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Introduction
Tooth eruption is essential for survival of humans and mam-
mals in general, with direct impact on the fundamental func-
tions of the craniofacial structure, such as growth and 
development of the lower face, mastication for nutrition and 
energy intake, speech, and aesthetics for effective communica-
tion. Tooth eruption is a unique biological process by which 
highly mineralized tissues emerge into the outer world. This 
process involves the movement of a tooth from its site of 
development within bones to its functional position in the oral 
cavity so that it can occlude with its opposing teeth. Several 
theories of tooth eruption have been proposed; however, the 
regulatory mechanism remains largely unknown (Marks and 
Schroeder 1996; Wise and King 2008; Kjaer 2014).

Tooth eruption occurs concomitantly with formation of the 
tooth root, which is a critical component of the tooth anchored 
to surrounding alveolar bones through the periodontal liga-
ment (PDL). Traditionally, tooth eruption has been considered 
a separate and distinct process from tooth root formation, as 
teeth can emerge into the oral cavity without roots or PDLs 
(Cahill and Marks 1980; Wang 2013). However, evidence from 
recent studies supports the emerging theory that these 2 pro-
cesses are indeed intertwined (Ono et al. 2016; Takahashi et al. 
2019). Formation of the highly functional tooth root and the 
periodontal attachment apparatus (i.e., cementum, PDL, and 
alveolar cryptal bones) requires deliberate coordination of 
mesenchymal cell differentiation. Mesenchymal progenitor 

cells, the precursor of these differentiated skeletal lineage 
cells, reside in dental mesenchymal tissues, such as the dental 
follicle (DF) and dental papilla (DP), and contribute to tooth 
root formation (Li et al. 2017; Wang and Feng 2017). Diversity 
and functionality of these mesenchymal progenitor cell popu-
lations at the heart of tooth root formation are beginning to be 
unraveled.

The purpose of this review is to summarize the current 
understanding on the mechanism of tooth eruption and how 
dental mesenchymal progenitor cells regulate this important 
biological process.

Root Cause of Tooth Eruption
Tooth eruption is executed through 3 defined stages: 1) pre-erup-
tive tooth movement, 2) eruptive tooth movement, and 3) post-
eruptive tooth movement (Nanci 2017; Richman 2019; Fig. 1).

The first stage (pre-eruptive tooth movement) begins at the 
end of the early bell stage and lasts until the beginning of tooth 
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root formation. In this stage, dental epithelial cells located at 
the apical region of the enamel organ in the developing tooth 
proliferate and invade further apically, sending signals to 
recruit DP mesenchyme inside the tooth bud to become odon-
toblasts that produce the dentin. Growth of the tooth bud owing 
to formation of the enamel and dentin at this stage continues 
until the tooth crown is complete, preparing the tooth to emerge 
into the oral cavity.

The second stage (eruptive tooth movement) begins with 
the onset of tooth root formation and lasts until the crown 
appears in the oral cavity and reaches the occlusal plane. 
Eruptive tooth movement is subdivided into 2 phases: intra- 
and supraosseous. In this stage, the epithelial structure termed 
Hertwig’s epithelial root sheath (HERS) and the dental mesen-
chyme (i.e., DF and DP) signal each other to achieve rapid 
elongation of the tooth root. Subsequent bone resorption of the 
cortical shell on the coronal portion of the tooth bud by osteo-
clasts facilitates the tooth to emerge into the oral cavity.

The third stage (posteruptive tooth movement) starts when 
the tooth reaches its occlusion and maintains its position within 
the alveolar bone to achieve proper occlusion. This stage 
requires continuous maturation of the periodontal attachment 
apparatus and maintenance of its related structures.

