
Multimodal radiomics and cyst fluid inflammatory
markers model to predict preoperative risk in
intraductal papillary mucinous neoplasms

Kate A. Harrington,a Travis L. Williams,b Sharon A. Lawrence,c

Jayasree Chakraborty,c Mohammad A. Al Efishat,c Marc A. Attiyeh,c

Gokce Askan,d Yuting Chou,c Alessandra Pulvirenti,c Caitlin A. McIntyre,c

Mithat Gonen,b Olca Basturk,d Vinod P. Balachandran,c

T. Peter Kingham,c Michael I. D’Angelica,c William R. Jarnagin,c

Jeffrey A. Drebin,c Richard K. Do,a Peter J. Allen,c and Amber L. Simpsone,*
aMemorial Sloan Kettering Cancer Center, Department of Radiology, New York, United States
bMemorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics,

New York, United States
cMemorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
dMemorial Sloan Kettering Cancer Center, Department of Pathology, New York, United States

eQueen’s University, School of Computing, Kingston, Ontario, Canada

Abstract

Purpose: Our paper contributes to the burgeoning field of surgical data science. Specifically, mul-
timodal integration of relevant patient data is used to determine who should undergo a complex
pancreatic resection. Intraductal papillary mucinous neoplasms (IPMNs) represent cystic precursor
lesions of pancreatic cancer with varying risk for malignancy. We combine previously defined
individual models of radiomic analysis of diagnostic computed tomography (CT) with protein
markers extracted from the cyst fluid to create a unified prediction model to identify high-risk
IPMNs. Patients with high-risk IPMN would be sent for resection, whereas patients with low-risk
cystic lesions would be spared an invasive procedure.

Approach: Retrospective analysis of prospectively acquired cyst fluid and CT scans was under-
taken for this study. A predictive model combining clinical features with a cyst fluid inflammatory
marker (CFIM) was applied to patient data. Quantitative imaging (QI) features describing radiomic
patterns predictive of risk were extracted from scans. The CFIM model and QI model were
combined into a single predictive model. An additional model was created with tumor-associated
neutrophils (TANs) assessed by a pathologist at the time of resection.

Results: Thirty-three patients were analyzed (7 high risk and 26 low risk). The CFIM model
yielded an area under the curve (AUC) of 0.74. Adding the QI model improved performance with
an AUC of 0.88. Combining the CFIM, QI, and TANmodels further increased performance to an
AUC of 0.98.

Conclusions: Quantitative analysis of routinely acquired CT scans combined with CFIMs pro-
vides accurate prediction of risk of pancreatic cancer progression. Although a larger cohort is
needed for validation, this model represents a promising tool for preoperative assessment of
IPMN.
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1 Introduction

Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are epithelial tumors of
mucin-producing cells that arise from pancreatic ducts and may involve the main pancreatic
duct (MD-IPMN), branch duct (BD-IPMN), or both (mixed-type IPMN). They have been
diagnosed with increasing frequency in recent years due to increased awareness of the entity,
increased frequency of imaging, and improved imaging techniques.1,2 These cystic lesions
are believed to be precursor lesions to pancreatic cancer and account for 20% to 30% of
pancreatic adenocarcinomas, demonstrating a pathway of progression from low-grade to
high-grade dysplasia and eventually invasive adenocarcinoma.3–5 However, this progression
to malignancy is only seen in a very small percentage of these cysts, and the appropriate
management of these cystic lesions represents a growing clinical challenge. Performing
opportune resection of high-grade dysplastic lesions before their progression to invasive dis-
ease and avoidance of overtreating benign lesions with minimal dysplasia with an invasive
surgery is the optimal clinical scenario. One study following patients with nonresected IPMN
found that the cumulative probability of developing pancreatic cancer was 5.7% at 5 years
and 10.7% at 10 years.6

