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Searching for light andminiaturized functional device structures for sustainable energy gathering from the environment is the focus
of energy society with the development of the internet of things. The proposal of a dynamic heterojunction-based direct current
generator builds up new platforms for developing in situ energy. However, the requirement of different semiconductors in
dynamic heterojunction is too complex to wide applications, generating energy loss for crystal structure mismatch. Herein,
dynamic homojunction generators are explored, with the same semiconductor and majority carrier type. Systematic experiments
reveal that the majority of carrier directional separation originates from the breaking symmetry between carrier distribution,
leading to the rebounding effect of carriers by the interfacial electric field. Strikingly, NN Si homojunction with different Fermi
levels can also output the electricity with higher current density than PP/PN homojunction, attributing to higher carrier
mobility. The current density is as high as 214.0 A/m2, and internal impedance is as low as 3.6 kΩ, matching well with the
impedance of electron components. Furthermore, the N-i-N structure is explored, whose output voltage can be further
improved to 1.3V in the case of the N-Si/Al2O3/N-Si structure, attributing to the enhanced interfacial barrier. This approach
provides a simple and feasible way of converting low-frequency disordered mechanical motion into electricity.

1. Introduction

With the increasing energy demand and scientific develop-
ment of human being society, constant efforts have been
devoted to maintaining the huge energy consumption while
minimizing the earth resource cost [1–4]. In particular,
under the development of internet of things [5], there are
numerous sensors that should be powered, which are severely
required for a self-powered in situ energy [6]. Solar energy
can be harvested through separating the photogenerated
carriers through the built-in electric field in static hetero-
junction or homojunction [7, 8]. However, solar energy is
not available everywhere and everytime, which limits its
application in some fields [9]. Instead, generators harvest-

ing electricity from the environment, especially for widely
available low-frequency mechanical energy, could be a fea-
sible way for in situ powering those widely spread sensors
for the internet of things [10–13]. In particular, a piezoelec-
tric and triboelectric nanogenerator with alternating output
has received many attentions [14–18], however, limited by
the high impedance and external rectifying circuit [19–23].
With the rapid development of wearable devices and intelli-
gent monitoring equipment [24–28], it is urgent need to look
for a high current density in situ energy generator with
matching internal impedance with electron component, as
a potential candidate for a light and miniaturized functional
device, which overcomes the limitation of the environment
and weighty external circuit [29–34].
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Traditionally, as a fundamental unit of integrated circuit,
the heterojunction or homojunction always attaches exten-
sive concern in the information scientific community, which
brings many basic applications and builds up the foundations
of the modern information society [35–37]. Recently, a series
of efforts in energy society based on the semiconductor
system have been achieved to convert mechanical energy into
direct current electricity and build up a new platform for
developing the new energy society, including the dynamic
Schottky diode and PN heterojunction proposed by our
group [29–34], the triboelectric nanogenerator proposed by
Wang et al. [38–40], the tribotunneling generator proposed
by Liu et al. [41–46], the conducting polymer-based direct
current generator proposed by Shao et al. [47–50], and others
[51–54]. In particular, we have established a self-consistent
theory of semiconductor devices, which requires further
exploration and deepening. And the requirement of different
semiconductors in dynamic heterojunction is too complex to
wide applications, generating energy loss for crystal structure
mismatch. Hence, a dynamic homojunction structure with
the same kind of semiconductor and majority carrier type
should be thoroughly explored. Strikingly, the dynamic NN
homojunction with different Fermi levels should output
higher current density as its higher carrier mobility than
PN or PP homojunction, in which only majority carrier
transport is involved in electricity generation.

