for other growth factor
receptors and their respective cytokines. For example, it has been
shown that IL3 can rescue BCR-ABL+ CML cells from cell death
induced by BCR-ABL inhibitors47,49. Although our data showed
that several receptors were upregulated in response to imatinib
(such as IL7R, CXCR4, and CRLF2), IL7 showed a unique
potential to rescue the cells under kinase inhibitor treatment.
Thus, it is conceivable that, during treatment of Ph+ ALL
patients with inhibitors blocking BCR-ABL1 kinase activity,
IL7R-driven survival pathways in ALL cells are activated in
microenvironments containing IL7 thereby enabling the survival
of ALL cells. Ph+ ALL cells that survive treatment with BCR-
ABL inhibitors in microenvironments containing IL7 may act as
leukemia initiating cells and disseminate to other locations when
inhibitor concentrations decline or when inhibitor resistance is
induced by somatic mutations. This scenario is further supported
by the elevated amounts of IL7 detected in ALL patients9,10.
Thus, understanding the molecular mechanisms of BCR-ABL1-
induced transformation is important for identifying TKI escape
mechanisms and for developing strategies that prevent such
escape.
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Our findings may also have important therapeutic implications
in other leukemia subtypes with similar gene expression such as
Ph-like ALL. For example, at least 90% of patients with Ph-like
ALL showed kinase-activating alterations (e.g., in ABL1/ABL2
and JAK2), sequence mutations in IL7R as well as an activation of
phosphorylated STAT550. This suggests that IL7R might also be a
potential therapeutic target for several BCP-ALL patients who are
not Ph+ as well4. Nevertheless, additional work would be
required to investigate whether our model also function in Ph-like
ALL. Since IL7R expression and function is critical for proper
lymphopoiesis, targeting this pathway may have effects on other
normal cells. For instance, previous studies showed that mice
deficient in Il7r showed depletion in both B and T lymphocytes51.
In humans, mutations in the IL7Rα result in severe combined
immunodeficiency (SCID) which is associated with the absence of
T cells and normal numbers, nevertheless inactive, B cells52.
Accordingly, targeting IL7Rα using specific antibodies may also
affect T cells53 and lead to immunodeficiency in patients. How-
ever, a recent study showed that treating healthy subjects with
anti-human IL7R antibody was well tolerated and did not result
in obvious alterations in immune cell populations and inflam-
matory cytokine profiles54. Thus, treatment with anti-IL7R anti-
bodies might provide a key therapeutic approach especially for
TKI-resistant ALL once the different antibodies are characterized
regarding their side-effects and compared with standard che-
motherapy in appropriate clinical trials.

Methods
Patient samples, human cell lines. Sixty-eight BCR-ABL+ ALL patients were
treated according to European intergroup study of post-induction treatment of
Philadelphia chromosome-positive ALL (EsPhALL) 2004 and 2010 protocols
(NCT00287105) and ALL-Berlin-Frankfurt-Münster (BFM) 2000 (NCT00430118)
study. Informed consent was obtained according to institutional regulations, in
accordance with the Declaration of Helsinki. 697, SUP-B15, and TOM-1 cell lines
were obtained from DSMZ. Ph+ ALL cells containing T315I mutation was kindly
provided by Markus Müschen38.

Mice. All mouse housing, breeding, and surgical procedures were approved by the
governmental institutions of Baden-Württemberg (Regierungspräsidium Tübingen).
BM cells from WT (n= 7, female), Il7rαΔ (n= 7, female), Il7rαfl/fl (n= 7, female),
Cxcr4fl/fl (n= 3, female) and FoxO1fl/fl (n= 3, female) mice were collected and
retrovirally transformed with either an empty pMIG vector or with a pMIG vector
expressing BCR-ABL1. Unless mentioned otherwise, cells were cultured for
3–7 days in Iscove’s medium (Biochrom AG) containing 10% heat-inactivated FCS
(Sigma-Aldrich), 2 mM L-glutamine, 100 U/ml penicillin (Gibco), 100 U/ml strep-
tomycin (Gibco), and 50 µM 2-mercaptoethanol. The medium was supplemented in
excess with the supernatant of J558L plasmacytoma cells stably transfected with a
vector encoding murine IL7. Transformed cells were selected by IL7 withdrawal and
kept in optimum conditions38. Retroviral vectors containing either constitutively
active STAT5 (STAT5-CA)34 or an empty vector (EV) were used to transduce BCR-
ABL1-transformed cells and sorted cells were used then for western blot or flow
cytometry analysis. 1–2 µM 4-hydroxy Tam (Sigma-Aldrich) was used to induce
deletion on plasmids expressing Tam-inducible form of Cre (Cre-ERT2)14. All cells
were tested and found free from mycoplasma.

Expression assays. Total RNA was isolated using the Direct-zol™ RNA Kit
(Zymo Research) or ReliaPrep™ RNA Cell Miniprep System (Promega), and
synthesis of cDNA was performed (Thermo Fisher). Quantitative real time PCR
analyses were performed on ABI7900HT PCR machine (Applied Biosystems)
using Quantitect assays (Qiagen) and SYBR Green (Applied Biosystems). The
expression of ABL1 and the fusion BCR-ABL (m-bcr; e1-a2) were measured using
TaqMan Gene expression assays (Hs01104728_m1 ABL1 and Hs03024844_ft
BCR-ABL, respectively) from Applied Biosystems. Relative quantification was
calculated using 2−ΔΔCT equation.