To date, the clinical management of IPMN relies on several guidelines based on laboratory,
endoscopic, cytologic, and imaging findings to properly select patients for surgery. However,
their ability to distinguish between IPMNs that represent low-risk disease (low- and intermedi-
ate-grade dysplasia) or high-risk disease (high-grade dysplasia or invasive carcinoma) is still not
satisfactory.7,8 Of these techniques, the greatest importance is placed on the presence of main
pancreatic duct dilatation on preoperative imaging (CT or MRI). Current consensus guidelines
recommend the resection of IPMN with a dilated main duct of >1 cm (MD-IPMN), and of these
∼60% will have high-grade dysplasia or invasive disease.9–11 In the absence of a dilated
duct, resection of BD-IPMN yields a much lower frequency of high-grade or invasive disease,
seen in only 10% to 25% of resected lesions.9,12 Even in highly specialized centers, 32% to 38%
of patients having MD-IPMN and 73% to 80% having BD-IPMN undergo unnecessary
surgery.13 The development of pancreatic cancer in patients with nonresected BD-IPMN has
been reported to be between 2.5% and 8.3% over follow-up periods of 4 to 6 years.6,14–16

This compares with a 46% cumulative risk in nonresected MD-IPMN over 5 years.6 With the
increasing use of cross-sectional imaging, incidental findings of pancreatic cystic lesions are
rising with cysts identified on 2.6% of all CT scans, underscoring the urgent need for biomarkers
of pancreatic cancer risk.1,2

Nomograms have recently emerged as a useful prognostic tool capable of providing an indi-
vidualized risk score for a specific outcome. They have the advantage of inputting multiple var-
iables proven to be prognostic, facilitating the integration of many different clinical information.
Our group has investigated and published validated nomograms for the prediction of high-risk
disease in patients with IPMN based on predefined clinical and imaging features included in
guidelines.17,18 Clinical data used included the presence of specific gastrointestinal (GI) symp-
toms, weight loss and jaundice, and laboratory results such as carbohydrate antigen (CA) 19-9.
Imaging features included cyst size, main duct dilatation, and the presence of mural nodules or
solid components.

However, recently other important biomarkers not included in those models have emerged as
useful for distinguishing high-risk versus low-risk IPMN. Links between inflammation and
tumor progression have been described in cancer research, particularly neutrophil infiltration
and inflammatory mediators released by these cells promoting tumorigenesis.19 Our group has
described an association between tumor-associated neutrophils (TANs) and high-risk IPMNs
with most low-risk lesions being negative for the presence of TANs.20,21 However, the presence
of TANs can only be determined by pathology on specimen received postresection. A surrogate
for the presence of TANs may be found in the presence of cyst fluid inflammatory proteins. Work
has been done on analysis of cyst fluid protein markers on resected IPMNs and has identified
patterns of cyst fluid protein expression and inflammatory markers between high-risk and
low-risk lesions.21–23 Building on this work, cyst fluid inflammatory marker (CFIM) models
were created and validated and, when combined with the additional clinical and radiographic
information, further increased prediction accuracy for high-risk IPMN.24
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More recently, radiomics has emerged in oncologic imaging to describe tumor heterogeneity,
which can represent underlying tumor pathophysiology and predict clinical outcomes. A number
of studies have evaluated the use of quantitative imaging (QI) in IPMN-risk assessment, dem-
onstrating a potential in the prediction of malignancy or high-risk disease within lesions.25–27

A QI prediction model was created by our group using pretreatment CT scans. Results dem-
onstrated that QI features outperformed the combination of clinical features and qualitative
radiographic assessments. Results further improved when the quantitative (radiomic) features
were combined with clinical and qualitative radiographic features.28

The primary aim of this study is to create a preoperative model for predicting high risk in
IPMN using previously defined and validated predictive models created by this group. We
hypothesize that combining clinical, qualitative radiographic, QI features, and CFIMs will
improve accuracy in the identification of high-risk patients. We propose combining routine
diagnostic imaging with cyst fluid aspirate available by endoscopic ultrasound (Fig. 1) as a non-
surgical tool for monitoring IPMN. We also investigate a second model created using pathologic
information available postoperatively for comparison.