Herein, we propose a high current density dynamic NN
Si homojunction-based direct current generator, which can
continuously harvest energy from mechanical movement. It
is inspiring that these novel generators behave with continu-
ous, high density, and direct current output characteristics,
which shows great superiority and potential. The current
output of this dynamic NN homojunction generator is
derived from the breaking symmetry of depletion region
majority carrier distribution, leading to the rebounding effect
of the space majority carriers driven by the interfacial built-in
electric field (E). A dynamic NN Si homojunction generator
with short-circuit current density ðJscÞ of 214.0A/m2, open-
circuit voltage ðVocÞ of 0.35V, and power density of
33.6W/m2 has been achieved. It is noteworthy that the current
density of the dynamic homojunction is more than 103-104

times higher than triboelectric and piezoelectric nanogenera-
tors [55–57]. Moreover, compared with the impedance of
polymer material-based nanogenerators (~MΩ), the internal
impedance of this semiconductor homojunction-based direct
current generator is rather low (~kΩ), which is matching
with the impedance of the semiconductor-based informa-
tion electronic device (~kΩ) [58]. Furthermore, we find
that the semiconductor-insulator-semiconductor structure-
based dynamic P-i-N junction generator outputs higher
voltage as high as 1.3V attributed to the enhanced interfa-
cial barrier, in the case of the N-Si/Al2O3/N-Si structure
[59–63]. Compared with piezoelectric and triboelectric
nanogenerators, this dynamic NN homojunction generator
with ultrahigh current density can effectively output a direct
current without a rectification circuit and storage unit. This
dynamic homojunction generator can charge a capacitor
without external rectifying circuits quickly, indicating its
advantage and potential applications in in situ energy acqui-

sition fields. This approach provides a simple and feasible
way of converting low-frequency disordered mechanical
motion into electricity, especially the biomechanical energy,
wind power, and tidal energy.

2. Results and Discussion

Figure 1(a) shows the schematic structure and 3D diagram of
the dynamic semiconductor-based generator; the same kind
of semiconductor wafers with different Fermi levels is fitted
closely to build the depletion region and built-in electric field
in the interface. As shown in Figure 1(b), different N-type Si
wafers are contacted and a built-in electric field is normally
formed in the interface under the equilibrium state. As a
result, an ideal rectification characteristic with limited
leakage under the negative bias voltage is achieved, which is
equivalent to a charging process of the space carriers and
forming a symmetry state in the depletion region, as shown
in Figure 1(c). The circuit diagram of our dynamic NN
Si homojunction is shown in Figure 1(d), which consisted
of a diode, an internal resistance Rs, and a junction capac-
itor. The parallel contact sliding between the two Si wafers
can break the static symmetry of homojunction capacitor
carriers and generate an electrical output. Primarily, the PP,
PN, and NN Si homojunction was explored as a generator
with a moving speed of 10.0 cm/s and under a constant
5.0N force. It can be seen that a pulsed voltage/current is
generated, which is caused by the pulse movement signal
with an inevitable acceleration and deceleration process. As
shown in Figure 1(e), the short-circuit current (Isc) up to 4.1/
10.6/21.4μA was achieved, respectively, among which the NN
homojunction behaves the highest current output, because
of the higher carrier mobility than the PN or PP homo-
junction (the detailed performance of dynamic PN homo-
junction is shown in Figures S1 and S2). The contact area of
the dynamic homojunction in this work is always 0.1mm2

(0:5mm × 0:2mm). Accordingly, Jsc can be calculated to be
41.0/106.0/214.0A/m2 for the dynamic PP/PN/NN Si
homojunction, which is more than 103-104 times higher
than triboelectric and piezoelectric nanogenerators [55–57].
Only majority carrier transport is involved in the electricity
generating process. When the mechanical movement is
rapid and continual, the direct voltage as high as 0.3V can
be generated constantly (Figure 1(f)). The interfacial built-
in electric field between the NN Si homojunction will bind
back the space charges in the depletion region. Diffusion
electrons and holes in dynamic homojunction can be
directionally separated by the built-in electronic field at the
interface, which will generate the continuous current output
under the effect of the ultrahigh built-in electric field,
allowing for harvesting of energy from mechanical move-
ment continuously. The electricity generation between the
same kinds of Si with different Fermi levels indicates that the
triboelectric effect is not the key role in the semi-conductor-
based dynamic junction direct current generator, while the
physical picture of rebounding carriers under the interfacial
E is self-consistent.

