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Abstract 

Background:  Thiazoles, thiazolidinones and azetidinones are highly ranked amongst natural and synthetic heterocy-
clic derivatives due to their great pharmaceutical potential.

Results:  New thiazolidinone and azetidinone class of bioactive agents based on 4-(2,7-dichloro-9H-fluoren-4-yl)
thiazole moiety have been successfully synthesized. 4-(2,7-dichloro-9H-fluoren-4-yl)thiazol-2-amine was synthesized 
and allowed to react with various aryl/heteroaryl aldehydes to afford the corresponding Schiff base intermediates. 
The target thiazolidinone and azetidinone analogues have derived from Schiff bases by their reactions with thiogly-
colic acid and chloroacetyl chloride, respectively. The newly synthesized compounds were then evaluated for their 
antimicrobial activity against some multidrug resistant strains and examined for cytotoxic activity against normal lung 
fibroblast (WI-38), human lung carcinoma (A549), and human breast carcinoma (MDA-MB-231) cell lines to develop 
a novel class of fluorene-based bioactive agents. The mode of action and the binding interaction of the synthesized 
compound with the active sites of dihydrofolate reductase enzyme were well identified by fluorescence-activated cell 
sorting (FACS) analysis and molecular docking study.

Conclusion:  Some of the synthesized compounds showed remarkable activity against A-549 and MDA-MB-231 
when compared to Taxol, which was used as a reference drug. 2,7-dichloro-9H-fluorene-based azetidinones are more 
efficient as antimicrobial and anticancer agents compared to dichloro-9H-fluorene-based thiazolidinones derivatives.
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Introduction
In the last few years, fluorene derivatives exposed effec-
tive uses as precursors in broad ranging of synthetic 
and medical applications [1]. As example, 2,7-dichloro-
7H-fluorene considered as a backbone moiety for the 
synthesis of a well-known antimalarial drug which 
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known as Lumefantrine [2] (Fig. 1). On the other hand, 
heterocyclic compounds are highly ranked amongst nat-
ural and synthetic pharmaceutically significant agents. 
The fabulous ability of heterocyclic moiety to serve as 
both biomimetic and active pharmacophores has mainly 
contributed to their distinctive value as traditional key 
elements of various drugs. Due to their broad pharmaco-
logical profile, the nitrogen and sulfur-containing hetero-
cycles demonstrate an imperative class in the biological 
research and drug industry areas [3–8]. Amongst them, 
the thiazole ring is a core structural moiety found in a 
wide range of biologically and medicinally active mol-
ecules. The thiazole derivatives are useful for treatment 
of several diseases such as allergies [9], hypertension [10], 
microbial [11], human immunodeficiency virus (HIV) 
infections [12], inflammation [13], and schizophrenia 
[14]. Moreover, 4-thiazolidinone and its derivatives have 
considerable attention for the last decades due to their 
pharmacological potential. These derivatives are known 
to acquire several promising chemotherapeutical activi-
ties such as antihistaminic [15], anti-inflammatory [16], 
hypolipidaemic [17], antimicrobial [18], anticonvulsant 
and antipsychotic [19], antimalarial [20], and anti-cancer 
[21] activities. Numerous drugs containing thiazole or 
4-thiazolidinone moieties in their structure used in broad 
range in the pharmaceutical market such as Niridazole, 
Abafungin, Fanetinole, Ralitoline and Etozoline (Fig.  1). 
The traditional synthesis of 4-thiazolidinone derivatives 
involves cycloaddition of Schiff base with thioglycolic 
acid [22]. Additionally, the 2-azetidinone moiety is com-
monly show wide range of biological activities and exist 
in several β-lactam antibiotics such as penicillins, car-
bapenems and cephalosporins (Fig. 1) which are used as 
broad spectrum antibacterial agents. A large number of 
3-chloro monocyclic β-lactam exhibits powerful antimi-
crobial, anticonvulsant, anti-inflammatory and antitu-
bercular activities [23–25]. Conventional synthesis of 
3-chloro-2-azetidinones involves [2 + 2] Staudinger’s 
ketene-imine cycloaddition reaction between chloroa-
cetyl chloride and Schiff bases [26].

On the other hand, dihydrofolate reductase (DHFR) 
is an indispensable enzyme that catalyzes the NADPH-
dependent reduction of 7,8-dihydrofolate (DHF) to 
5,6,7,8-tetrahydrofolate (THF), which is the precursor 
of the cofactors compulsory for the biosynthesis of thy-
midine and purine nucleotides [27]. Accordingly, inhibi-
tion of dihydrofolate reductase lead to the disturbance 
of deoxyribonucleic acid (DNA) synthesis and the death 
of the proliferating cells [27, 28]. Furthermore, bacte-
ria need DHFR to grow and multiply and consequently 
inhibitors discerning for bacterial in contradiction of 
host DHFR have found usage as antibacterial agents [29]. 
These two remarkable features render DHFR enzyme as 

one of the main targets for both antimicrobial and anti-
cancer drug design [30, 31].

In the light of the previous findings, we predicted that 
the combining of 2,7-dichlorofluorene moiety with the 
versatile thiazole, thiazolidinone and azetidinone phar-
macophores into a single chemical structure could be 
competent for antimicrobial and anticancer activities 
[30–34]. As part of our interest towards the development 
of novel bioactive organic molecules [30–34], a drug 
strategy has been planned to synthesis of some novel 
2-(aryl/heteroaryl)-3-(4-(2,7-dichloro-9H-fluoren-4-yl)
thiazol-2-yl)thiazolidin-4-ones and 3-chloro-4-(aryl/
heteroaryl)-1-(4-(2,7-dichloro-9H-fluoren-4-yl)thiazol-
2-yl)azetidin-2-ones with the anticipation to improve the 
antimicrobial activity against multidrug resistant strains 
and anticancer activity against human lung carcinoma 
(A549), and human breast carcinoma (MDA-MB-231) 
cell lines.

Results and discussion
Chemistry
As the inhibition of DHFR is commonly considered as 
one of the most prominent mechanism in elucidating 
antimicrobial and anticancer activities [35, 36], the com-
pounds synthetic approaches were designed in order to 
achieve: (i) possess hydrophilic and hydrophobic parts 
that can interact with the hydrophilic and hydrophobic 
regions of the DHFR active site, respectively; (ii) com-
ply with the pharmacophores that may interest as DHFR 
inhibitors, as presented in Fig. 2.

A distinctive synthetic approach employed to synthe-
size the target fluorene derivatives (5, 6) in good yields 
is described in Schemes  1 and 2. The synthetic strat-
egy starts with a simple and convenient methodology 
to 2-chloro-1-(2,7-dichloro-9H-fluoren-4-yl)ethanone 
(2) involving direct chloroacetylation of 2,7-dichloro-
9H-fluoren (1) is performed in excellent yield by adding 
a solution of 1 in dichloromethane (DCM) at 0–5  °C to 
a suspension of chloroacetyl chloride and aluminum 
chloride in dichloromethane according to our previously 
reported procedure [31]. Accordingly, 4-(2,7-dichloro-
9H-fluoren-4-yl)thiazol-2-amine (3) is attained in 97% 
yield via Hantzsch reaction of 2-chloro-1-(2,7-dichloro-
9H-fluoren-4-yl)ethanone (2) with thiourea in refluxing 
ethanol (Scheme 1).

4-(2,7-Dichloro-9H-fluoren-4-yl)thiazol-2-amine (3) 
on condensation with different aryl/heteroaryl aldehydes 
in ethanol using catalytic amount of piperidine under 
reflux conditions afforded 4-(2,7-dichloro-9H-fluoren-
4-yl)-N-(aryl/heteroaryl-methylene)thiazol-2-amine 
(4a–n) in 71–96% yields. Cyclocondensation of com-
pounds (4a–n) with thioglycolic acid in tetrahydrofuran 
(THF) in presence of N,N′-dicyclohexylcarbodiimide 
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(DCC) as a dehydrating agent under reflux conditions 
yielded the target 2-(aryl/heteroaryl)-3-(4-(2,7-dichloro-
9H-fluoren-4-yl)thiazol-2-yl)thiazolidin-4-ones (5a–n) in 
64–90% yields. Moreover, 4a–n when subjected to cyclo-
condensation with chloroacetyl chloride in dimethylfor-
mamide (DMF) at room temperature, 3-chloro-4-(aryl/
heteroaryl)-1-(4-(2,7-dichloro-9H-fluoren-4-yl)thiazol-
2-yl)azetidin-2-ones (6a–n) were obtained in moderate 
to excellent yields (51–98%) (Scheme 2).

The chemical structures of all synthesized compounds 
5a–n and 6a–n were well-confirmed based on spec-
troscopic data such as Fourier transform infrared (FT-
IR), proton nuclear magnetic resonance (1H-NMR), 
carbon-13 nuclear magnetic resonance (13C-NMR) and 

The distortionless enhancement by polarization transfer 
(DEPT-135) data (c.f. “Experimental” section and Addi-
tional file  1). The FT-IR spectra of compounds 5a–n 
revealed the presence of characteristic absorption bands 
at 1780–1680  cm−1 for (C=O) group, 1636–1600  cm−1 
for (C=N) group. Furthermore, to fully establish the 
chemical structures of the products, intensive 1D 
(1H, 13C, and DEPT-135) NMR spectroscopic analy-
sis were recorded. For example, analysis of the 13C and 
13C-DEPT-135 NMR spectra of 5a indicated the pres-
ence of 23 signals representing the 23 of nonequivalent 
carbons (10 aromatic quaternary carbons, 9 aromatic 
CH’s, 2 methylene carbons, one methine carbon and one 
carbonyl carbon). Its 1H-NMR spectrum showed three 

Fig. 1  Representative examples of drugs containing 2,7-dichloro-9H-fluorene (I), thiazole (II), 4-thiazolidinone (III) and 2-azetidinone (IV) moieties
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singlet signals at 7.66, 7.60, 7.28  ppm and two doublets 
at 7.48 and 6.99 ppm (J = 8.0 Hz) for five protons of the 
fluorene moiety. A multiplet at 7.20, 6.94 ppm and dou-
blet signals at 7.38, 6.27  ppm (J = 8.0  Hz) appeared for 
the protons of phenyl moiety. In addition to this, a sin-
glet signal at 6.76 ppm for thiazole moiety. Three singlet 
signals at 3.98, 3.60 and 3.51  ppm corresponded to two 
methylene and one methine protons.

On the other hand, the FT-IR spectra of compounds 
6a–n showed the presence of characteristic absorp-
tion bands at 1792–1697  cm−1 for (C=O) group, 
1698–1598  cm−1 for (C=N) group. Indeed, the 13C and 
13C-DEPT-135 NMR spectra of 6b indicated the presence 
of 24 signals representing the 24 of nonequivalent car-
bons (11 aromatic quaternary carbons, 8 aromatic CH’s, 
2 methine carbons, one methylene carbon, one methyl 
carbon and one carbonyl carbon). Its 1H-NMR spec-
trum showed two doublets at 7.87 and 7.27 ppm (J = 8.0, 
8.0 Hz), three singlet signals at 7.70, 7.50 and 7.21 ppm 
for five protons of the fluorene moiety. Two multi-
plets at 7.64 and 7.44  ppm appeared for the protons of 
4-methoxyphenyl moiety. In addition, a singlet signal at 
7.12 ppm for thiazole moiety. Four singlet signals at 4.45, 
4.28, 4.20, and 4.01 ppm corresponded to the one methyl, 
two methine and one methylene protons.

Biological activity
Antimicrobial activity
Nowadays, the microbial resistance to currently found 
antibiotics is considered a precarious problem. Therefore, 
performing some more trials and efforts to identify novel 
targets for discovering new antibiotics is supposed to be 
a strong challenge [37]. The multidrug resistant bacteria 
have been reported with a diversity of nosocomial and 
community acquired infections as pneumonia, surgical 
site infections and urinary tract infections [38].