2 Methods

2.1 Patient Selection

Following institutional review board approval and using a prospectively maintained institutional
database, patients with resected BD-IPMN or MD-IPMN who had cyst fluid available for analy-
sis and preoperative dedicated CT imaging of the pancreas were identified. This resulted in the
inclusion of 33 patients in this retrospective study. Patients resected for recurrent IPMN or with
concurrent malignancies, such as neuroendocrine tumor or cholangiocarcinoma, were excluded.
Demographic and clinical data and laboratory, radiographic, and pathologic features were
obtained from the database. GI-specific symptoms as well as a history of jaundice and weight
loss were noted. Preoperative laboratory results recorded include serum bilirubin, amylase, CA
19-9, and carcinoembryonic antigen (CEA). Resected lesions were assessed by dedicated GI
pathologists. Risk was assigned based on the highest grade of dysplasia noted within the speci-
men by a pathologist at the time of resection. Patients were classified as “low-risk” in lesions
with low-grade or intermediate-grade dysplasia and “high-risk” in lesions with high-grade
dysplasia or invasive adenocarcinoma.

2.2 Cyst Fluid Analysis

Cyst fluid samples used in the analysis were obtained at the time of surgery and analyzed on
commercially available plates as outlined in detail in a paper published previously by Al Efishat
et al.24 Protein concentrations of cyst fluid markers that were used included MMP9, CA72-4,
sFASL, and IL-4. The predictive models upon which the cyst fluid nomogram was created used

Fig. 1 Clinical workflow for noninvasive assessment of risk in IPMN.
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multivariate logistic regression to assess relationships between cyst protein markers and high-
risk disease, as assessed and validated on first training and then testing datasets. The data were
randomly split into a training and a testing dataset, with no overlap between the two sets. The
resultant nomogram was then applied to this patient cohort.24

2.3 Image Acquisition

Standard contrast-enhanced pretreatment CT scans were utilized in the study. Acquisition param-
eters were as follows. Following the administration of 150 ml iodinated contrast (Omnipaque
300, GE Healthcare, New Jersey), postcontrast CT images were acquired at 4.0 ml∕s using a
multidetector CT (Lightspeed 16 and VCT, GE Healthcare, Wisconsin). Pitch and table speed
were 0.984 to 1.375 and 39.37 to 27.50 mm, respectively, with the remaining variables set to
autoMA 220 to 380, noise index 12.5 to 14.0, rotation time 0.7 to 0.8 ms, and scan delay 80 to
85 s. Axial slices from the portal venous phase reconstructed at 2.5 mm intervals were used for
analysis.

2.4 Extraction of Quantitative Imaging Features

The cyst region was manually segmented on axial slices using Scout Liver (Pathfinder
Technologies Inc., Analogic Corporation, Peabody, Massachusetts) by an expert radiologist.
Twelve texture features and one radiographically inspired feature (RiF), which show significant
association with IPMN risk in a previous study, were extracted from the segmented cyst region as
outlined in a paper published previously by our group, under Attiyeh et al.28 Local binary
patterns (LBP) characterize the spatial relationship among neighboring pixels intensity values,
where histograms of uniform LBP (ULBP) (LBP2, LBP37, and LBP47), rotation invariant LBP
(RI-LBP) (LBP62), and Fourier descriptors extracted from the RI-LBP histogram (LBP107,
LBP108, LBP-109, LBP110, LBP111, LBP113, and LBP115) were used in this study.28

Further, angle co-occurrence matrices (ACM) quantify the directional edge patterns of the cyst,
with ACM2_5 utilized because it carries both angle and magnitude information. To obtain rota-
tion invariant features, this ACM was calculated in four directions (0 deg, 45 deg, 90 deg, and
135 deg).29 The RiF was developed specifically to represent the appearance of an enhancing
mural nodule present within a cyst, which is considered one of the high-risk stigmata in con-
sensus guidelines (when measuring >5 mm).11 A list of all features (and their family groups)
with brief explanations is provided in Appendix A.

Each feature was extracted from each CT slice of the segmented cyst and averaged to form
a single value for a patient as shown in Fig. 2.