As shown in Figure 2(a), this mechanical movement pro-
cess reveals a physical picture of a dynamic homojunction
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with the rebounding hot carriers, which is very rarely being
studied as yet and interesting for further research. Under the
Fermi level difference of two semiconductors, the diffusion
electrons and holes will transfer into the two semiconduc-
tors, respectively, forming a depletion region and built-in
electric field, which works as a space carrier charging process
of the homojunction capacitor [64, 65]. With the movement
of the dynamic homojunction, the rebounding effect of the
carriers in the interface will narrow down the space charge
region, which works as a homojunction capacitance dischar-
ging process, as shown in Figure 2(b). The interfacial E plays
a key role in the electrical output of the generator, which is
related to the Fermi level difference. So, the dynamic N-
Si/N-Si homojunction generators with different Fermi levels
are explored by using N-Si wafer with different resistivity of
0.01/0.5/5/50/1000/10000Ω·cm.

The Fermi level of the N-Si semiconductor can be calcu-
lated by the formula [66]

EF−N ≈ Ei + kBT ln ND −NA

ni
, ð1Þ

σ = 1
ρ
≈ qnμn, ð2Þ

where Ei is the middle value of the bandgap; kB is the
Boltzmann constant; T is the temperature; n is the electron
concentration; ni is the intrinsic electron concentration of
the semiconductor as large as 1:5 × 1010 cm-3; EF−N is the

Fermi level of the N-type Si substrate we used, which can
be calculated with formula (1); μn is the electron mobility
of the N-type silicon; and σ and ρ are the conductivity and
resistivity of the N-type Si we used, respectively. The electron
concentration of the N-type Si substrate used here can be
calculated with formula (2). The conduction and valence band
of N-type Si locate at 4.05 eV and 5.17 eV below the vacuum
energy level, respectively. As shown in Figure 2(c), the Fermi
level of the N-type Si is calculated as 4.16/4.27/4.32/4.38/4.46/
4.52 eV under the different resistivity of 0.01/0.5/5/50/1000/
10000Ω·cm. The voltage responses of the dynamic N-Si/N-Si
homojunction generator with resistivity of 0.01/0.5, 0.01/5,
0.01/50, 0.01/1000, and 0.01/10000Ω·cm are 0.10, 0.15, 0.21,
0.30 and 0.35V, respectively, indicating that the voltage output
is positive related to the Fermi level difference as high as 0.11,
0.16, 0.22, 0.30 and 0.36 eV (Figure 2(d)).

The current of our dynamic NN Si homojunction gener-
ates with voltage output synchronously, which is totally differ-
ent from the alternating current output of the triboelectric
nanogenerator, which is based on the displacement current
in the Maxwell equation and always outputs alternating cur-
rent with the limit of the insulating dielectric materials. The
continuous direct current of the dynamic NN Si homojunc-
tion generator confirms the above work mechanism, which
can provide reference for other types of generators. In order
to further prove that the Fermi level difference and built-in
field play a vital status in the electrical generation, N-type
silicon wafer was dragged along with other N-type silicon
wafers with the same Fermi levels, as shown in Figure 2(e).
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Figure 1: Experimental designs and results of the dynamic homojunction generator. (a) The schematic structure and 3D diagram of the
dynamic semiconductor junction-based generator. (b) The band diagram of the static silicon NN homojunction. (c) The rectification
characteristic of N-Si/N-Si homojunction. (d) The circuit diagram of dynamic N-Si/N-Si homojunction. (e) The current output of
dynamic P-Si/P-Si, P-Si/N-Si, and N-Si/N-Si homojunction generators under the pulse movement mode with a 5.0N force and a speed of
10.0 cm/s. (f) The voltage output of dynamic NN Si homojunction generator under the continuous movement mode.
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The result of the performance of two same P-type silicon
wafers with the same Fermi levels is shown in Figure S3. It is
found that no stable direct voltage can be produced
compared with the NN Si homojunction with different
Fermi levels, indicating the importance of Fermi level
difference, as shown in Figure 2(f). There are no built-in
electric fields and rebounding diffusion carriers generated in
the interface, so no continuous direct current could be
generated. It is noteworthy that some noise signals are
generated with the mechanical movement, which is caused
by the thermal exciton movement without the dimensional
separation of carriers under the interfacial E.