In the current study, the synthesized fluorene deriva-
tives 5a–n and 6a–n were evaluated for their antimi-
crobial activity against multidrug resistant strains of 
Gram-positive bacteria such as staphylococcus aureus 
(S. aureus), methicillin-resistant Staphylococcus aureus 
(MRSA) and Streptococcus pneumoniae (S. pneumoniae) 
and Gram-negative bacteria such as Escherichia coli (E. 
coli), Klebsiella pneumoniae (K. pneumoniae), Pseu‑
domonas aeruginosa (P. aeruginosa) and Acinetobacter 
baumannii (A. baumannii) as well as three fungal strains 
such as Aspergillus flavus (A. flavus), Aspergillus niger 
(A. niger) and Candida albicans (C. albicans). Screening 
the antimicrobial activity was done by agar well diffu-
sion assay [39] using a concentration of 500 µg/mL of the 
tested fluorene compounds, the results of the antimicro-
bial assay are given in Tables 1, 2, 3. It is clearly observed 
that some of the newly synthesized fluorene derivatives 

Fig. 2  Structural fragments of DHFR inhibitors in the DHFR enzymatic active site

Scheme 1  Synthesis of 4-(2,7-dichloro-9H-fluoren-4-yl)thiazol-2-amine (3)
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exhibited comparatively high antimicrobial activity when 
compared to the positive reference drugs; vancomycin for 
Gram-positive bacteria, gentamicin for Gram-negative 
bacteria and fluconazole for fungi. It’s worthy to men-
tion that, the thiazolidinone derivatives 5g, 5h, 5i and 5l 
produced relative high activity against S. aureus with a 
zone of inhibition (ZOI) value 10  mm, 11  mm, 10  mm, 
and 9 mm, respectively. While the compound 5j showed 
higher activity against E. coli and P. aeruginosa with a 
zone of inhibition (ZOI) value 10 mm and 8 mm, respec-
tively (Table 1).  

Furthermore, azetidinone derivatives 6a–n achieved 
relatively high antimicrobial activity against both Gram 
positive and Gram-negative bacteria, particularly 6h 
against S. aureus, MRSA, E. coli and P. aeruginosa with 
a ZOI value 12 mm, 15 mm, 22 mm, and 8 mm, respec-
tively. However, a higher activity was shown against E. 
coli with ZOI value 27  mm for compound 6m. On the 
other hand, 6d showed moderate activity against Gram-
negative bacteria E. coli, K. pneumoniae and P. aerugi‑
nosa with a ZOI value 15 mm, 6 mm, 10 mm, and 8 mm, 
respectively. However, low activity was shown against S. 
aureus and no activity was shown against both MRSA 

Scheme 2  Synthesis of the target thiazolidinone derivatives 5a–n and azetidinone derivatives 6a–n 
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and S. pneumoniae. Moreover, the compound 6n showed 
moderate antimicrobial activity against E. coli and P. 
aeruginosa with a ZOI value 19 mm and 13 mm, respec-
tively. The rest of the newly synthesized fluorene deriva-
tives display low antimicrobial activity therefore these 
derivatives have potential for further comprehensive 
studies (Table 2).

The minimum inhibitory concentration (MIC) of the 
most active newly synthesized fluorene derivatives was 
determined and reported in Table  3. The MIC varied 
within the range (500  µg/mL–7.8  µg/mL). Compounds 
5h and 6e were potent against Gram positive bacte-
ria particularly S. aureus with an MIC value 62.5  µg/
mL. Also, 6h was potent but against both S. aureus and 
MRSA with an MIC (62.5–31.25  µg/mL, respectively). 
Furthermore, a lower MIC was observed by the com-
pound 6l against both S. aureus and MRSA as the MIC 
value was (31.25 µg/mL). On the other hand, the newly 
synthesized fluorene derivatives showed higher activity 
against Gram negative bacteria which is clearly achieved 
by the compound 6j, 6k, 6l and 6 m with MIC ranged 
from (31.25–15.6  µg/mL) specially against E. coli. All 
results were compared to vancomycin and Gentamicin as 
antibacterial reference drug (Table 3).

It’s worth to report that, the obtained biological 
activities make the newly synthesized novel fluorene 
derivatives 5a–n and 6a–n, interesting molecules 
for the synthesis of new antibiotics either alone or in 

combination with other compounds, and subsequently 
help in fighting the multidrug resistant superbugs.

In vitro anticancer activity
The synthesized new fluorene derivatives 5a–n and 6a–n 
were tested as anti-proliferative agents against WI-38 
normal human lung fibroblast cells, A549 adenocarci-
nomic human alveolar basal epithelial cells, and MDA-
MB-231 human breast cancer cells and they showed 
selectivity in their cytotoxic activity. A well-known chem-
otherapeutic agent, Taxol (IC50 = 41, 2.30, and 40 µg/mL 
for WI-38, A549, and MDA-MB-231, respectively) was 
used as reference control. The obtained results are pre-
sented in Tables 4, 5, 6, 7, 8, 9 and Figs. 3, 4, 5, 6, 7, 8.

Quantitatively, 5m, 5n, 5l, 5d, and 5k showed mod-
erate cytotoxic effect on normal cell lines with IC50 (92, 
130, 223, 268, 288 µg/mL); respectively, as shown in Fig. 3 
and Table 4 but less effective on A549 and MDA-MB-31 
cancer cells. Briefly, 5m, 5n, 5b, 5a, 5c, 5d, and 5l with 
IC50 (357, 380, 402, 413, 415, 574, and 577  µg/mL) on 
A549 cells as shown in Fig. 3 and Table 5; 5m, 5n, 5b, 5a, 
5c, 5f, 5g, 5d, 5l, and 5k with (357, 380, 402, 413, 415, 
567, 572, 574, 577, and 613  µg/mL) on MDA-MB-231 
cells, respectively, as shown in Fig. 3 and Table 6. In con-
clusion, 5g is the only compound that exerts a moderate 
anti-cancer activity on both lung and breast cancer cells.

Fluorescence-activated cell sorting (FACS) analysis for 
annexin V and PI staining to follow the mechanisms of 

Table 1  Antimicrobial activity of the newly synthesized thiazolidinone derivatives 5a–n against the multidrug resistant 
tested microbial strains

Mean zone of inhibition in mm, –  resistant

PC positive control (Vancomycin 50 µg/mL for Gram-positive bacteria and Gentamicin 10 µg/mL for Gram-negative bacteria), fluconazole 25 µg/mL for fungi

Comp. Gram (+ve) bacteria Gram (−ve) bacteria Fungi

S. aureus MRSA S. pneumoniae E. coli K. 
pneumoniae

P. aeruginosa A. baumannii A. flavus A. niger C. albicans

5a 3 – – – – – – – – –

5b 4 – – – – – – – – –

5c 3 – – – – – – – – –

5d 4 – – – – – – – – –

5e – – – – – – – – – –

5f – – – – – – – – – –

5g 10 – – – – – – – – –

5h 11 – – – – – – – – –

5i 10 – – – – – – – – –

5j 6 – – 10 – 8 – – – –

5k – – – – – – – – – –

5l 9 – – 6 – – – – – –

5m 5 – – 8 – – – – – –

5n 7 – – – 5 – – – – –

PC 28 26 20 28 20 30 20 18 18 20
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cell death show that 5g induce necrotic cell death as the 
following (15.8%, 16.7%, and 14.1% of total cell number) 
on WI-38, A549, and MDA-MB-231 cells, respectively. 
On the other hand, induce insignificant apoptotic cell 
death with (1.5%, 1.25%, and 1.34% of total cell number) 
as shown in Fig. 4.

Moreover, in  vitro anti-proliferative effect of azeti-
dinone derivatives 6a–n on normal lung cells, lung and 
breast cancer cells and uncover the mechanisms of cell 
death in selected drugs which show anti-cancer activities.

Concisely, compounds 6e, 6f, and 6g bearing 
4-(dimethylamino)phenyl, 4-nitrophenyl and 4-car-
boxyphenyl moieties, respectively, exerted an observed 

Table 2  Antimicrobial activity of  the  newly synthesized azetidinone derivatives 6a–n against  the  multidrug resistant 
tested microbial strains

Mean zone of inhibition in mm, – = resistant

PC positive control (Vancomycin 50 µg/mL for Gram-positive bacteria and Gentamicin 10 µg/mL for Gram-negative bacteria), fluconazole 25 µg/mL for fungi

Comp. Gram (+ve) bacteria Gram (−ve) bacteria Fungi

S. aureus MRSA S. pneumoniae E. coli K. 
pneumoniae

P. aeruginosa A. baumannii A. flavus A. niger C. albicans

6a 5 – – 13 – – – – – –

6b – – – 12 – – – – – –

6c 7 – – 15 6 10 – – – –

6d 3 – – 5 5 8 – – – –

6e 12 – – – – – – – – –

6f 10 – – – – – 5 – – –

6g – – – – – – – – – –

6h 12 15 – 15 3 – – – – –

6i – – – 12 3 – – – – –

6j 9 – – 20 – – 6 – – –

6k 7 – – 14 3 11 – – – –

6l 15 15 – 22 – 8 – – – –

6m 4 6 – 27 3 – – – – –

6n 9 – – 19 5 13 5 – – –

PC 28 26 20 28 20 30 20 18 18 20

Table 3  Determination of  minimum inhibitory concentration (MIC) of  the  most active newly synthesized fluorene 
derivatives 5a–n and 6a–n 

Comp. Tested strain/MIC (µg/mL)

S. aureus MRSA E. coli K. pneumoniae P. aeruginosa

5h 62.5 – – – –

5j – – 62.5 – 62.5

6c – – 62.5 125 –

6e 62.5 – – – –

6h 62.5 31.25 31.25 – –

6j – – 31.25 – –

6k – – 31.25 – 125

6l 31.25 31.25 31.25 – 125

6m – – 15.6 – –

6n – – 31.25 – 62.5

Gentamicin 10 µg/mL – – 0.3 0.3 0.3

Vancomycin 50 µg/mL 0.7 0.7 – – –

DMSO – – – – –
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cytotoxic activity with IC50 (65.4, 29, and 40 µg/mL); cor-
respondingly, against WI-38 normal lung cells compared 
with taxol which induce cell death with IC50 (41 µg/mL) 
as shown in Fig. 5 and Table 7. In the case of A549 lung 
cancer cells, compounds 6a, 6c, 6d, 6j, 6k, 6l, and 6n 
bearing phenyl, 4-cholorophenyl, 4-bromophenyl, furan-
2-yl, thiophen-2-yl, 1H-pyrrol-2-yl, and quinolin-4-yl 
moieties, respectively, showed weak anti-proliferative 
activity with IC50 (185, 85, 117, 175, 203, 95, and 159 µg/
mL); respectively, compared with taxol (IC50 2.3 µg/mL) 
as shown in Fig.  5, Table  8. Moving to MDA-MB-231 
breast cancer cells, the screening result showed that com-
pounds 6c, 6d, 6f, 6i, and 6k bearing 4-cholorophenyl, 
4-bromophenyl, 4-nitrophenyl, styryl, and thiophen-2-yl 
moieties exhibited cytotoxicity with IC50 (104, 169, 188, 
120, and 131  µg/mL); respectively, compared with (IC50 
40 µg/mL) for Taxol as illustrated in Fig. 5 and Table 9. 
In conclusion, we can quantitatively conclude that, com-
pounds 6c, 6d and 6k exerted ant-cancer activity on nor-
mal lung cells versus lung and breast cancer cells with 
IC50 (515, 759, and 528 µg/mL), (85, 117, and 203 µg/mL), 
and (104, 169, and 131 µg/mL), respectively.

Additional study using FACS analysis was done to 
expose the mechanism of cell death for compounds 6c, 
6d and 6k. Flow cytometry using annexin V and propid-
ium Iodide show that, 6c, 6d and 6k induced low necrotic 
cell death (14.5%, 14.1%, and 9.93%) of total cell number 
while inducing non-observed apoptotic cell death (1.22%, 
1.34% and 0.61%) of total cell number as shown in Figs. 6, 
7, 8, correspondingly. In the case of lung cancer cells, 6c, 
6d and 6k induced markedly apoptotic cell death with 
(27.32%, 36.3%, and 32.67%) while inducing insignificant 

necrotic cell death with (2.1%, 2%, and 1.71%) of total cell 
populations. More interestingly, the selective compounds 
show a highly significant apoptotic cell death induc-
tion with (80.32%, 55.355, and 67.25) of total cell num-
ber while inducing in visible necrotic cell death (2.15%, 
6.515%, and 4.56%); respectively.