2.5 Prediction Model Building

Our QI model, TAN model, and CFIM model were applied to this patient cohort to predict the
IPMN risk. The QI model was originally designed based on 103 patients. The model was

Fig. 2 (a) Extraction of the tumor from preoperative CT of the pancreas. (b) A segmented tumor
with an illustration of the radiomic and clinical features extracted. (c) List of the imaging features
extracted from the tumor. ACM, angle co-occurrence matrix; LBP, local binary pattern; and RiF,
radiologically inspired feature.
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designed with random forest with 13 selected texture features: RiF, LBP2, LBP37, LBP47,
LBP62, LBP107, LBP108, LBP109, LBP110, LBP111, LBP113, LBP115, and ACM2_5.
The random forest was developed with 200 trees, with the number of observations per tree
as one and the number of variables per random split as the square root of the variables, i.e.,
3. A detailed explanation of this model is given in Appendix B. The CFIM model was originally
designed based on 149 patients. Three additional prediction models for determining risk were
created: (1) a combination of the QI model and CFIM model, (2) a combination of the QI model
and TAN model, and (3) a combination of the QI model, CFIM model, and TAN model using
logistic regression (Fig. 3). The prediction scores obtained from each model were then used as
input to design the combined model using logistic regression. We note that our model was pre-
specified (no other model was considered a candidate), so sample reuse methods are not needed
in this case. The data with which the models were created were separate from the dataset to which
the models were then applied.

Overall model performance was described using the area under the curve (AUC). Model
performance for low-risk and high-risk disease was measured using accuracy, sensitivity, speci-
ficity, negative predictive value (NPV), and positive predictive value (PPV).

2.6 Statistical Confidence Intervals

To reflect the upper and lower ranges of each model’s performance, a 95% confidence interval
was calculated for every statistical performance metric. The confidence interval for each metric is
calculated as follows:

EQ-TARGET;temp:intralink-;e001;116;350metric � 1.96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
err � ð1 − errÞ

n

r
; (1)

where the constant represents the fact that 95% of the area of a normal distribution is within 1.96
standard deviations (SD) of the mean, err is the standard error of the metric, and n is the number
of patients in the observation. The confidence intervals are clipped to values 0 and 1 (or 100%).

3 Results

Thirty-three patients were included in the final analysis, with 21% (n ¼ 7) classified as high-risk
disease (high-grade dysplasia) and the remaining 79% (n ¼ 26) classified as low-risk (low- or
intermediate-grade dysplasia). The cohort was 55% male (n ¼ 18) and 45% female (n ¼ 15),
and the median age at resection was 72 years (interquartile range 63 to 76). BD-IPMN was
present in 22 patients, and the majority (n ¼ 19, 86%) were low-risk disease. MD-IPMN was
present in 11 patients, 7 of which had low-risk disease and 4 had high-risk disease.

Prediction model results are summarized in Table 1 with a 95% confidence interval to help
interpret the results with a likely range of values. The model constructed from the CFIM, QI, and
TAN models resulted in an AUC of 0.74, 0.83, and 0.91, respectively. When the QI and CFIM
models were combined, the AUC increased to 0.88. The receiver operating characteristic (ROC)
curves for these models are shown in Fig. 4. Postoperative models based on the presence of
TANs as assessed by a pathologist at the time of resection were also created. The model
constructed with TANs, the combined QI and TAN model, and the combined QI, CFIM, and

Fig. 3 Combinations of models created using logistic regression.
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TAN model achieved an AUC of 0.91, 0.97, and 0.98, respectively. The ROC curves for these
models are shown in Fig. 5.

4 Discussion

The ability to accurately identify high-risk disease in patients with IPMN remains limited, and
those selected for operative intervention undergo surgeries that carry significant morbidity and
mortality risks. One study from this institution reported a 2% risk of mortality and 37% rate of
major operative complications following resection of IPMN, further underscoring the need for

Table 1 Prediction model results

AUC Accuracy Sensitivity Specificity PPV NPV

CFIM nomogram 0.74� 0.15 78.79� 13.95 14.20� 11.91 100� 0.00 100� 0.00 81.25� 13.32

QI nomogram 0.83� 0.13 87.88� 11.14 42.86� 16.88 96.15� 6.56 75� 14.77 86.21� 11.76

TAN nomogram 0.91� 0.10 94.94� 7.48 85.71� 11.94 96.15� 6.56 85.71� 11.94 96.15� 6.56

QI + CFIM 0.88� 0.11 84.85� 12.23 71.43� 15.41 92.31� 9.09 71.43� 15.41 92.31� 9.09

QI + TAN 0.97� 0.06 96.96� 5.86 100� 0.00 96.15� 6.56 87.50� 11.28 100� 0.00

QI + CFIM + TAN 0.98� 0.05 96.97� 5.85 100� 0.00 96.15� 6.56 87.50� 11.28 100� 0.00

Fig. 4 ROC curves for CFIM, QI, and combined QI and CFIM models for predicting low-risk from
high-risk disease.