To measure the power output and its internal impedance
of our dynamic homojunction generator, the electrical out-
put under different electrical load RL has been explored with
the measurement circuit in Figure 3(a). As shown in
Figure 3(b), the work voltage is largely enhanced but the
work current is decreasing with the increase of RL, as a result
of the loss of internal resistance RS. Accordingly, the current
density and power density output under different RL have
also been explored, as shown in Figure 3(c). As driven by
the semiconductor-based dynamic homojunction, the work-
ing circuit consisted of an internal resistance Rs, a load resis-
tance RL, and a junction capacitor. When RL comes to 3.6 kΩ,

a peak power output density of 33.6W/m2 has been achieved,
which is equal to Rs of the dynamic NN Si homojunction
device. It is noteworthy that the internal impedance of this
semiconductor homojunction-based direct current genera-
tor is rather low (~kΩ) compared with the impedance of
polymer material-based nanogenerators (~MΩ), which is
matching with the impedance of the semiconductor-based
information electronic device (~kΩ), indicating its potential
in the common electronic device energy supply.

To develop its potential applications in the internet of
things, a dynamic NN Si homojunction generator is used to
charge a capacitor of 0.1μF without any rectification circuit.
As shown in the detailed circuit diagram of Figure 3(d), a
dynamic homojunction generator (DJG), a large capacitor
of 0.1μF, a series resistance of 470 kΩ, and a voltage mul-
timeter are used to construct a capacitor charging circuit.
The detailed optical picture of the capacitor charging circuit
is shown in Figure S4, in which the charging capa-citor is
measured with a Keithley 2010 system. A voltage output
larger than 0.3V was achieved under the continuous
movement process of the dynamic NN Si homojunction
generator, as shown in Figure 3(e). In particular, no ex-
ternal rectification circuit was added here and the charging
speed is ultrahigh as a result of the high current density
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output of the dynamic NN Si homojunction generator
(Figure S5). Therefore, this simple dynamic NN Si
homojunction gene-rator is a potential candidate for light
and miniaturized in situ energy generator, which can
work as a simple and feasible mechanical energy harvesting
device to convert low-frequency disordered mechanical
motion into electricity.

As the generation of the current and voltage is caused by
the rebounding carriers in the interface of homojunction, the
voltage and current must be influenced by the barrier height
of the interfacial barrier. To further explore the role of the
barrier height of dynamic homojunction and develop a
system semiconductor theoretical framework in these
dynamic junction generators, different kinds of ultrathin
dielectric layers are inserted into the dynamic NN Si
homojunction for further experiments, as shown in
Figure 4(a). As shown in the band diagram of dynamic N-
Si/insulator/N-Si junction (Figure 4(b)), insulator layer with
a large bandgap could act as a stable barrier between NN Si
homojunction. Under the ultrahigh interfacial E from N-Si
to other N-Si substrates with lower Fermi levels, the space
electrons will transfer to the N-type Si with higher Fermi
levels and drifting holes will transfer to the N-type Si with
lower Fermi levels through the insulator layer, which is
equivalent to a discharge process of the N-i-N junction