Distinct Regulation of Tooth Crown 
and Root Formation
The tooth is made of 2 functionally distinct components: the 
crown and the root (Thesleff 2003; Balic and Thesleff 2015). 
Transcription factors nuclear factor I C (NFIC) and osterix 
(Osx) play a critical role in tooth root formation, which follows 
tooth crown formation (Kim et al. 2013; Kim, Bae, Lee, et al. 
2015; Kim, Bae, Yang, et al. 2015; Zhang et al. 2015; Wang 
and Feng 2017). NFIC is expressed by odontoblasts of the 
crown and the root; however, NFIC-knockout mice showed a 
rootless tooth with no apparent change in the molar crowns 
(Steele-Perkins et al. 2003). Osx is a one of the major down-
stream molecules of NFIC, and it plays an essential role in 
tooth root formation but not crown formation (Zhang et  al. 
2015). These studies provide evidence that tooth crown and 
root formation are separately regulated.

DF and Its Mesenchymal Progenitor 
Cell Populations
The DF, a sac-like membranous tissue surrounding the develop-
ing tooth bud, plays central roles in tooth eruption and tooth root 

Figure 1.  Three stages of tooth eruption. (A) Schematic diagrams of tooth eruption in mice during tooth root formation. Pre-eruptive tooth 
movement: tooth germs within alveolar bone before beginning to erupt. Eruptive tooth movement: movement from its position within the alveolar 
bone to its functional position in occlusion. This phase is subdivided into intra- and supraosseous phases. Posteruptive tooth movement: tooth 
maintains its fully erupted functional position in occlusion, while the jaws continue to grow. Tooth also compensates its loss of functional position 
caused by occlusal and proximal tooth wear. (B) Histologic sections of molars at different time points during tooth root formation in mice. 
Hematoxylin and eosin staining of the mandible at postnatal days 3, 10, 15, and 25.
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formation. It has been known for several decades that surgical 
removal of the DF prevents tooth eruption, but the ability of the 
DF to support tooth eruption does not depend on tooth root for-
mation (Cahill and Marks 1980). Osteoclast activities are particu-
larly important during the second stage of tooth eruption, through 
which the tooth emerges into the oral cavity. However, formation 
of the periodontal tissue is equally important for the latter stage of 
tooth eruption (Gorski and Marks 1992; Wise and King 2008).

It has been postulated from histologic studies that the DF 
includes precursor cells for cementoblasts, PDL cells, and 
alveolar bone osteoblasts (Ten Cate 1997). More recent in vivo 
lineage-tracing experiments with tamoxifen-inducible creER 
lines in mice unambiguously demonstrated that the DF con-
tains a variety of mesenchymal progenitor cell populations, 
including cells expressing glioma-associated oncogene homo-
log 1 (Gli1), Osx, and parathyroid hormone–related protein 
(PTHrP; Liu et  al. 2015; Ono et  al. 2016; Takahashi et  al. 
2019). Dental mesenchymal cells are derived from cranial neu-
ral crest cells and differentiate into dental pulp cells and odon-
toblasts (Chai et al. 2000; Li et al. 2017). Gli1 is expressed by 
mesenchymal cells and epithelial cells of HERS. After tooth 
root formation, descendants of Gli1+ cells contribute to all the 
tooth root structures and their surrounding alveolar bone (Fig. 
2A; Liu et al. 2015). Osx is exclusively expressed by mesen-
chyme cells, such as apical papilla and DF around HERS. 
Osx+ cells differentiate into a majority of the odontoblasts, 
dental pulp cells, cementoblasts, and a small number of PDL 
fibroblasts (Fig. 2B; Ono et  al. 2016). PTHrP is specifically 
expressed in DF, and PTHrP+ DF cells differentiate into PDL 
fibroblasts, cementoblasts on acellular cementum, and osteo-
blasts of alveolar cryptal bone (Takahashi et al. 2019; Fig. 2C). 
These studies suggest that Osx+ cells and PTHrP+ cells are 
subpopulations of Gli1+ cells. These different classes of DF 
cells with potential overlaps can become cementoblasts, PDL 
cells, and alveolar bone osteoblasts during tooth root formation 
(Fig. 2). Additionally, so-called mesenchymal stem cells have 
been isolated from the DF of wisdom teeth in humans with in 
vitro culture condition (Yao et  al. 2008; Bai et  al. 2011), 
although the properties of these cells in vivo remain incom-
pletely known (Sharpe 2016).