Fig. 5 ROC curves for the TAN, combined QI and TAN, and combined CFIM, QI, and TANmodels
for predicting low-risk from high-risk disease.
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proper patient selection for pancreatic resection. 17 In this study, we aimed to increase the
accuracy of preoperative prediction of risk of IPMN progression to cancer, building on pre-
viously validated models created by our group. To our knowledge, this is the first study to
describe a predictive model combining these variables. The best performing current published
model based on clinical data, qualitative radiographic assessment, and analysis of cyst fluid
achieved an AUC of 0.74 on these data. When combined with QI (radiomics), the AUC
improved to 0.83, demonstrating an increase in accuracy when images are computationally
analyzed. Notably, PPV and NPV are high in this combined model, suggesting that low- and
high-risk disease can be predicted prior to surgery. The AUC further improved to 0.91 when
TANs measured by a pathologist on the resected specimen were included. Interestingly, the
addition of TANs improved the sensitivity of all models, suggesting that risk of false negatives
can be mitigated at the time of resection with this additional information. The strongest model
performance is observed with the combination of QI (radiomics) with any other model. In
particular, the combination of QI and cyst fluid analysis provides a high AUC (0.88) and
NPV (0.92). To ensure patients at very low risk for progression of pancreatic cancer are spared
an aggressive and highly morbid surgery, significant importance is placed on identifying those
on whom not to operate.

The International Consensus Guidelines (ICG) were first established in 2006 to assist in the
management of IPMN. These guidelines were revised in 2012 (ICG2012), with the most
recently revised version published in 2017, which included some minor revisions.9,11,30

These guidelines outline three high-risk stigmata, namely the presence of obstructive jaundice,
an enhancing mural nodule >5 mm, and main duct dilatation >1 cm. Worrisome features
include cyst size >3 cm, thickened, enhancing cyst walls, enhancing mural nodules <5 mm,
cyst growth rate >5 mm per 2 years, main duct dilatation between 5 and 9 mm, abrupt change
in pancreatic duct with distal pancreatic atrophy, lymphadenopathy, history of pancreatitis, and
elevated serum CA 19-9.11 A review into the validity of the ICG2012 guidelines demonstrated
a sensitivity of 88% and specificity of 65%.31 Another study found that the accuracy of the
ICG2012 guidelines for predicting malignancy in IPMN is 45%.32 In a study using the 2017
guidelines, the presence of all high-risk stigmata and most worrisome features were shown to
be associated with malignant IPMN, with the exception of cyst size, presence of thickened,
enhancing cyst walls, and increase in cyst size, which did not show an association.33 Another
validation study of the 2017 guidelines supported the importance of mural nodules for
detection of malignancy but also found an association between malignancy and thickened,
enhancing cyst walls. Overall, the diagnostic performance of the 2017 guidelines was found
to have improved following these minor revisions.34 However, these findings continue to high-
light the challenge in developing a better predictive tool in the determination of high-risk
disease.

Serum and cyst fluid protein markers have been investigated to characterize their utility in the
differentiation between low- and high-risk disease with studies demonstrating patterns of high
cyst fluid protein expression in high-risk disease, the majority of which are inflammatory
markers.22,23 Conversely, no CFIMs were found to be overexpressed in low-risk groups. The
CFIM predictive model created by this group focused on predicting the degree of dysplasia
in IPMN. This group used its experience on previous work identifying overexpression of inflam-
matory markers in the presence of TANs. TANs or tumor-infiltrating neutrophils are inflamma-
tory cells that are seen in association with a subset of pancreatic neoplasms. Within the IPMN
cohort, they are predominantly seen within the histological pancreatobiliary subset, a subset that
typically demonstrates high-grade dysplasia and relatively increased risk of progression to
invasive adenocarcinoma compared with other IPMN subtypes.20,35 Noncarcinomatous, or
low-grade, components of IPMN did not demonstrate TANs. Another study stratified the level
of TANs by grades of dysplasia and found high levels of TANs in high-grade lesions versus no
TANs on low-risk lesions.21 This has led to work also being done on the tumor microenviron-
ment, the evaluation of cyst fluid protein overexpression, and the presence of inflammatory
markers that may act as a surrogate for TANs, which can only be determined on resected
samples.21 Higher levels of TANs were seen in 18 CFIMs, of which 16 of these correlated with
higher grades of dysplasia, suggesting that CFIMs may be for suitable surrogate markers.
Examples of overexpression of CFIM in high-risk lesions included IL-1b, IL-5, and IL-8,
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with IL-1b shown to be a significant predictor of high-risk disease.22 The predictive model upon
which the CFIM nomogram was created used multivariate modeling to choose the two most
promising models.24