capacitor. The barrier height of the NN homojunction has
been largely increased with the inserted insulator layer. As
shown in Figure 4(c), the current leakage under negative bias
voltage has been largely decreased under the effect of the
inserted Al2O3 layer, indicating the increased barrier height
and enhanced threshold voltage. When we move the N-Si
wafer along with the Al2O3 layer, more hot electrons with
high energy can be generated and drove by the ultrahigh
interfacial E, generating a higher voltage signal. As shown
in the one-dimensional band alignment of Figure 4(d), the
energy band structure of silicon with different dielectric
materials (such as ZnO, HfO2, and Al2O3) is compared
[67, 68]. The voltage output of these dynamic homojunction
generators after inserting dielectric layers (ZnO, HfO2, and
Al2O3) is 0.5/0.8/1.3V (Figure 4(e)), respectively, among
which the Si/Al2O3/Si structure behaves the highest voltage
output and barrier height. According to the relationship
between the band structure relativities and voltage output,
the carriers are driven by the interfacial E and the voltage
output is positive related to the barrier height.

3. Conclusion

In summary, we have proposed a direct current generator with
high current density based on the dynamic homojunction
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through the dynamically mechanical movement between two
same kinds of semiconductors with different Fermi levels, elim-
inating the role of triboelectric effect in the semiconductor-
based generator. The physical mechanism is attributing to the
rebounding effect of hot carriers by the ultrahigh interfacial E
, origin from the breaking symmetry of generating and
disappearing depletion region carriers in the dynamic homo-
junction, whichmay provide reference for other types of gener-
ators. In particular, as a majority carrier device, a dynamic NN
Si homojunction direct current generator with short-circuit
current density of 214.0A/m2, open-circuit voltage of 0.35V,
and power density of 33.6W/m2 can be achieved. Moreover,
the internal impedance of this semiconductor homojunction-
based direct current generator is rather low (~kΩ), which is
matching with the impedance of the semiconductor-based
electron component (~kΩ). Through applying the N-i-N
structure, output voltage can be further improved to 1.3V.
Compared with other generators, this dynamic NN homojunc-
tion generator can convert mechanical energy into continuous
direct current electricity in ultrahigh current density without
the rectifying circuit and storage unit, which indicates its
potential promising applications in many fields, such as porta-
ble wearable devices. This approach provides a simple and
feasible way of converting low-frequency disordered mechani-
cal motion into electricity, especially the biomechanical energy,
wind power, and tidal energy.

4. Materials and Methods

4.1. Preparation of Silicon Wafers. A single polished silicon
wafer with different doping types and concentrations was
used in this work. Firstly, the SiO2 layer in the interface of
the Si substrate was removed by being dipped into 10wt%
HF for 5 minutes. Then, the DI water was used for three
times to remove the residual HF. To fabricate an ohmic
contact electrode of silicon, 10nm Ti and 100 nm Au were
successively grown on the bake side of single polished silicon
with the thermal evaporation method. A natural NN homo-
junction was achieved by simply pressing the N-type Si wafer
closely on the other N-type Si wafer by a constant force.
Furthermore, the ZnO/HfO2/Al2O3 layer with thickness of
10 nm was fabricated with the atomic layer deposition
method on N-type Si wafer.

4.2. Physical Measurement. The rectification characteristic of
the NN homojunction was recorded with a Keithley 2400
instrument and Agilent B1500A system. The electrical output
signals were measured with the Keithley 2010 multimeter,
which was recorded by a LabView-controlled data acquisi-
tion system with the sampling rate of 25 s-1. To control the
parallel movement of semiconductor wafers, a control system
was customized. Semiconductors were fixed on the desk and
pressure sensor, respectively. Under the control of a
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microcontroller unit and computer, the pressure sensor
moved horizontally along with the sliding rail at a constant
speed. The pressure and speed can slightly change with a var-
iation of 10% as the inherent mechanical error such as the
flatness of the mechanical arm and frame.
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