Docking and molecular modeling study
Molecular Docking study of 28 new synthesized com-
pounds 5a–n and 6a–n has been performed. The main 
idea was to build molecules that have the ability to inter-
calate between the DNA base pairs while in the same 
time be able to stabilize their intercalating complex 
through formation of different bonding with topoisomer-
ase I amino acids. Molecular Docking study was done in 
order to comprehend the mechanism of interaction of 
the synthesized compounds with DNA topoisomerase 
I and to verify the difference in activity as antibacterial 
and anticancer between different synthesized ana-
logues. Molecular Operating Environment (MOE®) ver-
sion 2019.01, Chemical Computing Group (CCG) Inc., 
Montreal, Canada was used for this purpose [Molecu-
lar Operating Environment (MOE)], Version, Chemical 
Computing group Inc., Montreal, Quebec, Canada, 2016. 
http://www.chemc​omp.com.].

The crystal structure of DNA topoisomerase I was 
obtained from Protein Data Bank [https​://www.rcsb.
org] at 3.0°A resolution (PDB code: 1T8I). It consists 
of 592 amino acid residues in one chain. After prepara-
tion of the enzyme, molecular docking of the cocrys-
tallised Camptothecin ligand was done (Fig.  9) with 
different placement protocol in order to choose the best 

Table 4  In vitro cytotoxic screening of 5a–n against WI-38 human normal fibroblast cells

Comp. Validity (%) for sample concentrations (µg/mL) IC50 (µg/mL)

0 31.25 62.50 125 250 500

5a 100 89.8 83.3 80.6 77.3 74.3 1061

5b 100 99.4 94.4 91.3 81.2 79.00 1173

5c 100 89.7 87.3 83.8 77.5 71.3 996

5d 100 94.9 88.5 86.09 50.7 44.2 268

5e 100 92.4 85.7 74.4 69.3 62.9 854

5f 100 82.5 81.9 76.97 74.3 67.8 948

5g 100 96.7 95.1 90.2 85.8 79.2 1193

5h 100 94.97 81.7 78.7 72.8 66.2 900

5i 100 88.2 86.9 69.1 63.1 59.3 796

5j 100 84.2 66.1 61.5 39.1 38.5 196

5k 100 80.8 71.4 64.8 51.4 41.9 288

5l 100 70.5 60.6 57.2 48.1 39.5 223

5m 100 68.5 64.6 42.3 40.3 26.5 92

5n 100 54.3 51.5 50.8 46.4 40.5 130

http://www.chemcomp.com
https://www.rcsb.org
https://www.rcsb.org
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methodology for docking. The Triangle matcher place-
ment method showed RMSD value of less than 2 (1.3581) 
which indicates the confidence in the produced dock-
ing results. As can be seen from the 2D and 3D interac-
tion between Camptothecin and DNA topoisomerase I 
enzyme, Camptothecin acts mainly through intercalation 
between DNA base pairs which halts the ability division 
of DNA double strand.

Molecular docking of the conformation database of the 
42 synthesized compounds into the active site of DNA 
topoisomerase I was carried out using the mentioned 

protocol with the results refinement using force-field 
based scoring function GBVI/WSA dG which estimates 
the free energy of binding of the ligand from a given pose. 
The functional form is a sum of terms:

C is represents the average gain/loss of rotational and 
translational entropy. α, β is constants which were deter-
mined during training (along with c) and are forcefield-
dependent. Ecoul is the columbic electrostatic term, 

�G ≈ c + α

[

2

3
(�Ecoul +�Esol)+�Evdw + β�SAweighted

]

Table 5  In vitro cytotoxic screening of 5a–n against A549 human lung cancer cells

Comp. Validity (%) for sample concentrations (µg/mL) IC50 (µg/mL)

0 1 10 31.25 62.50 125 250 500 1000

5a 100 95.6 91.4 86.8 82.3 79.7 75.4 45.5 12.5 413

5b 100 91.2 85.4 83.99 67.8 64.3 57.1 44.2 17.8 402

5c 100 91.2 90.1 89.2 80.9 62.6 59.8 46.3 14.9 415

5d 100 98.4 91.7 88.9 82.2 78.8 73.01 58.6 18.1 574

5e 100 93.4 90.2 85.6 77.3 72.2 65.7 62.2 48.9 847

5f 100 94.97 89.8 86.96 83.8 79.2 75.4 65.5 12.6 567

5g 100 93.7 90.3 88.7 78.6 84.1 75.7 56.3 16.8 572

5h 100 92.9 91.4 90.3 88.7 85.7 82.7 77.2 68.0 1607

5i 100 93.3 92.2 91.4 85.6 81.3 76.9 63.2 49.3 896

5j 100 92.9 84.6 83.6 82.5 81.6 77.5 71.4 52.5 1046

5k 100 95.2 92.3 85.9 83.9 79.6 76.9 60.9 22.6 613

5l 100 96.5 93.6 75.4 72.2 68.01 62.9 51.9 41.3 577

5m 100 94.01 92.5 70.7 67.5 64.5 56.5 37.3 20.1 357

5n 100 94.2 91.2 83.1 78.6 70.7 58.9 27.3 8.02 380

Table 6  In vitro cytotoxic screening of 5a–n against MDA-MB-231 human breast cancer cells

Comp. Validity (%) for sample concentrations (µg/mL) IC50 (µg/mL)

0 1 10 31.25 62.5 125 250 500

5a 100 98.3 96.7 93.6 86.1 85.9 82.5 75.8 1498

5b 100 97.8 97.4 90.8 88.6 87.3 83.6 81.5 1625

5c 100 97.1 95.7 95.8 92.1 86.3 84.5 83.04 1690

5d 100 96.8 94.4 93.7 92.4 88.4 87.2 85.7 1740

5e 100 97.3 96.3 93.6 92.6 85.5 75.9 73.7 1405

5f 100 98.1 97.2 88.95 84.7 81.03 79.6 77.5 1540

5g 100 92.6 87.3 80.9 72.2 67.7 63.2 58.5 525

5h 100 90.9 82.8 79.3 76.8 71.7 61.7 56.7 514

5i 100 96.00 83.8 61.00 56.2 52.2 50.5 46.1 334

5j 100 94.4 74.8 66.99 61.4 60.2 57.2 49.3 435

5k 100 92.3 85.8 68.7 60.8 56.7 50.6 42.98 330

5l 100 99.11 87.6 79.7 76.2 72.4 64.6 57.8 522

5m 100 97.3 89.5 85.4 88.3 76.9 65.6 50.6 505

5n 100 98.7 91.0 92.8 90.6 76.8 58.7 27.2 315
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which is calculated using currently loaded charges, using 
a constant dielectric of 1. Esol is the solvation electro-
static term which is calculated using the GB/VI solvation 
model. Evdw is the Van der Waals contribution to bind-
ing. SAweighted is the surface area weighted by exposure.

The output docking results were arranged according to 
scoring function and explored using the browser function 
embedded in MOE software. Representation of 2D and 
3D of the ligand interaction between all the synthesized 
compounds and DNA topoisomerase I enzymes is shown 
in Fig. 10. The synthesized compounds can be sorted into 

two different groups 5 and 6 according to the attachment 
to the (9H-fluoren-4-yl)thiazole; first the attachment is 
through thiazolino-4-one moiety and second the attach-
ment is through β-lactam ring. Upon examining the 
scoring results, most of the highest active compounds 
showed better energy scores. So, compounds 5e, 5h, 5l, 
6e and 6h showed high scores in comparison with other 
analogues. The scores were in the range of − 9.0685 to 
− 8.4903 kcal/mole.

The details of the interactions are as the following: 
most of the compounds were able to intercalate between 

Table 7  In vitro cytotoxic screening of 6a–n against WI-38 human normal fibroblast cells

Comp. Validity (%) for sample concentrations (µg/mL) IC50 (µg/mL)

0 31.25 62.50 125 250 500

6a 100 71.1 66.1 59.1 49.1 47.1 241

6b 100 94.1 87.9 71.6 62.6 57.7 520

6c 100 94.5 65.9 63.4 59.5 55.5 515

6d 100 92.01 88.1 78.6 67.5 67.7 759

6e 100 68.8 52.5 45.6 38.6 26.8 65.4

6f 100 49 44.8 35.6 32.3 30.4 29

6g 100 73.9 42.00 37.4 35.7 30.6 40

6h 100 85.01 70.6 60.4 51.8 49.4 487

6i 100 83.1 76.5 56.5 49.2 39.2 240

6j 100 87.3 81.4 66.3 60.9 37.2 356

6k 100 77.9 64.03 61.3 60.3 58.3 528

6l 100 94.01 76.4 70.2 52.5 39.02 350

6m 100 78.5 72.8 68.5 63.00 55.7 512

6n 100 98.6 85.9 53.2 43.3 39.8 212

Table 8  In vitro cytotoxic screening of 6a–n against A549 human lung cancer cells

Comp. Validity (%) for sample concentrations (µg/mL) IC50 (µg/mL)

0 1 10 31.25 62.50 125 250 500 1000

6a 100 98.6 89.1 79.2 75.9 70.3 30.7 20.8 14.4 185

6b 100 95.7 86.9 85.8 83.5 77.8 68.2 35.2 36.3 338

6c 100 92.4 80.7 59.8 54.2 31.3 25.1 19.7 17.7 85

6d 100 97.9 92.6 77.2 67.3 49.02 24.6 20.4 19.4 117

6e 100 95.4 90.3 87.5 81.7 71.1 50.7 33.2 28.8 276

6f 100 91.3 89.8 86.2 83.2 67.3 46.6 38.6 25.4 230

6g 100 94.5 90.1 86.9 73.5 68.9 63.1 18.4 14.4 308

6h 100 89.5 80.9 78.98 75.8 63.5 37.9 33.03 30.3 192

6i 100 96.6 91.9 89.4 78.1 76.3 67.9 53.3 49.4 801

6j 100 95.6 87.8 76.6 68.2 54.00 31.3 29.2 28.3 175

6k 100 90.8 80.8 75.98 70.6 55.4 39.8 28.7 23.0 203

6l 100 85.04 72.2 58.1 53.6 43.1 34.0 30.3 27.9 95

6m 100 91.5 81.8 67.6 65.9 62.7 58.7 54.1 49.8 830

6n 100 93.3 83.6 67.9 64.2 52.7 43.2 39.1 36.3 159
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the DNA base pairs while forming hydrophobic interac-
tions with the different nucleic acid skeleton and forming 
other types of interaction with the amino acid residues in 
the topoisomerase I enzyme. So, for all the compounds 
beside intercalation with DNA, the following binding 
interaction was present: Compound 5e interacts with the 

active site through formation of hydrogen bond between 
the sulfur of the thiazole ring and ASN352 with a dis-
tance of 4.03  Ǻ; beside hydrophobic interactions with 
different amino acid residues like LYS425 and TYR426. 
Compound 5h interacts with the active site through 
formation of 4 hydrogen bonds between the hydroxyl, 

Table 9  In vitro cytotoxic screening of 6a–n against MDA-MB-231 human breast cancer cells

Comp. Validity (%) for sample Concentrations (µg/mL) IC50 (µg/mL)