Therefore, DF contains important mesenchymal progenitor 
cell populations that orchestrate tooth eruption and tooth root 
formation through common or distinct mechanisms. Further 
characterization of each population of DF mesenchymal pro-
genitor cells will shed further light on the mechanism of mes-
enchymal regulation on tooth eruption.

An Enigmatic Genetic Disease 
Exclusively Affecting Tooth Eruption
Lessons from rare genetic diseases give us substantial insight 
into molecular mechanisms of tooth eruption. In humans, 
loss-of-function mutations in parathyroid hormone receptor 1 
(PTHR1), also known as parathyroid hormone (PTH)/PTHrP 
receptor (PPR), are associated with primary failure of tooth 
eruption (PFE; Decker et  al. 2008; Frazier-Bowers et  al. 

2010; Yamaguchi et  al. 2011; Risom et  al. 2013; Frazier-
Bowers et  al. 2014; Roth et  al. 2014; Jelani et  al. 2016; 
Grippaudo et  al. 2018). PFE is a rare autosomal dominant 
nonsyndromic disorder with a prevalence of 0.06% (Baccetti 
2000). In this condition, molars are partially erupted but sub-
merged, with moderate anomalies in tooth roots. PFE is 
defined as incomplete eruption of the initially nonankylosed 
tooth despite the presence of a clear eruption pathway, which 
results in a posterior unilateral or bilateral open bite. PFE can 
affect primary and permanent teeth and most commonly 
affects posterior teeth (Proffit and Vig 1981).

PPR is a G protein–coupled receptor with 7 transmembrane-
spanning helixes, and it binds to PTH and PTHrP in an equiva-
lent affinity (Jüppner et  al. 1991; Dean et  al. 2008). Upon 
ligand binding, PPR activates at least 2 second messenger sig-
naling systems: the adenylyl cyclase/protein kinase A pathway 
and the phospholipase C/protein kinase C pathway (Mannstadt 
et al. 1999). PPR mediates a number of important biological 
processes, such as endochondral bone formation (Kronenberg 
2006). In humans, homozygous loss-of-function mutations in 
PPR result in embryonic lethal Blomstrand-type chondrodys-
plasia (Karaplis et al. 1998; Zhang et al. 1998), while gain-of-
function mutations in PPR lead to Jansen-type metaphyseal 
chondrodysplasia (Schipani et al. 1995). Interestingly, PFE is 
the only known genetic disease associated with haploinsuffi-
ciency in the PPR gene in humans, which shows phenotypes 
only in molars but not in other skeletal elements. Interestingly, 
PPR haploinsufficiency does not cause any PFE phenotype in 
mice; however, complete loss of PPR in Osx-lineage mesen-
chymal cells with Osx-cre and PPR-floxed alleles leads to 
complete failure of tooth eruption with significantly truncated 
roots lacking PDL (Ono et al. 2016).

Therefore, PFE is a unique genetic condition that can give 
us precious insight into the mechanism on tooth eruption, high-
lighting the indispensable role of PPR in tooth eruption.