This study has a number of limitations. First, the cohorts upon which the models have been
created consist of patients who underwent resection and pathologically proven IPMN, therefore
introducing a selection bias. This also limited our cohort to a smaller sample size. Next,
applicability of this cohort to patients with incidentally detected IPMN is difficult. Additional
studies are needed in unresected patients undergoing surveillance to validate the models in this
population as currently the applicability to patients selected for radiographic surveillance is
unknown. Finally, it should be noted that the samples of cyst fluid and TANs were obtained
at the time of surgery. Therefore, these samples are prognostic rather than predictive indicators
of disease due to the method in which they were obtained. To reflect clinical practice and the
potential application of this model, these samples would be obtained at the time of endoscopic
ultrasound (EUS) by cyst fluid aspiration and tissue biopsy. Further studies are therefore required
to validate cyst fluid aspiration and tissue retrieval by EUS versus at the time of resection.

5 Impact on Interventional and Surgical Data Science

There is no reliable method of discerning between low-risk and high-risk IPMNs, despite current
laboratory, endoscopic, cytologic, and imaging technologies. The 2012 ICG recommended
resection for MD-IPMN patients and observation for the majority of BP-IPMN. However, with
∼60% of MD-IPMN resected patients high-risk and 10% to 15% of BP-IPMN resected patients
high-risk, this method of determining patients for resection is remarkably inaccurate. Therefore,
the development of preoperative models able to discern high-grade dysplasia in IPMN patients is
necessary. Identifying high-risk patients with precision allows for more definitive treatment
options and decision-making.17,18 Low-risk patients would be presented with nonsurgical treat-
ment options (typically MRI surveillance), avoiding a potentially morbid and life-threatening
operation, while high-risk patients would undergo resection, possibly prior to the formation of
invasive disease.17,18

This research hypothesized that multimodal models of quantitative analysis and cyst fluid
marker analysis would offer more robustness than models rendered from singular categories of
quantitative or cyst fluid analysis. The combination models developed in this study show great
promise in providing accurate answers of risk level for IPMN patients. The addition of the QI
model enhanced the statistical results overall of the CFIM and TAN models, while the combi-
nation of all modalities yielded the best results.

6 Conclusion

For patients in whom IPMN are identified, we present a model that combines quantitative
analysis of routinely acquired CT scans (radiomics) with analysis of cyst fluid markers for the
prediction of progression to pancreatic cancer. These models can aid the surgeon in optimally
selecting patients for pancreatic resection.

7 Appendix A: List of Texture Features (13 Used in the Model)

The specific characteristics of the local binary patterns (LBP) used in the model are described in
Table 2. The angle co-occurrence matrices (ACM) used in the model are listed with brief explan-
ations in Table 3.

7.1 RiF (Filled Largest Connected Component)

The RiF is based on radiographic observations that relate to high-risk disease.29 Adaptive
thresholding was used to capture high-intensity pixels, which represent the solid component
in a cyst, and low-intensity pixels, which represent hypoattenuated dilation in parenchyma
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Table 2 LBP (128 features).36

Feature description Corresponding features

1. 59 unique output levels of ULBP LBP2, LBP37, LBP47

2. 10 unique output levels of RI-ULBP LBP62

3. SD, skewness, kurtosis, and entropy of ULBP histogram n/a

4. SD, skewness, kurtosis, and entropy of RI-ULBP histogram n/a

5. Mean, SD, skewness, kurtosis, and entropy of LBP histogram n/a

6. SD, skewness, kurtosis, and entropy of efficient RI-LBP histogram n/a

7. SD, skewness, kurtosis, and entropy of rotated LBP histogram n/a

8. 38 Fourier descriptors of RI-ULBP histogram LBP107, LBP108, LBP-109,
LBP110, LBP111, LBP113, and