RNA-sequencing. BM cells were isolated from two different mice and were then
kept in culture with IL7 for 7 days. Afterwards, pre-B cells were transduced with
either an EV or with BCR-ABL1 retroviral vectors and kept for 48 h in +IL7
medium. Biological triplicates were prepared in three independent experiments
(n= 6). Then, IL7 was removed from cells transduced with BCR-ABL1 for one
week until cells were completely transformed. Pre-B cells transduced with EV were
kept in culture with IL7 for similar culturing time points as transformed cells, then
sorted for GFP. Total RNA of pre-B cells transduced with either EV or with

BCR-ABL1 was prepared using the ReliaPrep™ RNA Miniprep Kit (Promega). The
total RNA library was generated using the Illumina TruSeq® stranded total RNA
(Gold) kit and the multiplexed samples were sequenced on Illumina HiSeq 3000
machine to produce an average of ~100 million paired-end reads with 150 bp in
length per sample. The base calling was performed by using BCL2Fastq pipeline
(version: 0.3.0) and bcl2fastq (version 2.17.1.14). PCA, Differential expression
analysis and additional statistical tests related to RNA-seq were performed using R
and bioconductor packages55,56. The broad MIT GSEA application57 was used for
GSEA. Detailed description of methods used in data analysis is provided in Sup-
plementary Methods.

In situ proximity ligation assay (PLA). For PLA experiemtns25,58, the cytokine
IL7 and the chemokine CXCL12 were labeled with PLA-PLUS and PLA-MINUS
probes. For PLA experiments with JAK3 or pJAK3 the corresponding antibodies
were used (Cell Signaling). The PLA probes were then subjected to ligation and
polymerization reactions (Sigma-Aldrich). The cells were then examined for the
frequency of signals per cell under the fluorescence microscope (Leica). Pictures
were taken and quantified Image J and BlobFinder software.

In vivo transplantation of mouse leukemia cells. Mouse pre-B cells from Il7rαfl/fl

or FoxO1fl/fl were transformed with pMIG-BCR-ABL1 (kindly provided by W.
Pear) and contained either ERT2 or Cre-ERT2 were labeled with retroviral firefly
luciferase and were then injected intravenously into sublethally irradiated NOD-
SCID mice38. Engraftment was monitored using luciferase bioimaging38. Mice were
randomly allocated into each treatment group.

Xenografts with human ALL samples. NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
(NSG) mice were purchased from Charles River and bred. All mouse housing,
breeding, and surgical procedures were approved by the governmental animal care
and use committees in Schleswig-Holstein (Ministerium für Energiewende, Land-
wirtschaft, Umwelt, Natur und Digitalisierung). 8–12-week-old female mice were
injected intravenously with 1 × 106 ALL cells from patient BM (>90% blasts)59,60.
Animals were sacrificed upon detection of >75% leukemic blasts or clinical leukemia
(loss of weight or activity, organomegaly, and hind-limb paralysis). Leukemia
infiltration to spleen and BM was determined61.

Imatinib and antibody treatment in vivo. NSG mice were injected with 1 × 106

BCR-ABL positive ALL cells/animal. In total 40 mg/kg of imatinib (LC Labora-
tories) were administered orally 5 days a week. In total 1 mg/kg of anti-IL7Rα
antibody (clone 40131, R&D Systems) or isotype control antibody were injected
intravenously on day +1, +3, +7, +21, and then every other week. Mice were
sacrificed when they showed signs of leukemia or when they had at least 75% blasts
in peripheral blood. Mice were randomly allocated into each treatment group and
no blinding was used.

Flow cytometry. Antibodies for flow cytometry (CD19, IL7R, CXCR4, FOXO1,
and CD11b) were purchased from (eBioscience, BioLegend, Invitrogen, or Cell
Signaling). Intracellular flow cytometry staining was performed using the Fix and
Perm cell permeabilization kit (ADG). Cell viability was measured using Sytox®

blue dead cell stain (Life Technologies). FACS CantoII (BD Biosciences) was used
for flow cytometry, and FlowJo v.10.1 was used for data analysis. More information
about the antibodies used in this study are provided in Supplementary Table 4.
Detailed information for gating strategy is provided in Supplementary Fig. 14.

Measurement of Ca2+ flux. A total of 1 × 106 cells were loaded with Indo-1 AM
(Invitrogen) and used for Ca2+ analyses62. In total 100 ng/ml of CXCL12 was used
for stimulation.

Western blot. Wet-western blotting was performed61. pJAK3, pJAK2, pJAK1,
pSTAT5, pFOXO1, JAK1, JAK2, JAK3, STAT5, FOXO1, and GAPDH antibodies
were obtained from Cell Signaling Technology. More information about the
antibodies used in this study are provided in Supplementary Table 4. All originals
uncropped gels are provided in Supplementary Fig. 15.

Statistics and reproducibility. Statistical tests are indicated in the figure legends.
Results were analyzed for statistical significance with GraphPad Prism 8.3.0 soft-
ware or SPSS (v 24.0.0.2). A p value of < 0.0500 was considered significant (*p <
0.005, **p < 0.001, ***p < 0.001, ****p < 0.001). In vitro panels are representative
of at least three independent experiments, unless mentioned otherwise.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the article and its
supplementary information files. The sequencing data that support the findings in Fig. 1,
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Supplementary Figs 1 and 2, Supplementary Table 1, and Supplementary Data 1 have
been deposited in NCBI’s Gene Expression Omnibus63 and are accessible through GEO
Series accession number GSE150784. A reporting summary for this article is available as
a Supplementary Information file.

Code availability
The scripts used for analysis and figure generation are available at https://github.com/
medhaniea/pca-and-heatmap.
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