PTHrP Regulation of Tooth Eruption 
and Tooth Root Formation
A group of mesenchymal cells in the DF, particularly those 
adjacent to the dental epithelium, abundantly expresses PTHrP. 
PTHrP, a locally acting autocrine/paracrine ligand, exerts 
pleiotropic effects on cell proliferation and differentiation; in 
organogenesis, PTHrP regulates epithelial-mesenchymal inter-
actions in various organs, such as skin, hair follicle, mammary 
gland, pancreas, and developing teeth (Wysolmerski et  al. 
1994; Wysolmerski et  al. 1995; Vasavada et  al. 1996; Foley 
et al. 1998; Philbrick et al. 1998). In endochondral bone devel-
opment, PTHrP maintains chondrocyte proliferation and inhib-
its its differentiation into prehypertrophic and hypertrophic 
chondrocytes through the PTHrP–Indian hedgehog (Hh) feed-
back loop (Kronenberg 2003). In addition, PTHrP+ chondro-
cytes within the resting zone of the postnatal growth plate 
behave as skeletal stem cells (Mizuhashi et al. 2018), indicat-
ing that mesenchymal cells expressing PTHrP might share 
some features with skeletal stem/progenitor cells.
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Figure 2.  Mesenchymal progenitor cell populations for tooth root formation in mice. (A) Schematic diagrams of the fate of Gli1+ root progenitor cells 
during tooth root formation. Gli1+ cells pulsed with tamoxifen at postnatal day 3 (P3) of Gli1-CreERT2 mice. Gli1+ cells are found in HERS, apical papilla, and 
dental follicle. After tooth root formation, descendants of Gli1+ cells were located in all the root structures, including the root pulp, PDL, and surrounding 
alveolar bone (Liu et al. 2015). DF, dental follicle; DP, dental papilla; HERS, Hertwig’s epithelial root sheath; PDL, periodontal ligament. Histologic images 
reproduced and adapted with permission from Liu et al., Development, 2015, copyright the Company of Biologists. (B) Schematic diagrams of the fate of 
Osx+ root progenitor cells during tooth root formation. Osx+ cells pulsed with tamoxifen at P3 of Osx-CreERT2 mice. Osx+ cells are found in apical papilla 
and dental follicle around HERS. After tooth root formation, Osx+ cells differentiate into a majority of the odontoblasts, dental pulp cells, cementoblasts, 
and some PDL fibroblasts (Ono et al. 2016). Histologic images reproduced and adapted with permission from Ono et al., Nature Communications, 2016. (C) 
Schematic diagrams of the fate of PTHrP+ DF mesenchymal progenitor cells during tooth root formation. PTHrP+ cells pulsed tamoxifen at P3 of PTHrP-
CreERT2 mice. PTHrP+ cells are specifically found in DF around tooth bud. After tooth root formation, PTHrP+ DF cells differentiate into PDL fibroblasts, 
some cementoblasts on acellular cementum, and osteoblasts of alveolar cryptal bone (Takahashi et al. 2019). Histological images reproduced and adapted 
with permission from Takahashi et al., Proceedings of the National Academy of Sciences of the United States of America, 2019.
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During tooth development, PTHrP is required for tooth 
eruption. PTHrP-null mice die at birth due to a chondrodystro-
phic phenotype characterized by premature chondrocyte differ-
entiation and accelerated bone formation. Philbrick et al. (1998) 
restored PTHrP expression in chondrocytes in PTHrP-null 
mice, but not in the teeth, to rescue early lethality. However, it 
led to complete failure of tooth eruption and tooth root forma-
tion in the surviving animals that lacked PTHrP in the dental 
tissues. While Philbrick et  al. originally reported that PTHrP 
mRNA is expressed in the stellate reticulum of the enamel 
organ, PTHrP mRNA is also abundantly expressed in DF mes-
enchymal cells adjoining the HERS (Ono et al. 2016; Takahashi 
et  al. 2019). Our in vivo lineage-tracing experiments with 
PTHrP-creER demonstrated that PTHrP+ DF cells can readily 
differentiate into cementoblasts on the acellular cementum, 
PDL cells, and alveolar cryptal bone osteoblasts during tooth 
root formation; when PPR was removed in these PTHrP+ DF 
cells, it led to a failure of tooth eruption (Takahashi et al. 2019). 
In contrast, injection of PTHrP (1-34) accelerates tooth eruption 
and inhibits osteogenesis of the DF cells by inactivating the 
Wnt/β-catenin pathway (Zhang et  al. 2019). Possible down-
stream signaling of the PTHrP-PPR system is histone deacety-
lase 4 (HDAC4; Ono et al. 2016) and salt-inducible kinase 3 
(SIK3; Nishimori et al. 2019).

Therefore, PTHrP is an indispensable autocrine/paracrine 
cytokine that regulates tooth eruption and tooth root formation, 
which is highly expressed by a group of DF mesenchymal pro-
genitor cells contributing to formation of the periodontal 
attachment apparatus.