0 1 10 31.25 62.50 125 250 500

6a 100 99.4 92.4 90.7 83.1 78.3 69.6 63.2 612

6b 100 95.9 93.4 89.7 84.2 79.8 72.9 68.9 749

6c 100 92.8 77.8 63.1 53.1 46.04 29.4 24.8 104

6d 100 93.3 89.1 75.8 63.3 53.1 27.7 24.00 169

6e 100 98.2 90.2 89.9 85.2 69.2 41.9 39.4 215

6f 100 91.8 89.6 83.00 72.4 59.7 37.2 28.9 188

6g 100 96.7 93.9 91.2 82.9 71.1 65.5 55.6 576

6h 100 94.3 90.4 85.8 77.8 73.6 68.5 65.8 685

6i 100 94.2 89.1 66.8 55.9 49.2 24.3 18.2 120

6j 100 96.3 92.9 75.6 73.1 69.01 53.2 50.6 508

6k 100 96.4 90.7 78.6 69.6 51.00 33.3 19.1 131

6l 100 96.9 90.4 85.5 71.9 69.8 66.7 60.9 603

6m 100 93.2 89.9 77.6 73.2 67.1 63.4 59.5 590

6n 100 96.2 89.5 86.8 81.3 73.2 67.1 59.2 584
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Fig. 3  IC50 of the tested compounds 5a–n against WI-38, A549, and MDA-MB-231 cancer cells after 24 h treatments
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Fig. 4  Apoptotic and necrotic cell death were assessed using Annexin V and Probidium Iodide (PI) staining and analyzed using flow cytometer 
after 24 h treatment with 5g. a WI-38 cells control (DMSO), b WI-38 cell treated with 1000 µg/mL of 5g, c A549 cell treated with 500 µg/mL of 5g, d 
MDA-MB-231 cell treated with 500 µg/mL of 5g, and (E) quantification of apoptotic and necrotic cell death for each drug on MDA-MB-231 cells
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chloro, carbonyl group and sulfur of the thiazolidine ring 
and PRO357, LYS354, LYS425 and GLU418, respectively. 
The distances of hydrogen bonds in order are 2.72, 2.92, 
3.06 and 3.11 Ǻ. Compound 5l interacts with the active 
site through formation of 2 hydrogen bonds between 

sulfur of thiazolidinone ring and carbonyl group on one 
side and GLU356 and TRP426 on the other hand with 
distances of 3.00 and 3.15 Ǻ, respectively. Compound 
6e interacts with the active site through formation of 2 
hydrogen bonds between chloro groups on the fluorene 
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Fig. 5  IC50 of the tested compounds 6a–n against WI-38, A549, and MDA-MB-231 cancer cells after 24 h treatments

Fig. 6  Apoptotic and necrotic cell death were assessed using Annexin V and Probidium Iodide (PI) staining and analyzed using flow cytometer after 
24 h treatment of azetidinone derivatives. a WI-38 cells control (DMSO), b WI-38 cell treated with 500 µg/mL of 6c, c WI-38 cell treated with 500 µg/
mL of 6d, d WI-38 cell treated with 500 µg/mL of 6k, and e quantification of apoptotic and necrotic cell death for each drug on WI-38 cells
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moiety and on the β-lactam ring on one hand and 
MET428 and LYS425 on the other hand with distances 
of 3.76 and 3.72  Ǻ, respectively. Compound 6h inter-
acts with the active site through formation of 2 hydro-
gen bonds between keto group on the β-lactam ring and 
sulfur of the thiazole ring on one side and LYS374 and 
one of the DNA nucleic acids with a distance of 3.32 
and 3.72 Ǻ, respectively. The high activity of group three 
(β-lactam) against both cancer cell lines and bacteria may 
be attributed to the opening of the β-lactam ring and the 
increase in the flexibility of the molecules.

Conclusion
In this study, various 2,7-dichloro-9H-fluorene-based thi-
azolidinone and azetidinone derivatives were designed, 
synthesized, fully characterized and screened in  vitro 
against various multidrug resistant microorganisms 
as well as against human lung carcinoma (A-549) and 
human breast carcinoma (MCF-7) cell lines. The results 
indicated that 2,7-dichloro-9H-fluorene-based azetidi-
nones are more efficacious antimicrobial and anticancer 

agents compared to dichloro-9H-fluorene-based thiazo-
lidinones analogues. Hence, there is adequate scope for 
further study in developing such compounds as a good 
lead activity.

Experimental
Chemistry
General methods
All Chemicals and solvents used purchased from Sigma-
Aldrich are spectroscopic grade and used without further 
purifications. Melting points were determined on a Stu-
art SMP3 melting point apparatus and are uncorrected. 
FT-IR spectra were recorded on a Shimadzu IR-3600 
FT-IR spectrometer in KBr pellets. NMR spectra were 
acquired on a Bruker Avance 400 instrument (400 MHz 
for 1H, 100  MHz for 13C) in DMSO-d6 solutions, using 
residual solvent signals as internal standards. Starting 
materials 2,7-dichloro-9H-fluorene (2) and 2-chloro-1-
(2,7-dichloro-9H-fluoren-4-yl)ethanone (3) were pre-
pared according to our previously reported method [31].

Fig. 7  Apoptotic and necrotic cell death were assessed using Annexin V and Probidium Iodide (PI) staining and analyzed using flow cytometer after 
24 h treatment with azetidinone derivatives. a A549 cells control in dimethyl sulphoxide (DMSO), b A549 cell treated with 85 µg/mL of 6c, c A549 
cell treated with 117 µg/mL of 6d, d A549 cell treated with 200 µg/mL of 6k, and e quantification of apoptotic and necrotic cell death for each drug 
on A549 cells
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Fig. 8  Apoptotic and necrotic cell death were assessed using Annexin V and Probidium Iodide (PI) staining and analyzed using flow cytometer after 
24 h treatment with azetidinone derivatives. a MDA-MB-231 cells control (DMSO), b MDA-MB-231 cell treated with 105 µg/mL of 6c, c MDA-MB-231 
cell treated with 170 µg/mL of 6d, d MDA-MB-231 cell treated with 130 µg/mL of 6k, and e quantification of apoptotic and necrotic cell death for 
each drug on MDA-MB-231 cells

Fig. 9  2D and 3D interaction of folate and DNA topoisomerase I enzyme
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Synthesis of  4‑(2,7‑dichloro‑9H‑fluoren‑4‑yl)thia‑
zol‑2‑amine (3)  A mixture of chloroacetyl derivative 2 
(15.55 g, 50 mmol) and thiourea (5.70 g, 75 mmol) in etha-
nol (250 mL) was refluxed for 3 h. The reaction mixture 
was cooled and neutralized with saturated aqueous solu-
tion of sodium biocarbonate. The obtained solid product 
was filtered off, washed with cold water (3 × 50 mL), then 
with cold ethanol (3 × 10  mL), dried and recrystallized 
from ethanol to afford 16.15 gm (97%) of pure 2-aminothi-
azole derivative 3 as pale yellow crystals, m.p. 199–200 °C. 
FT-IR (KBr): ν (cm−1) 3282, 3106 (NH2), 1639 (C=N); 
1H-NMR (DMSO-d6): δ 7.66 (s, 1H, Flu-H), 7.63 (s, 1H, 
Flu-H), 7.55 (d, 1H, J = 5.5 Hz, Flu-H), 7.37 (s, 1H, Flu-H), 
7.31 (d, 1H, J = 5.5 Hz, Flu-H), 7.18 (s, 2H, NH2), 6.77 (s, 
1H, Thiazolyl-H), 4.00 (s, 2H, CH2); 13C-NMR (DMSO-
d6): δ 168.8 (C=N), 148.9 (C), 146.7 (C), 146.3 (C), 139.1 
(C), 136.9 (C), 133.5 (C), 131.9 (C), 131.2 (C), 128.7 (CH), 
126.9 (CH), 125.3 (CH), 125.1 (CH), 124.9 (CH), 105.5 
(Thiazole-CH), 36.7 (CH2).

Synthesis of 4‑(2,7‑dichloro‑9H‑fluoren‑4‑yl)‑N‑(aryl/het‑
eroaryl‑methylene)thiazol‑2‑amine 4a–n  A mixture of 
3 (10  mmol, 3.33  g) and appropriate aromatic aldehyde 
(10 mmol) in absolute ethanol (50 mL) was heated under 
reflux for 4 h in the presence of two drops of dry piperi-
dine. The reaction was concentrated and left to cool. The 
solid products were filtered and recrystallized from etha-
nol to give compounds 4a–n in 71–96% yields.

Synthesis of  2‑(aryl/heteroaryl)‑3‑(4‑(2,7‑dichloro‑9H
‑fluoren‑4‑yl)thiazol‑2‑yl)thiazolidin‑4‑ones (5a–n)  A 
mixture of Schiff base 4 (1.0 mmol) and thioglycolic acid 
(1.5 mmol) was stirred in THF with ice cooling for 5 min, 
followed by addition of DCC (308  mg, 1.5  mmol) was 
added to the reaction mixture at 0  °C, and the reaction 
mixture was stirred for an additional 50 min at room tem-
perature. Dicyclohexylurea was filtered off and the filtrate 
was concentrated under reduced pressure. The solid prod-
uct was collected, washed thoroughly with diluted sodium 

Fig. 10  Molecular docking of compounds 5e, 5h, 5l, 6e, 6h, and 6k 
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bicarbonate solution, dried and recrystallized from meth-
anol to afford the thiazolidinone derivatives 5a–n.

3‑(4‑(2,7‑Dichloro‑9H‑fluoren‑4‑yl)thiazol‑2‑yl)‑2‑phe‑
nylthiazolidin‑4‑one (5a)  Pale yellow crystals, yield 
(76%), m.p. 79–82  °C; FT-IR (KBr): ν (cm−1) 3064 (CH 
arom.), 2920 (CH aliph.), 1700 (C=O), 1621 (C=N); 1H 
NMR (400 MHz, DMSO-d6): δ 7.66 (s, 1H, Flu-H), 7.60 
(s, 1H, Flu-H), 7.48 (d, J = 8.0  Hz, 1H, Flu-H), 7.38 (d, 
J = 8.0 Hz, 2H, Ph-H), 7.28 (s, 1H, Flu-H), 7.20–7.17 (m, 
2H, Ph-H), 6.99 (d, J = 8.0 Hz, 1H, Flu-H), 6.98–6.95 (m, 
1H, Ph-H), 6.93 (s, 1H, Thiazole-H), 6.76 (s, 1H, CH), 
3.98 (s, 2H, CH2), 3.60 (s, 2H, CH2); 13C NMR (100 MHz, 
DMSO-d6): δ 171.5 (C=O), 166.5 (C=N), 148.8 (C), 
146.7 (C), 146.1 (C), 140.1 (C), 138.9 (C), 133.3 (C), 133.1 
(C), 131.8 (C), 131.5 (C), 129.9 (CH), 129.7 (CH), 129.1 
(CH), 128.9 (CH), 128.4 (CH), 127.1 (CH), 126.9 (CH), 
125.4 (CH), 106.9 (Thiazole-CH), 66.2 (CH), 37.0 (CH2), 
35.7 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(4‑methoxyphenyl)thiazolidin‑4‑one 
(5b)  Pale yellow crystals, yield (80%), m.p. 74–76  °C; 
FT-IR (KBr): ν (cm−1) 3008 (CH arom.), 2930 (CH aliph.), 
1694 (C=O), 1600 (C=N); 1H NMR (400 MHz, DMSO-
d6): δ 7.87 (d, J = 8.0 Hz, 1H, Flu-H), 7.67 (d, J = 8.0 Hz, 
2H, Ph-H), 7.57 (s, 1H, Flu-H), 7.48 (s, 1H, Flu-H), 7.45 
(d, J = 8.0 Hz, 1H, Flu-H), 7.32 (s, 1H, Flu-H), 7.11 (s, 1H, 
Thiazole-H), 6.93 (d, J = 8.0  Hz, 2H, Ph-H), 6.83 (s, 1H, 
CH), 4.00 (s, 2H, CH2), 3.87 (s, 3H, CH3), 3.76 (s, 2H, 
CH2); 13C NMR (100 MHz, DMSO- d6): δ 173.3 (C=O), 
168.9 (C=N), 148.7 (C), 146.6 (C), 146.1 (C), 139.2 (C), 
136.9 (C), 133.9 (C), 132.8 (C), 132.2 (C), 131.9 (C), 131.5 
(C), 129.2 (CH), 128.6 (CH), 126.9 (CH), 125.4 (CH), 
125.2 (CH), 124.9 (CH), 123.3 (CH), 105.7 (Thiazole-CH), 
82.4 (CH), 48.4 (CH3) 35.9 (CH2), 32.9 (CH2).