LBP115

Table 3 ACM1 and ACM2 (total 38 features, 19 from each).37

Feature description Corresponding features

1. Energy n/a

2. Contrast n/a

3. Correlation n/a

4. Sum of squares n/a

5. Inverse difference moment ACM2_5

6. Sum average n/a

7. Sum variance n/a

8. Entropy n/a

9. Difference variance n/a

10. Sum entropy n/a

11. Difference entropy n/a

12. Information-theoretic measures of correlation 1 n/a

13. Information-theoretic measures of correlation 2 n/a

14. Maximal correlation coefficient n/a

15. Inertia n/a

16. Cluster shade n/a

17. Cluster prominence n/a

18. Renyi entropy n/a

19. Tsallis entropy n/a

Harrington et al.: Multimodal radiomics and cyst fluid inflammatory markers model. . .

Journal of Medical Imaging 031507-9 May∕Jun 2020 • Vol. 7(3)



regions. The cyst or pancreas regions were initially smoothed to remove minor fluctuations
with an averaging filter of size 3 × 3 pixels. The filtered image was then thresholded to
discover the high-/low-intensity pixels of cyst/pancreas. To compute the threshold, all pixels
within the region under consideration (pancreas/cyst) were sorted in ascending order of
intensity, and the threshold was selected such that 90% of the total pixels were less than the
intensity. The threshold is computed as

EQ-TARGET;temp:intralink-;e002;116;663

Thi ¼ fIsiðnÞ ∶n ¼ 0.9 � Ni; Isi contains ascending sorted intensity of Iig
ITc ¼ Ic ≥ Thc;

ITp ¼ Ip ≤ Thp; (2)

where i ∈ fc; pg, with c and p representing cyst and pancreas, respectively. Ni is the total
number of pixels in the segmented region Ii, and ITi is the thresholded image. Ip and Ic re-
present the segmented cyst and pancreas regions, respectively. Pixels greater/less than the
threshold are noted as enhanced pixels for cyst/pancreas region, respectively. We defined
boundary and nonboundary regions of cyst/pancreas for extracting the RiFs based on the radi-
ologist’s observations regarding the appearance of high-risk IPMN. The boundary width was
selected empirically as three pixels to quantify the enhanced wall appearing as a thin ring-like
structure. Ni;b and Ni;in are the number of boundary pixels and nonboundary pixels of Ii,
respectively, where boundary and nonboundary regions are mutually exclusive.

The largest enhanced area obtained by filling the largest enhanced component within
the nonboundary region is referred to as the filled largest connected component (FLCC).
ITi contains K number of connected components cc1; cc2; ···; cck; after filling the holes inside,
then ccmax is the largest region representing FLCC. FLCCF is the ratio of area of FLCC to
the area of the nonboundary region:

EQ-TARGET;temp:intralink-;e003;116;427FLCCFi ¼
AreaðccmaxÞ

Ni;in
: (3)

8 Appendix B: Random Forest Model and Parameters

Random forest combines the results of many bootstrapped decision trees to reduce overfitting
and improve generalization. The random forest for the QI model was developed in MATLAB
using the TreeBagger class. The parameters for this algorithm are given in Table 4. The tree depth
is not an explicit parameter offered in MATLAB’s decision tree algorithms, but it is implicitly
derived from the MinLeafSize and MinParentSize parameters. The number of features (f)
selected per random split (NumPredictorsToSample) is calculated by taking the square root
of the number of features (Nsplit ¼

ffiffiffi
f

p
).

Table 4 Random forest parameters.

Parameter Value

NumTrees 200

NumObservations 1

NumPredictorsToSample 3

MinLeafSize 2

MinParentSize 4

SplitCriterion Deviance
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Avisual representation of the random forest model is shown in Fig. 6. Each tree calculates a
conditional probability of a class c given features f. These probabilities are averaged to give the
final conditional probability of the random forest. In this figure, the green nodes are the selected
nodes at each branch.
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