PTHrP-PPR Autocrine Signaling 
Regulates Tooth Eruption  
and Tooth Root Formation
During tooth development, PPR is expressed by dental mesen-
chymal cells, particularly by cells in the DF as well as the DP 
and odontoblasts of the coronal portion (Ono et  al. 2016). 
Interestingly, PPR is abundantly expressed by PTHrP+ DF 
mesenchymal cells (Takahashi et  al. 2019). This raises an 
intriguing hypothesis that PTHrP-PPR autocrine signaling 
plays important roles in directing proper differentiation of 
PTHrP+ DF mesenchymal cells during tooth root formation. 
To test this hypothesis, our group disturbed this autocrine sig-
naling by conditionally deleting PPR in PTHrP+ DF cells 
based on PTHrP-creER and PPR-floxed alleles. PPR defi-
ciency induced a cell fate shift of PTHrP+ DF mesenchymal 
cells to nonphysiologic cementoblast-like cells precociously 
forming the cellular cementum on the root surface, which was 
associated with upregulation of Mef2c and matrix proteins. 
Mef2c is a transcription factor located downstream of the PPR-
Gsα-cAMP-protein kinase A pathway (Kozhemyakina et  al. 
2009). This resulted in loss of the proper periodontal attach-
ment apparatus without any apparent alteration in osteoclasts 
around molars or ankylosis. Interestingly, this phenotype fur-
ther developed into malformation of molar roots associated 
with undereruption particularly severe in the first molars in 

adult mice, essentially recapitulating human PFE conditions 
(Takahashi et al. 2019).

Therefore, these mouse genetic experiments provide the 
experimental evidence that defective formation of the peri-
odontal attachment apparatus and PFE are closely related, at 
least in the mouse model of PFE. It remains to be determined 
why the first molars are the most affected in human and mouse 
PFE conditions. Our recent study based on a series of 3-dimen-
sional analyses of mouse PFE molars demonstrated that PFE 
molars, particularly the first molars, could indeed continue to 
erupt but at a much slower rate than normal molars, contribut-
ing to the most pronounced phenotype in first molars 
(Tokavanich et  al., unpublished data). These findings shed 
light on the potential pathophysiology of PFE. It requires fur-
ther investigations regarding the mechanism underlying this 
selective phenotype.

Other Major Signaling Pathways 
Involved in Tooth Eruption
A plausible hypothesis is that PTHrP-PPR signaling interacts 
with other major signaling pathways with DF mesenchymal 
progenitor cells to facilitate tooth eruption and tooth root for-
mation. As mentioned earlier, PPR is a G protein–coupled 
receptor. Gαs is the stimulatory subunit of a G protein complex 
and transduces G protein–coupled receptor signaling. Gαs-
mediated signaling induced by the PTHrP-PPR ligand-receptor 
interaction crosstalks with Wnt and Hh signaling pathways 
(Cong et al. 2019). Here, we focus on Wnt/β-catenin, Hh, and 
TGF-β/BMP signaling as auxiliary pathways that potentially 
interact with PTHrP-PPR signaling during tooth eruption.

Wnt/β-catenin Signaling
Wnt/β-catenin signaling plays essential roles in skeletal devel-
opment and homeostasis (Logan and Nusse 2004; Glass et al. 
2005; Holmen et  al. 2005). β-catenin is expressed in dental 
epithelium and dental mesenchyme during tooth root forma-
tion (Kim et al. 2011). Roles of Wnt/β-catenin signaling in DF 
mesenchymal progenitor cells are not known; however, their 
roles in more mature skeletal cells have been reported. 
Constitutive activation of β-catenin signaling in osteoblasts 
and odontoblasts (Col1a1-cre; Ctnnb+/lox(ex3)) leads to distur-
bance in tooth eruption for incisor and molars with increase of 
alveolar bone mass (Kim et al. 2012). This is due to disruption 
of osteoclast activities resulting from activation of Wnt/β-
catenin signaling in mature osteoblasts. Moreover, constitutive 
activation of β-catenin in osteocytes (dentin matrix protein 
1–cre [Dmp1-cre]; Ctnnb+/lox(ex3)) leads to disturbance of tooth 
eruption in incisors (Wu et al. 2019). In contrast, inactivation 
of β-catenin signaling in osteoblasts and odontoblasts 
(osteocalcin-cre [Oc-cre]; Ctnnb1fl/fl) leads to normal emer-
gence of incisor and molars into the oral cavity despite com-
plete failure of root formation (Kim et  al. 2013). In bone, 
deletion of β-catenin in mature osteoblasts by Col1a1-cre, 
Oc-cre, or Dmp1-cre causes an increase in osteoclasts and low 
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bone mass with normal bone formation (Glass et  al. 2005; 
Holmen et al. 2005; Kramer et al. 2010).