2‑(4‑Chlorophenyl)‑3‑(4‑(2,7‑dichloro‑9H‑fluoren‑4‑yl)
thiazol‑2‑yl)thiazolidin‑4‑one (5c)  Pale yellow crystals, 
yield (78%), m.p. 83–85  °C; FT-IR (KBr): ν (cm−1) 3025 
(CH arom.), 2928 (CH aliph.), 1775 (C=O), 1694 (C=N); 
1H NMR (400 MHz, DMSO-d6): δ 7.64 (d, J = 8.0 Hz, 2H, 
Ph-H), 7.57 (s, 1H, Flu-H), 7.52 (d, J = 8.0 Hz, 1H, Flu-H), 
7.44 (s, 1H, Flu-H), 7.32 (s, 1H, Flu-H), 7.18 (d, J = 8.0 Hz, 
1H, Flu-H), 6.95 (s, 1H, Thiazole-H), 6.76 (d, J = 8.0 Hz, 
2H, Ph-H), 6.53 (s, 1H, CH), 3.95 (s, 2H, CH2), 3.32 (s, 
2H, CH2); 13C NMR (100  MHz, DMSO-d6): δ 173.3 
(C=O), 167.0 (C=N), 156.5 (C), 148.8 (C), 147.8 (C), 
146.6 (C), 145.9 (C), 140.6 (C), 138.4 (C), 133.2 (C), 132.8 
(C), 132.2 (C), 129.3 (CH), 129.1 (CH), 128.9 (CH), 127.7 
(CH), 126.8 (CH), 123.8 (CH), 114.3 (CH), 105.7 (Thia-
zole-CH), 66.2 (CH), 36.8 (CH2), 33.5 (CH2).

2‑(4‑Bromophenyl)‑3‑(4‑(2,7‑dichloro‑9H‑fluoren‑4‑yl)
thiazol‑2‑yl)thiazolidin‑4‑one (5d)  Orange crystals, 
yield (73%), m.p. 155–157 °C; FT-IR (KBr): ν (cm−1) 3018 
(CH arom.), 2927 (CH aliph), 1776 (C=O), 1636 (C=N); 
1H NMR (400  MHz, DMSO-d6): δ 7.63 (s, 1H, Flu-H), 
7.52 (d, J = 8.0 Hz, 2H, Flu-H), 7.24 (s, 1H, Flu-H), 7.18 
(s, 1H, Flu-H), 7.08 (d, J = 8.0 Hz, 2H, Ph-H), 6.78 (s, 1H, 
Thiazole-H), 6.66 (s, 1H, CH), 6.56 (d, J = 8.0  Hz, 2H, 
Ph-H), 3.96 (s, 2H, CH2), 3.59 (s, 2H, CH2); 13C NMR 
(100  MHz, DMSO-d6): δ 171.6 (C=O), 168.0 (C=N), 
156.6 (C), 150.4 (C), 147.9 (C), 146.6 (C), 145.8 (C), 138.4 
(C), 137.1 (C), 132.1 (C), 131.7 (C), 131.5 (C), 129.3 (CH), 
128.1 (CH), 126.8 (CH), 125.5 (CH), 125.2 (CH), 124.1 
(CH), 114.2 (CH), 112.4 (CH), 111.5 (Thiazole-CH), 68.1 
(CH), 36.6 (CH2), 34.4 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(4‑(dimethylamino)phenyl)thiazolidin‑4‑one 
(5e)  Pale yellow crystals, yield (84%), m.p. 94–96  °C; 
FT-IR (KBr): ν (cm−1) 3074 (CH arom.), 2926 (CH aliph.), 
1689 (C=O), 1607 (C=N); 1H NMR (400 MHz, DMSO-
d6): δ 8.23 (d, J = 8.0  Hz, 2H, Ph-H), 7.72 (d, J = 8.0  Hz, 
1H, Flu-H), 7.64 (s, 1H, Flu-H), 7.56 (s, 1H, Flu-H), 7.33 
(s, 1H, Flu-H), 7.16 (d, J = 8.0  Hz, 1H, Flu-H), 6.96 (s, 
1H, Thiazole-H), 6.89 (d, J = 8.0  Hz, 2H, Ph-H), 6.35 (s, 
1H, CH), 3.95 (s, 2H,CH2), 3.42 (s, 2H, CH2), 1.74 (s, 6H, 
2CH3); 13C NMR (100 MHz, DMSO-d6): δ 171.3 (C=O), 
166.8 (C=N), 148.8 (C), 147.7 (C), 147.38 (C), 146.6 (C), 
146.0 (C), 138.8 (C), 137.1 (C), 132.9 (C), 131.8 (C), 131.5 
(C), 128.6 (CH), 128.4 (CH), 127.9 (CH), 126.6 (CH), 
125.2 (CH), 124.5 (CH), 124.2 (CH), 107.4 (Thiazole-CH), 
68.8 (CH), 61.3 (CH3), 36.9 (CH2), 33.8 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(4‑nitrophenyl)thiazolidin‑4‑one (5f)  Yel-
low crystals, yield (76%), m.p. 90–92  °C; FT-IR (KBr): ν 
(cm−1) 3074 (CH arom.), 2930 (CH aliph.), 1707 (C=O), 
1600 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 7.76 (d, 
J = 8.0  Hz, 1H, Flu-H), 7.67 (s, 1H, Flu-H), 7.58 (s, 1H, 
Flu-H), 7.35 (s, 1H, Flu-H), 7.24 (d, J = 8.0 Hz, 2H, Ph-H), 
7.18 (s, 1H, Flu-H), 7.10 (d, J = 8.0 Hz, 2H, Ph-H), 6.86 (s, 
1H, Thiazole-H), 6.68 (s, 1H, CH), 3.96 (s, 2H,CH2), 3.60 
(s, 2H,CH2); 13C NMR (100  MHz, DMSO-d6): δ 168.9 
(C=O), 166.8 (C=N), 148.7 (C), 146.6 (C), 146.2 (C), 
139.2 (C), 136.9 (C), 133.6 (C), 132.7 (C), 132.5 (C), 131.9 
(C), 131.5 (C), 128.5 (CH), 127.4 (CH), 127.4 (CH), 126.9 
(CH), 125.4 (CH), 125.1 (CH), 124.9 (CH), 105.7 (Thia-
zole-CH), 102.6 (CH), 36.9 (CH2), 33.6 (CH2).

4‑(3‑(4‑(2,7‑Dichloro‑9H‑fluoren‑4‑yl)thiazol‑2‑yl)‑4‑ox‑
othiazolidin‑2‑yl)benzoic acid (5g)  Yellow crystals, 
yield (90%), m.p. 103–105  °C; FT-IR (KBr): ν (cm−1) 
3326 (OH), 3065 (CH arom.), 2930 (CH aliph.), 1778 
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(C=O), 1696 (C=O), 1628 (C=N); 1H NMR (400 MHz, 
DMSO-d6): δ 9.10 (m, 1H, OH), 7.64–7.58 (m, 3H, Ph-H 
& Flu-H), 7.54 (s, 1H, Flu-H), 7.42 (d, J = 8.0 Hz, 1H, Flu-
H), 7.38 (d, J = 8.0  Hz, 1H, Flu-H), 7.24 (s, 1H, Flu-H), 
6.91–6.83 (m, 3H, Ph-H & Thiazole-H), 6.68 (s, 1H, CH), 
3.92 (s, 2H, CH2), 3.69 (s, 2H, CH2); 13C NMR (100 MHz, 
DMSO-d6): δ 191.4 (C=O), 171.6 (C=O), 157.1 (C=N), 
156.6 (C), 147.9 (C), 147.7 (C), 147.2 (C), 146.7 (C), 146.3 
(C), 138.5 (C), 136.8 (C), 132.1 (C), 131.5 (C), 129.2 (CH), 
126.8 (CH), 125.5 (CH), 125.3 (CH), 124.3 (CH), 117.9 
(CH), 115.7 (CH), 114.3 (CH), 111.2 (Thiazole-CH), 68.1 
(CH), 36.8 (CH2), 34.7 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(4‑hydroxy‑3‑methoxyphenyl)thiazoli‑
din‑4‑one (5h)  Yellow crystals, yield (76%), m.p. 
85–87  °C; FT-IR (KBr): ν (cm−1) 3328 (OH), 3069 (CH 
arom.), 2930 (CH aliph.), 1689 (C=O), 1600 (C=N); 1H 
NMR (400 MHz, DMSO-d6): δ 7.66–7.61 (m, 3H, Flu-H 
& Ph-H), 7.51 (d, J = 8.0 Hz, 1H, Flu-H), 7.35 (s, 1H, Flu-
H), 7.31 (d, J = 8.0  Hz, 1H, Flu-H), 7.16 (s, 1H, Flu-H), 
7.01–6.99 (m, 2H, Ph-H & Thiazole-H), 6.77 (s, 1H, CH), 
4.38 (s, 2H, CH2), 4.03 (s, 2H, CH2), 3.98 (s, 3H, CH3); 
13C NMR (100  MHz, DMSO-d6) δ 168.9 (C=O), 157.1 
(C=N), 148.7 (C), 147.7 (C), 146.63 (C), 146.2 (C), 146.0 
(C), 139.2 (C), 137.2 (C), 136.9 (C), 133.6 (C), 131.9 (C), 
131.5 (C), 129.0 (CH), 128.5 (CH), 127.0 (CH), 126.9 
(CH), 125.4 (CH), 125.2 (CH), 124.9 (CH), 105.7 (Thia-
zole-CH), 62.2 (CH), 47.9 (CH3), 37.5 (CH2), 33.8 (CH2).

3‑(4‑(2,7‑Dichloro‑9H‑fluoren‑4‑yl)thiazol‑2‑yl)‑2‑sty‑
rylthiazolidin‑4‑one (5i)  Pale yellow crystals, yield 
(72%), m.p. 114–116 °C; FT-IR (KBr): ν (cm−1): 3096 (CH 
arom.), 2930 (CH aliph.), 1689 (C=O), 1625 (C=N); 1H 
NMR (400 MHz, DMSO-d6): δ 7.66 (s, 1H, Flu-H), 7.60–
7.53 (m, 2H, Flu-H), 7.49 (d, J = 4.0 Hz, 1H, Flu-H), 7.34 
(s, 1H, Flu-H), 7.30–7.27 (m, 3H, Ph-H), 7.19–7.17 (m, 
3H, Ph-H & Thiazole-H), 6.83–6.75 (m, 2H, CH=CH), 
6.32 (dd, J = 8.0, 4.0 Hz, 1H, CH), 3.98 (s, 2H, CH2), 3.45 
(dd, J = 12.0, 4.0  Hz, 2H, CH2); 13C NMR (100  MHz, 
DMSO-d6): δ 168.9 (C=O), 166.2 (C=N), 153.7 (C), 
149.5 (C), 148.7 (C), 147.0 (C), 146.1 (C), 137.0 (C), 135.5 
(C), 133.0 (C), 131.5 (C), 129.5 (CH), 129.2 (CH), 128.7 
(CH), 127.7 (CH), 127.1 (CH), 126.9 (CH), 125.7 (CH), 
125.4 (CH), 124.5 (CH), 118.4 (CH), 105.7 (Thiazole-CH), 
61.8 (CH), 36.9 (CH2), 33.8 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(furan‑2‑yl)thiazolidin‑4‑one (5j)  Pale yel-
low crystals, yield (64%), m.p. 139–141 °C; FT-IR (KBr): ν 
(cm−1) 3099 (CH arom.), 2927 (CH aliph.), 1689 (C=O), 
1636 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 7.88 (d, 
J = 8.0 Hz, 1H, Flu-H), 7.62 (d, J = 8.0 Hz, 1H, Furyl-H), 

