Skip to main content
. Author manuscript; available in PMC: 2020 Oct 1.
Published in final edited form as: Predict Intell Med. 2019 Oct 10;11843:1–10. doi: 10.1007/978-3-030-32281-6_1

Table 2:

Summary of benchmarks and top-3 methods used in the TADPOLE submissions. DPM – disease progression model.

Submission Extra Features Nr. of features Missing data imputation Diagnosis prediction ADAS/Vent. prediction
Frog most features 70+420* none gradient boosting gradient boosting
EMC1-Std MRI, ASL, cognitive 250 nearest neighbour DPM SVM 2D-spline DPM 2D-spline
VikingAI-Sigmoid MRI, cognitive, tau 10 none DPM + ordered logit DPM
BenchmarkLastVisit - 3 none constant model constant model
BenchmarkME-APOE APOE 4 none Gaussian model linear mixed effects model
BenchmarkSVM age, APOE 6 mean of previous values SVM support vector regressor
(†)

Aside from the three target biomarkers

(*)

Augmented features: e.g. min/max, trends, moments.