Therefore, excessive osteoclast activities might account for 
normal emergence of these molars into the oral cavity despite 
the absence of the tooth root. These studies demonstrate that 
the Wnt/β-catenin signaling in mature osteoblasts regulates 
tooth eruption indirectly through regulating osteoclast forma-
tion. How Wnt/β-catenin signaling functions in more imma-
ture mesenchymal progenitor cell populations and regulates 
tooth eruption and tooth root formation remain to be studied.

Hedgehog Signaling
Hedgehog (Hh) signaling is a developmentally conserved 
pathway for embryonic and postnatal development in a number 
of organs (Hammerschmidt et al. 1997; Chuang and McMahon 
1999; Ingham and McMahon 2001; Briscoe and Therond 2013). 
Hh signaling is involved in the process of epithelial-to-mesen-
chymal transition and essential for tooth root formation (Dassule 
et al. 2000; Jernvall and Thesleff 2000; Khan et al. 2007). In 
the developing teeth, HERS abundantly expresses Shh (sonic 
hedgehog) during tooth root formation (Nakatomi et al. 2006; 
Khan et al. 2007). Apical mesenchymal cells of the DP and the 
DF surrounding HERS express the Hh receptor patched 1 
(Ptch1), which has an inhibitory function for Smo (smooth-
ened) signaling. Binding of Hh ligands to Ptch1 receptors 
releases this inhibition. In fact, loss-of-function spontaneous 
mutations in Ptch1 in homozygous mesenchymal dysplasia 
(Ptch1mes) mice, which express an abnormal C-terminus of 
Ptch1 protein, lead to delay in tooth eruption and short roots 
due to inhibited proliferation of dental mesenchymal cells 
around HERS (Nakatomi et al. 2006).

Gli1, a canonical transcriptional target of Hh signaling, is 
expressed in the apical mesenchyme adjacent to the HERS that 
abundantly expresses Shh. Inhibition of Hh signaling by phar-
macologic Hh inhibitors and constitutive activation of Hh sig-
naling by Gli1-creER; Rosa26-lsl-SmoM2 mouse models lead 
to shorter roots and normal tooth eruption (Liu et  al. 2015). 
Interestingly, Gli1 appears to be highly expressed in dental 
mesenchymal progenitor cells. In the developing incisor, Gli1+ 
mesenchymal cells are slow cycling and behave as mesenchy-
mal stem cells of the continuously growing mouse incisor 
(Zhao et al. 2014). NFIC, a transcription factor mentioned ear-
lier, activates Hh attenuator Hhip in the dental mesenchyme 
and fine-tunes Hh signaling activities in these cells (Liu et al. 
2015). These studies demonstrate that Hh signaling in DF mes-
enchymal progenitor cells may play important roles in tooth 
root formation but potentially also in tooth eruption.