7.51 (d, J = 8.0 Hz, 1H, Flu-H), 7.45 (s, 1H, Flu-H), 7.41 
(d, J = 8.0 Hz, 1H, Furyl-H), 7.35 (s, 1H, Flu-H), 7.31 (s, 
1H, Flu-H), 7.29–7.17 (m, 2H, Furyl-H & Thiazole-H), 
4.06 (s, 2H, CH2), 3.92 (s, 2H, CH2); 13C NMR (100 MHz, 
DMSO-d6): δ 172.6 (C=O), 168.9 (C=N), 155.3 (C), 
148.7 (C), 146.6 (C), 146.1 (C), 139.2 (C), 136.9 (C), 133.5 
(C), 131.9 (C), 131.5 (C), 128.5 (CH), 126.9 (CH), 125.3 
(CH), 125.1 (CH), 124.9 (CH), 122.9 (CH), 121.7 (CH), 
113.2 (CH), 105.7 (Thiazole-CH), 69.0 (CH), 36.9 (CH2), 
33.8 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(thiophen‑2‑yl)thiazolidin‑4‑one (5k)  Pale 
yellow crystals, yield (67%), m.p. 165–167  °C; FT-IR 
(KBr): ν (cm−1) 3029 (CH arom.), 2926 (CH aliph.), 1688 
(C=O), 1636 (C=N); 1H NMR (400  MHz, DMSO-d6): 
δ 7.62 (d, J = 4.0 Hz, 1H, Flu-H), 7.51 (d, J = 8.0 Hz, 1H, 
Thienyl-H), 7.35 (d, J = 4.0 Hz, 1H, Flu-H), 7.31–7.29 (m, 
2H, Flu-H & Thienyl-H), 7.22 (s, 1H, Flu-H), 7.17 (s, 1H, 
Flu-H), 7.00–6.98 (s, 1H, Thiazole-H), 6.90–6.87 (m, 1H, 
Thienyl-H), 6.76 (s, 1H, CH), 4.01 (s, 2H, CH2), 3.93 (dd, 
J = 8.0, 4.0  Hz, 2H, CH2); 13C NMR (100  MHz, DMSO-
d6): δ 168.9 (C=O), 166.0 (C=N), 148.6 (C), 146.6 (C), 
146.1 (C), 143.5 (C), 139.1 (C), 136.9 (C), 133.5 (C), 131.9 
(C), 131.5 (C), 128.9 (CH), 128.5 (CH), 126.9 (CH), 125.8 
(CH), 125.4 (CH), 125.1 (CH), 124.9 (CH), 119.6 (CH), 
105.7 (Thiazole-CH), 62.0 (CH), 44.4 (CH2), 36.9 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(1H‑pyrrol‑2‑yl)thiazolidin‑4‑one (5l)  Yel-
low crystals, yield (75%), m.p. 124–126  °C; FT-IR (KBr): 
ν (cm−1) 3459 (NH), 3099 (CH arom.), 2926 (CH aliph.), 
1680 (C=O), 1636 (C=N); 1H NMR (400 MHz, DMSO-
d6): δ 7.81 (d, J = 8.0 Hz, 1H, Flu-H), 7.61 (d, J = 8.0 Hz, 
1H, Flu-H), 7.52 (s, 1H, Flu-H), 7.43 (s, 1H, Flu-H), 7.34–
7.28 (m, 2H, Thiazole-H & Pyrrole-H), 7.18 (s, 1H, Flu-
H), 6.97 (d, J = 8.0 Hz, 1H, Pyrrole-H), 6.76–7.64 (m, 2H, 
Pyrrole-H & CH), 6.07 (s, 1H, NH), 4.00–3.90 (m, 4H, 
2CH2); 13C NMR (100 MHz, DMSO-d6): δ 171.9 (C=O), 
168.9 (C=N), 150.6 (C), 149.9 (C), 148.7 (C), 146.7 (C), 
146.1 (C), 136.9 (C), 133.5 (C), 131.9 (C), 131.5 (C), 128.5 
(CH), 126.9 (CH), 126.7 (CH), 125.3 (CH), 124.9 (CH), 
122.1 (CH), 121.3 (CH), 120.6 (CH), 105.6 (Thiazole-CH), 
66.9 (CH), 36.9 (CH2), 34.4 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(pyridin‑4‑yl)thiazolidin‑4‑one (5m)  Orange 
crystals, yield (72%), m.p. 110–112  °C; FT-IR (KBr): ν 
(cm−1) 3097 (CH arom.), 2928 (CH aliph.), 1702 (C=O), 
1636 (C=N), 1600 (C=N); 1H NMR (400 MHz, DMSO-
d6): δ 8.86 (d, J = 8.0 Hz, 2H, Py-H), 8.07 (s, 1H, Flu-H), 
7.71 (d, J = 8.0  Hz, 1H, Flu-H), 7.37 (d, J = 8.0  Hz, 1H, 
Flu-H), 7.26 (s, 2H, Flu-H), 6.96 (s, 1H, Thiazole-H), 6.70 
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(d, J = 8.0  Hz, 2H, Py-H), 6.18 (s, 1H, CH), 4.11 (s, 2H, 
CH2), 3.59 (s, 2H, CH2); 13C NMR (100  MHz, DMSO-
d6): δ 168.7 (C=O), 166.5 (C=N), 153.9 (C), 150.8 (C), 
143.9 (C), 143.4 (C), 134.0 (C), 131.4 (C), 130.9 (C), 130.2 
(C), 130.0 (C), 128.2 (CH), 127.8 (CH), 127.5 (CH), 126.8 
(CH), 126.2 (CH), 124.8 (CH), 124.5 (CH), 112.7 (CH), 
106.3 (Thiazole-CH), 65.7 (CH), 36.9 (CH2), 34.4 (CH2).

3 ‑ ( 4 ‑ ( 2 , 7 ‑ D i c h l o r o ‑ 9 H ‑ f l u o r e n ‑ 4 ‑ y l ) t h i a ‑
zol‑2‑yl)‑2‑(quinolin‑4‑yl)thiazolidin‑4‑one (5n)  Pale 
yellow crystals, yield (90%), m.p. 204–206  °C; FT-IR 
(KBr): ν (cm−1) 3099 (CH arom.), 2924 (CH aliph.), 1636 
(C=O), 1583 (C=N), 1538 (C=N); 1H NMR (400 MHz, 
DMSO-d6): δ 7.90–7.87 (m, 2H, Quinoline-H), 7.81–7.79 
(m, 3H, Flu-H & Quinoline-H), 7.73–7.71 (m, 2H, Flu-
H), 7.37–7.34 (m, 2H, Flu-H & Quinoline-H), 7.26–7.23 
(m, 2H, Flu-H & Quinoline-H), 7.07 (s, 1H, Thiazole-H), 
7.00 (s, 1H, CH), 4.34 (s, 2H, CH2), 3.61 (s, 2H, CH2); 
13C NMR (100  MHz, DMSO-d6): δ 168.7 (C=O), 165.9 
(C=N), 160.1 (CH=N), 154.3 (C), 153.9 (C), 152.65 (C), 
150.28 (C), 143.79 (C), 143.3 (C), 139.3 (C), 136.9 (C), 
135.4 (C), 132.9 (C), 129.6 (CH), 129.4 (CH), 129.13 
(CH), 128.91 (CH), 128.65 (CH), 127.63 (CH), 125.99 
(CH), 120.2 (CH), 119.5 (CH), 113.3 (CH), 101.9 (Thia-
zole-CH), 65.9 (CH), 36.9 (CH2), 34.2 (CH2).

Synthesis of 3‑chloro‑4‑(aryl/heteroaryl)‑1‑(4‑(2,7‑dichlor
o‑9H‑fluoren‑4‑yl)thiazol‑2‑yl)azetidin‑2‑ones 6a–n  To 
Schiff s base 4a–n (1 mmol) in dry DMF (10 mL), chlo-
roacetyl chloride (1.2  mmol) was added with stirring at 
room temperature during 15 min. The mixture was fur-
ther stirred at room temperature for 5 h. The mixture was 
poured onto crushed ice. The obtained product was fil-
tered, washed with water and recrystallized from ethanol 
to get pure azetidinone derivatives 6a–n.

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑phenylazetidin‑2‑one (6a)  Yellow crystals, 
yield (68%), m.p. 118–120 °C; FT-IR (KBr): ν (cm−1) 3062 
(CH arom.), 2927 (CH aliph.), 1695 (C=O), 1650 (C=N); 
1H NMR (400  MHz, DMSO-d6): δ 7.96 (s, 1H, Flu-H), 
7.90 (d, J = 8.0 Hz, 1H, Flu-H), 7.84 (s, 1H, Flu-H), 7.78 
(s, 1H, Flu-H), 7.72–7.65 (m, 2H, Ph-H), 7.54–7.51 (m, 
2H, Ph-H), 7.41 (d, J = 8.0 Hz, 1H, Flu-H), 7.29–7.26 (m, 
1H, Ph-H), 7.22 (s, 1H, Thiazole-H), 7.14 (d, J = 12.0 Hz, 
1H, CH–N), 4.45 (d, J = 12.0 Hz, 1H, CH–Cl), 4.00 (s, 2H, 
CH2); 13C NMR (100  MHz, DMSO-d6): δ 169.1 (C=O), 
165.8 (C=N), 158.0 (C), 147.8 (C), 146.7 (C), 146.2 (C), 
138.8 (C), 137.0 (C), 132.4 (C), 132.1 (C), 131.7 (C), 129.6 
(CH), 128.7 (CH), 127.5 (CH), 126.6 (CH), 125.5 (CH), 
124.6 (CH), 122.9 (CH), 113.3 (CH), 107.0 (Thiazole-CH), 
69.0 (CH–N), 57.3 (CH–Cl), 36.9 (CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑(4‑methoxyphenyl)azetidin‑2‑one (6b)  Yel-
low crystals, yield (98%), m.p. 110–112 °C; FT-IR (KBr): ν 
(cm−1) 3062 (CH arom.), 2951 (CH aliph.), 1691 (C=O), 
1598 (C=N); 1H NMR (400  MHz, DMSO-d6): δ 7.87 
(d, J = 5.0  Hz, 1H, Flu-H), 7.70 (s, 1H, Flu-H), 7.64 (d, 
J = 8.0  Hz, 2H, Ph-H), 7.50 (s, 1H, Flu-H), 7.40 (s, 1H, 
Flu-H), 7.28–7.26 (m, 3H, Flu-H & Ph-H), 7.21 (s, 1H, 
Thiazole-H), 7.13 (d, J = 8.0 Hz, 1H, CH–N), 4.45 (s, 3H, 
CH3), 4.21 (d, J = 8.0 Hz, 1H, CH–Cl), 4.01 (s, 2H, CH2); 
13C NMR (100  MHz, DMSO-d6): δ 169.1 (C=O), 165.7 
(C=N), 158.0 (C), 147.9 (C), 146.8 (C), 146.2 (C), 138.8 
(C), 137.0 (C), 132.3 (CH), 131.6 (C), 130.1 (C), 128.9 
(CH), 127.1 (CH), 125.9 (CH), 125.5 (CH), 124.6 (CH), 
123.4 (C), 122.1 (C), 114.9 (CH), 113.30 (Thiazole-CH), 
69.0 (CH–N), 57.3 (CH–Cl), 40.1 (CH3), 36.9 (CH2).

3‑Chloro‑4‑(4‑chlorophenyl)‑1‑(4‑(2,7‑dichloro‑9H
‑fluoren‑4‑yl)thiazol‑2‑yl)azetidin‑2‑one (6c)  Yellow 
crystals, yield (96%), m.p. 105–106  °C; FT-IR (KBr): ν 
(cm−1) 3063 (CH arom.), 2929 (CH aliph.), 1697 (C=O), 
1593 (C=N); 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, 
J = 5.0  Hz, 1H, Flu-H), 7.72 (s, 1H, Flu-H), 7.66 (s, 1H, 
Flu-H), 7.51 (d, J = 8.0 Hz, 2H, Ph-H), 7.40 (m, 3H, Flu-H 
& Ph-H), 7.28 (s, 1H, Flu-H), 7.21 (s, 1H, Thiazole-H), 
7.12 (d, J = 8.0  Hz, 1H, CH–N), 4.46 (d, J = 8.0  Hz, 1H, 
CH–Cl), 4.03 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-
d6): δ 169.1 (C=O), 165.8 (C=N), 158.0 (C), 147.8 (C), 
146.8 (C), 146.3 (C), 138.8 (C), 137.04 (C), 132.5 (C), 
132.1 (C), 131.6 (C), 129.2 (CH), 129.0 (C), 127.7 (CH), 
127.1 (CH), 126.0 (CH), 125.6 (CH), 124.6 (CH), 114.9 
(CH), 105.4 (Thiazole-CH), 67.2 (CH–N), 61.1 (CH–Cl), 
37.3 (CH2).

4‑(4‑Bromophenyl)‑3‑chloro‑1‑(4‑(2,7‑dichloro‑9H‑flu‑
oren‑4‑yl)thiazol‑2‑yl)azetidin‑2‑one (6d)  Pale yellow 
crystals, yield (87%), m.p. 112–114  °C; FT-IR (KBr): ν 
(cm−1) 3099 (CH arom.), 2955 (CH aliph.), 1792 (C=O), 
1665 (C=N); 1H NMR (DMSO-d6): δ 7.83 (s, 1H, Flu-H), 
7.76–7.65 (m, 4H, Flu-H & Ph-H), 7.50 (s, 1H, Flu-H), 
7.40 (s, 1H, Flu-H), 7.27–7.22 (m, 3H, Flu-H & Thiazole-
H), 7.12 (d, J = 8.0 Hz, 1H, CH–N), 4.27 (d, J = 8.0 Hz, 1H, 
CH–Cl), 4.02 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-
d6): δ 170.9 (C=O), 165.7 (C=N), 158.0 (C), 147.8 (C), 
146.7 (C), 146.1 (C), 138.8 (C), 136.6 (C), 135.0 (C), 132.7 
(CH), 132.6 (CH), 131.5 (C), 129.3 (C), 129.0 (CH), 127.4 
(C), 127.1 (CH), 124.6 (CH), 124.5 (CH), 113.3 (CH), 
107.4 (Thiazole-CH), 66.1 (CH–N), 54.1 (CH–Cl), 37.2 
(CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑(4‑(dimethylamino)phenyl)‑azetidin‑2‑one 
(6e)  Red crystals, yield (65%), m.p. 110–111  °C; FT-IR 
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(KBr): ν (cm−1) 3069 (CH arom.), 2949 (CH aliph.), 
1695(C=O), 1551 (C=N); 1H NMR (400  MHz, DMSO-
d6) δ 7.93 (d, J = 8.0  Hz, 1H, Flu-H), 7.77–7.60 (m, 4H, 
Flu-H & Ph-H), 7.51 (s, 1H, Flu-H), 7.40 (s, 1H, Flu-H), 
7.28 (d, J = 8.0  Hz, 2H, Ph-H), 7.22 (s, 1H, Thiazole-H), 
6.80 (d, J = 4.0  Hz, 1H, CH–N), 4.19 (d, J = 4.0  Hz, 1H, 
CH), 4.02 (s, 2H, CH2), 3.02 (s, 6H, 2CH3); 13C NMR 
(100  MHz, DMSO-d6): δ 169.1 (C=O), 165.7 (C=O), 
158.0 (C), 147.9 (C), 146.8 (C), 146.3 (C), 138.8 (C), 137.0 
(C), 134.1 (C), 132.5 (C), 131.7 (C), 129.0 (CH), 127.1 
(CH), 125.5 (CH), 124.7 (CH), 122.9 (CH), 122.2 (CH), 
119.9 (CH), 113.31 (CH), 112.3 (CH), 112.0 (Thiazole-
CH), 66.3 (CH–N), 62.1 (CH–Cl), 41.9 (CH3), 36.7 (CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑(4‑nitrophenyl)azetidin‑2‑one (6f)  Pale 
brown crystals, yield (89%), m.p. 114–116  °C; FT-IR 
(KBr): ν (cm−1) 3071 (CH arom.), 2954 (CH aliph.), 1691 
(C=O), 1591 (C=N); 1H NMR (400  MHz, DMSO-d6): 
δ 8.17 (d, J = 8.0 Hz, 2H, Ph-H), 7.72 (d, J = 8.0 Hz, 1H, 
Flu-H), 7.66 (s, 1H, Flu-H), 7.51 (s, 1H, Flu-H), 7.44–7.40 
(m, 3H, Ph-H & Flu-H), 7.27 (s, 1H, Flu-H), 7.21 (s, 1H, 
Thiazole-H), 7.02 (d, J = 8.0  Hz, 1H, CH–N), 4.28 (d, 
J = 8.0  Hz, 1H, CH–Cl), 4.03 (s, 2H, CH2); 13C NMR 
(100  MHz, DMSO-d6): δ 169.1 (C=O), 165.8 (C=N), 
158.0 (C), 147.8 (C), 146.8 (C), 146.3 (C), 140.5 (C), 138.8 
(C), 137.0 (C), 132.5 (C), 132.1 (C), 129.3 (C), 129.0 (CH), 
127.5 (C), 127.10 (CH), 125.8 (CH), 125.5 (CH), 124.7 
(CH), 124.5 (CH), 124.1 (CH), 113.3 (Thiazole-CH), 66.8 
(CH–N), 61.6 (CH–Cl), 36.9 (CH2).

4‑(3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑fluoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑oxoazetidin‑2‑yl)benzoic acid (6g)  Pale yel-
low crystals, yield (76%), m.p. 125–127  °C; FT-IR (KBr): 
ν (cm−1) 3366 (OH), 3099 (CH arom.), 2956 (CH aliph.), 
1691 (C=O), 1546 (C=N); 1H NMR (400 MHz, DMSO-
d6) δ 12.73 (s, 1H, OH), 8.03 (d, J = 8.0  Hz, 2H, Ph-H), 
7.75 (d, J = 8.0 Hz, 1H, Flu-H), 7.70 (s, 1H, Flu-H), 7.64 
(s, 1H, Flu-H), 7.52 (m, 2H, Flu-H), 7.43–7.39 (m, 2H, 
Ph-H), 7.26 (s, 1H, Thiazole-H), 7.21 (d, J = 12.0 Hz, 1H, 
CH–N), 4.26 (d, J = 12.0  Hz, 1H, CH–Cl), 4.01 (s, 2H, 
CH2); 13C NMR (100  MHz, DMSO-d6): δ 169.1 (C=O), 
165.8 (C=O), 158.7 (C=N), 148.2 (C), 146.8 (C), 146.2 
(C), 138.8 (C), 137.0 (C), 132.5 (C), 132.1 (C), 131.7 (C), 
130.4 (C), 130.0 (C), 128.9 (CH), 127.5 (CH), 127.08 
(CH), 125.5 (CH), 124.6 (CH), 122.9 (CH), 122.1 (CH), 
113.3 (Thiazole-CH), 65.9 (CH–N), 60.1 (CH–Cl), 36.9 
(CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑fluoren‑4‑yl)thiazol‑
2‑yl)‑4‑(4‑hydroxy‑3‑methoxyphenyl)‑azetidin‑2‑one 
(8h)  Pale yellow crystals, yield (84%), m.p. 95–97  °C; 
FT-IR (KBr): ν (cm−1) 3365 (OH), 3067 (CH arom.), 

2954 (CH aliph.), 1691 (C=O), 1546 (C=N); 1H NMR 
(400 MHz, DMSO-d6): δ 7.90 (d, J = 8.0 Hz, 1H, Flu-H), 
7.77–7.65 (m, 3H, Flu-H & Ph-H), 7.51 (s, 1H, Flu-H), 
7.45 (d, J = 8.0  Hz, 1H, Flu-H), 7.40 (s, 1H, Ph-H), 7.27 
(m, 2H, Ph-H & Thiazole-H), 7.21 (d, J = 12.0  Hz, 1H, 
CH–N), 6.97 (s, 1H, OH), 4.45 (s, 3H, CH3), 4.28 (d, 
J = 12.0  Hz, 1H, CH–Cl), 4.02 (s, 2H, CH2); 13C NMR 
(100  MHz, DMSO-d6): δ 169.1 (C=O), 165.8 (C=N), 
158.0 (C), 157.1 (C), 147.9 (C), 146.8 (C), 146.3 (C), 138.8 
(C), 137.0 (C), 132.5 (C), 132.1 (C), 131.7 (C), 129.0 (CH), 
127.7 (CH), 127.1 (CH), 125.8 (CH), 125.5 (CH), 124.6 
(CH), 122.9 (CH), 122.1 (CH), 113.3 (Thiazole-CH), 67.2 
(CH–N), 61.0 (CH–Cl), 56.8 (CH3), 36.9 (CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑styrylazetidin‑2‑one (6i)  Pale brown crys-
tals, yield (60%), m.p. 110–112 °C; FT-IR (KBr): ν (cm−1) 
3062 (CH arom.), 2951 (CH aliph.), 1702 (C=O), 1542 
(C=N); 1H NMR (400 MHz, DMS-d6) δ 7.80 (s, 1H, Flu-
H), 7.65–7.60 (m, 2H, Flu-H), 7.52 (d, J = 4.0 Hz, 1H, Flu-
H), 7.34 (s, 1H, Flu-H), 7.30–7.27 (m, 3H, Ph-H), 7.21–
7.16 (m, 3H, Ph-H & Thiazole-H), 7.12 (d, J = 12.0 Hz, 1H, 
CH–N), 6.80–6.73 (m, 2H, CH=CH), 4.40 (d, J = 12.0 Hz, 
1H, CH–Cl), 4.01 (s, 2H, CH2); 13C NMR (100  MHz, 
DMSO-d6): δ 169.1 (C=O), 165.8 (C=N), 158.0 (C), 
147.8 (C), 146.8 (C), 146.3 (C), 138.8 (C), 137.0 (C), 132.5 
(C), 132.1 (C), 131.6 (C), 129.57 (CH), 129.0 (CH), 128.4 
(CH), 127.7 (CH), 127.1 (CH), 125.5 (CH), 124.6 (CH), 
123.1 (CH), 122.8 (CH), 121.4 (CH), 113.3 (Thiazole-CH), 
68.0 (CH–N), 61.3 (CH–Cl), 36.4 (CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑(furan‑2‑yl)azetidin‑2‑one (6j)  Pale yel-
low crystals, yield (95%), m.p. 95–98  °C; FT-IR (KBr): ν 
(cm−1) 3056 (CH arom.), 2952 (CH aliph.), 1695 (C=O), 
1544 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 7.90 (d, 
J = 8.0  Hz, 1H, Flu-H), 7.77 (s, 1H, Flu-H), 7.66 (s, 1H, 
Flu-H), 7.51 (d, J = 4.0  Hz, 1H, Furan-H), 7.46–7.40 (m, 
3H, Flu-H & Furan-H), 7.28 (d, J = 8.0  Hz, 1H, Flu-H), 
7.20 (s, 1H, Thiazole-H), 7.11 (d, J = 12.0 Hz, 1H, CH–N), 
4.22 (d, J = 12.0 Hz, 1H, CH–Cl), 4.02 (s, 2H, CH2); 13C 
NMR (100  MHz, DMSO-d6): δ 168.4 (C=O), 165.7 
(C=N), 158.9 (C), 148.4 (C), 146.8 (C), 146.3 (C), 138.8 
(C), 137.0 (C), 132.5 (C), 132.1 (C), 131.7 (C), 129.0 (CH), 
127.7 (CH), 127.10 (CH), 125.9 (CH), 125.5 (CH), 124.6 
(CH), 122.9 (CH), 122.1 (CH), 113.3 (Thiazole-CH), 66.7 
(CH–N), 62.0 (CH–Cl), 37.3 (CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑(thiophen‑2‑yl)azetidin‑2‑one (6k)  Yellow 
crystals, yield (51%), m.p. 109–111  °C; FT-IR (KBr): ν 
(cm−1) 3109 (CH arom.), 2951 (CH aliph.), 1691 (C=O), 
1646 (C=N); 1H NMR (400  MHz, DMSO-d6) δ 7.92 (s, 
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1H, Flu-H), 7.72–7.55 (m, 2H, Flu-H & Thienyl-H), 7.51 
(s, 1H, Flu-H), 7.44 (s, 1H, Flu-H), 7.40–7.32 (m, 2H, 
Thienyl-H & Thiazole-H), 7.28 (d, J = 4.0 Hz, 1H, Flu-H), 
7.21 (d, J = 4.0  Hz, 1H, Thienyl-H), 7.06 (d, J = 12.0  Hz, 
1H, CH–N), 4.28 (d, J = 12.0 Hz, 1H, CH–Cl), 4.03 (s, 2H, 
CH2); 13C NMR (100  MHz, DMSO-d6): δ 169.1 (C=O), 
165.8 (C=N), 158.9 (C), 147.8 (C), 146.8 (C), 146.3 (C), 
142.1 (C), 138.8 (C), 137.0 (C), 132.3 (C), 131.7 (C), 129.0 
(C), 128.9 (CH), 128.3 (CH), 127.1 (CH), 125.6 (CH), 
124.6 (CH), 123.4 (CH), 121.2 (CH), 113.6 (CH), 112.4 
(Thiazole-CH), 71.1 (CH–N), 61.0 (CH–Cl), 37.3 (CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑(1H‑pyrrol‑2‑yl)azetidin‑2‑one (6l)  Green 
crystals, yield (93%), m.p. 105–107  °C; FT-IR (KBr): ν 
(cm−1) 3046 (CH arom.), 2954 (CH aliph.), 1705 (C=O), 
1695 (C=N); 1H NMR (400  MHz, DMSO-d6): δ 7.78 
(s, 1H, Flu-H), 7.73–7.66 (m, 2H, Flu-H), 7.55–7.51 (m, 
2H, Flu-H & Pyrrole-H), 7.46 (d, J = 8.0 Hz, 1H, Flu-H), 
7.41 (s, 1H, Thiazole-H), 7.29–7.27 (m, 2H, Pyrrole-H), 
7.21 (d, J = 8.0  Hz, 1H, CH–N), 4.45 (s, 1H, NH), 4.28 
(d, J = 8.0 Hz, 1H, CH–Cl), 4.03 (s, 2H, CH2); 13C NMR 
(100  MHz, DMSO-d6): δ 169.1 (C=O), 166.6 (C=N), 
158.0 (C), 157.1 (C), 147.8 (C), 146.8 (C), 146.3 (C), 138.8 
(C), 137.0 (C), 132.5 (C), 131.7 (C), 129.0 (CH), 127.7 
(CH), 127.11 (CH), 125.9 (CH), 125.6 (CH), 124.6 (CH), 
122.9 (CH), 122.2 (CH), 113.3 (Thiazole-CH), 67.0 (CH–
N), 61.9 (CH–Cl), 36.9 (CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑(pyridin‑4‑yl)azetidin‑2‑one (6m)  Pale 
yellow crystals, yield (56%), m.p. 249–250  °C; FT-IR 
(KBr): ν (cm−1) 3096 (CH arom.), 2927 (CH aliph.),1772 
(C=O), 1686 (C=N), 1597 (C=N); 1H NMR (400 MHz, 
DMSO-d6): δ 7.89 (s, 1H, Flu-H), 7.65 (d, J = 4.0 Hz, 2H, 
Pyridine-H), 7.44 (d, J = 8.0 Hz, 1H, Flu-H), 7.40 (m, 1H, 
Flu-H), 7.32 (s, 1H, Flu-H), 7.27–7.20 (m, 3H, Flu-H & 
Pyridine-H), 7.11 (s, 1H, Thiazole-H), 7.02 (d, J = 12.0 Hz, 
1H, CH–N), 4.27 (d, J = 12.0 Hz, 1H, CH–Cl), 4.01 (s, 2H, 
CH2); 13C NMR (100  MHz, DMSO-d6): δ 169.1 (C=O), 
167.9 (C=N), 165.8 (C=N), 158.0 (C), 147.8 (CH), 146.5 
(C), 146.3 (C), 138.8 (C), 137.0 (C), 132.2 (C), 132.0 (C), 
131.6 (C), 128.9 (CH), 127.1 (CH), 125.6 (CH), 125.4 
(CH), 124.6 (CH), 118.8 (CH), 116.8 (CH), 113.3 (Thia-
zole-CH), 70.1 (CH–N), 65.8 (CH–Cl), 36.9 (CH2).

3‑Chloro‑1‑(4‑(2,7‑dichloro‑9H‑f luoren‑4‑yl)thia‑
zol‑2‑yl)‑4‑(quinolin‑4‑yl)azetidin‑2‑one (5n)  Orange 
crystals, yield (58%), m.p. 175–177  °C; FT-IR (KBr): ν 
(cm−1) 3068 (CH arom.), 2852 (CH aliph.), 1771 (C=O), 
1683 (C=N), 1584 (C=N); 1H NMR (400 MHz, DMSO-
d6): δ 9.39–9.30 (m, 1H, Quinoline-H), 8.59 (d, J = 8.0 Hz, 
1H, Quinoline-H), 8.45 (d, J = 8.0  Hz, 1H, Quinolin-H), 

8.38 (d, J = 8.0 Hz, 1H, Quinolin-H), 8.27 (d, J = 12.0 Hz, 
1H, Quinolin-H), 8.21–8.19 (m, 1H, Quinolin-H), 7.93 
(s, 1H, Flu-H), 7.66–7.53 (m, 2H, Flu-H), 7.41 (s, 1H, 
Flu-H), 7.29–7.14 (m, 2H, Flu-H & Thiazole-H), 7.06 
(m, 1H, CH–N), 4.27 (m, 1H, CH–Cl), 4.02 (s, 2H,CH2); 
13C NMR (100  MHz, DMSO-d6): δ 169.1 (C=O), 167.9 
(C=N), 165.8 (C=N), 158.2 (CH), 158.0 (C), 147.1 (C), 
146.9 (C), 146.3 (C), 141.6 (C), 140.5 (C), 138.7 (C), 134.7 
(C), 133.0 (C), 128.7 (CH), 127.1 (CH), 126.8 (CH), 125.5 
(CH), 125.1 (CH), 124.6 (CH), 124.5 (CH), 123.7 (CH), 
123.5 (CH), 121.8 (CH), 113.9 (Thiazole-CH), 67.0 (CH–
N), 62.5 (CH–Cl), 34.5 (CH2).

Antimicrobial screening
Used microorganisms
All microbial strains were kindly provided from the 
department of Medical Microbiology and Immunol-
ogy faculty of Medicine Assiut University, these clinical 
isolates were obtained from clinical cases of infections 
admitted to Assiut University hospital as urinary tract 
infections, corneal ulcers, bacterial and fungal pneumo-
nia, otomycosis, oral thrush and wound infections. The 
clinical isolates were proved by using the VITEK 2 auto-
mated microbiology system (BioMérieux).

The clinical isolates used were multidrug resistant 
strains, they were resistant to β lactam (penicillin, amox-
acillin, oxacillin), cephalosporins (cefazolin, cefaclor 
and cefepime) and macrolides (erythromycin and 
clarithromycin), they included Gram positive bacteria as 
Staphylococcus aureus (S. aureus), Methicillin-resistant 
Staphylococcus aureus (MRSA), Streptococcus pneumo‑
niae (S. pneumoniae), and Gram negative bacteria as 
Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneu‑
moniae), Pseudomonas aeruginosa (P. aeruginosa), and 
Acinetobacter baumannii (A. baumannii). The fungal 
strains that were tested are Aspergillus flavus (A. flavus), 
A. niger (A. niger) and Candida albicans (C. albicans).

Initial evaluation of the fluorene derivatives antibacterial 
and antifungal activity
The antimicrobial activity of the fluorene derivatives was 
initially evaluated by agar well diffusion assay [40]. Muel-
ler–Hinton agar (CM0337) was poured into Petri dishes 
at 50–60 °C and left to solidify for 15 min. Subsequently, 
overnight microbial suspensions of tested strains was 
adjusted to turbidity of 0.5 McFarland Standard, which 
equals to 1–2 × 108  CFU/mL for bacteria and 1–5 × 106 
for fungi. The microbial inoculums were then diluted in 
1:100 ratio in case of bacteria and 1:10 ratio in case of 
fungi in order to get 1–5 × 105 CFU/mL. a sterile cotton 
swab was dipped into the adjusted microbial suspension 
and the Mueller–Hinton agar plates were inoculated by 
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evenly streaking cotton swab over the agar medium. Then 
wells with a diameter of 0.5 cm were cut in the medium 
with a sterile cork borer. Stock solutions of the flourene 
derivatives were diluted in DMSO 1% to get 500  μg/
mL concentrations. The tested flourene derivatives 
and controls (50 μL) were dispensed into the wells. The 
plates were incubated for 24 h at 37  °C for bacteria and 
C. albicans while at 25 °C for A. falvus and A. niger. The 
diameters of zones of inhibition (ZOI) around the wells 
were measured in mm. Following control agents were 
used: positive control agents—vancomycin (50  μg/mL) 
for Gram positive bacteria, gentamicin (10  μg/mL) (for 
Gram negative bacteria) and fluconazole 25  μg/mL for 
fungi and negative control agent is 1% DMSO.

Determination of MIC values for the most active fluorene 
derivatives
Determination of Minimum inhibitory concentrations 
(MIC) of flourene derivatives was done using broth 
microdilution method [41]. The procedure involved 
preparation of twofold dilutions of the fluorene deriva-
tives ranging from (500–7.8  μg/mL) in sterile Muel-
ler–Hinton broth inside the wells of 96-well microplate 
(Sarstedt, Germany). The inoculums of test strains pre-
pared from fresh overnight cultures were adjusted to 0.5 
McFarland standards, which equals to 1–2 × 108  CFU/
mL for bacteria, the procedure was done according to 
CLSI 2012 [42]. The highest dilution of samples (flourene 
derivatives) without visible growth after 24 h incubation 
at 37 °C was considered as MIC. For this assay the posi-
tive control agents were vancomycin (range: 0.7–50  μg/
mL), gentamicin (range: 0.15–10  μg/mL) and the nega-
tive control was 1% DMSO.

For proper determination of the MIC end point resa-
zurin dye has been used. A stock solution of resazurin 
sodium salt powder (Titan Biotech) was prepared at 
0.02% (wt/vol) in distilled water, sterilized by filtration 
through a 0–2 µm filter into a sterile light protected con-
tainer then stored protected from light at 4 °C for up to 
1 week, or at − 20% for long term use, then 10–15% resa-
zurin solution of the total volume in wells was added to 
each well and incubation for 1–4 h at 37 °C was done. A 
change in color from blue to pink indicates the growth of 
bacteria, and MIC was defined as the lowest concentra-
tion of the drug that prevented this change in color.

Data processing  All experiments were independently 
repeated three times. Obtained data were processed; 
standard deviations were calculated using GraphPad 
Prism 5.03 (GraphPad Software, Inc.; USA) software.

Media and reagents:

•	 Muller Hinton agar oxoid code: CM0337

•	 Muller Hinton broth oxoid code: CM 0405
•	 Mannitol salt agar oxoid code: CM 0151
•	 Columbia agar oxoid code: CM 0331
•	 Orsab oxoid code CM 1008
•	 Nutrient agar oxoid code: CM0003
•	 Eosin methylene Blue Himedia M317

Equipment:

•	 Petri dishes
•	 Crock borer
•	 Sterile syringe needle and swabs
•	 Microtitre plates
•	 Micropipette
•	 Sterile tips

Cytotoxicity screening
Cell culture
WI-38 normal lung fibroblast cells, A549 lung can-
cer cells, and MDA-MB-231 breast cancer cells were 
obtained from VACSERA—Cell Culture Unit, Cairo, 
Egypt. The cell lines were originally obtained from the 
American Tissue Culture Collection (ATCC). WI-38, 
A549, and MDA-MB-231 cell lines were cultured in 
RPMI-1640 medium supplemented with 10% inactivate 
fetal bovine serum (FBS) and 1% penicillin/streptomycin 
were bought (Gibco, Invitrogen, CA).

Cell viability assay
WI-38, A549, and MDA-MB-231 cells were seeded into 
96-well plates (at a density of 5000 cells/well). On the 
following day, cells were treated with different concen-
trations (0, 1, 10, 31.25, 62.5, 125, 250, 500 µg/mL) of 16 
fluorene derivatives in fresh medium and incubated for 
another 24  h. Cell viability was then assessed using the 
MTT assay (Sigma Aldrich, St. Louis, MO, USA), and the 
absorbance was read at 570 nM using an ELISA micro-
plate reader (Molecular Devices, Downingtown, PA, 
USA).

FACS analysis
To uncover the mechanism of cell death for the com-
pounds 5h, 6c, 6d and 6k on WI-38, A549, and MDA-
MB-231 cells; Annexin v and propedium Iodide (PI) were 
used. In brief, WI-38, A549, MDA-MB-231 cells were 
cultured in 10 tissue culture dish with initial number 
4 × 105 cell/Ml in RPMI growth media. In the following 
day, cells were treated with 6c, 6d and 6k as the follow-
ing; (0.0, 500 µg/mL form each drug for WI-38 treatment, 
0.0, 85, 117 and 200 µg/mL; respectively, for A5489 and 
0.0, 250 from each for MDA-MB-231 cells treatment). 
After 24 h incubations, cells were washed and trypsinized 
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and suspended in 50 µL 1X Annexin v binding buffer fol-
lowed by adding 5 µL FITC Annexin V and incubated for 
15 min at room temperature then 5 µL of PI were added 
to each tube. Finally, 400  µL of 1X Annexin v binding 
buffer were added to each tube and analyzed using Bec-
ton–Dickinson FACS Caliber.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1306​5-020-00694​-2.

Additional file 1: NMR spectra, docking and molecular modeling calcula-
tions of invetigated bioactive fluorenes.
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