TGF-β/BMP Signaling
Transforming growth factor β (TGF-β) signaling is important 
for epithelial-to-mesenchymal transition (Xu et  al. 2009). 
Deletion of Tgfr2 in Osx+ mesenchymal cells (Osx-cre; Tgfbr2fl/fl) 
leads to failure of tooth eruption and tooth root formation, with 
disruption of osteoblast differentiation and reduction of 

osteoclasts in alveolar bone surrounding the tooth bud (Wang 
et al. 2013). Bone morphogenetic protein (BMP) signaling plays 
a major role of osteoblastic differentiation and bone formation 
and interacts intricately with TGF-β signaling (Beederman et al. 
2013; Wu et al. 2016). In the developing tooth, BMP signaling 
actively regulates cell fate decisions of epithelial and mesenchy-
mal cells (Aberg et al. 1997; Rakian et al. 2013). Moreover, con-
ditional deletion of BMP1 and mammalian tolloid like 1 (TLL1; 
Ubc-creERT2;Bmp1fl/fl; Tll1fl/fl) leads to delay in tooth eruption 
due to reduction in osteoclast formation (Wang et  al. 2017). 
BMP1 and TLL1 belong to a small family of extracellular metal-
loproteinases that share a similar structure (Ge and Greenspan 
2006). Msx2 (muscle segment homeobox-like 2) is a bona fide 
target of BMP signaling and transiently expressed in postmigra-
tory mesenchymal cells in cranial neural crest–derived tissues 
(Semba et  al. 2000; Brugger et  al. 2004). Msx2-null mice 
showed amelogenesis imperfecta with failure of tooth eruption 
(Aïoub et al. 2007). Msx2-expressing cells behave as early mes-
enchymal progenitor cells in craniofacial bone development 
(Sakagami et al. 2018). These studies suggest that TGF-β/BMP 
signaling in dental mesenchymal progenitor cells may play a 
role in tooth eruption and tooth root formation.

Roles of Osteoclasts in Tooth Eruption
Osteoclasts, bone-resorbing multinucleated cells belonging to 
the monocyte-macrophage lineage, have been traditionally 
considered the central regulator of tooth eruption. They play 
essential roles in clearing the eruption pathway for unerupted 
teeth encased in the alveolar bone (Wise et al. 2002) by resorb-
ing the overlaying cortical shell of the alveolar bone. Indeed, 
inhibition of osteoclast formation and function results in delay 
of tooth eruption (Yoda et  al. 2004). Osteoclastogenesis is 
tightly regulated by important factors such as CSF-1 (colony-
stimulating factor 1), receptor activator of nuclear factor-κB 
ligand (RANKL), and OPG (osteoprotegerin; Heinrich et  al. 
2005). These factors are predominantly expressed by mesen-
chymal cells; osteoclasts need signals from their adjacent den-
tal mesenchymal cells, specifically DF cells, to facilitate tooth 
eruption during eruptive tooth movement (stage 2). Failure to 
perforate the cortical shell during eruptive tooth movement is 
detrimental to subsequent tooth root formation. RANKL-
deficient mice (RANKL-/-) show failure of tooth eruption with 
disorganization of HERS (Huang et  al. 2018). In addition, 
osteocytes express much higher levels of RANKL than osteo-
blasts, indicating that osteocytes are likely one of the major 
regulators in tooth eruption by regulating osteoclast formation 
and bone homeostasis (Nakashima et  al. 2011; Xiong et  al. 
2011). Osteopetrosis in ntl mice induces failure of tooth erup-
tion with developing odontoma-like proliferations near the 
proximal ends of the incisor (Lu et al. 2009). c-Fos is a compo-
nent of the AP-1 (activator protein 1) complex that lies down-
stream of the RANKL/RANK signaling pathway (Asagiri and 
Takayanagi 2007). c-Fos homozygous mutant mice (c-Fos-/-) 
show failure of tooth eruption and tooth root formation associ-
ated with lack of osteoclast formation (Alfaqeeh et al. 2015).
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Therefore, failure in tooth root formation in these mice is a 
secondary consequence due to the lack of space available to the 
tooth caused by failure to remove the surrounding bone. 
Importantly, dental mesenchymal cells play intrinsic roles in 
facilitating pre-eruptive tooth movement (stage 1), as well as 
posteruptive movement (stage 3), with little involvement with 
osteoclasts (Wise and King 2008; Fleischmannova et al. 2010; 
Richman 2019).

Challenges and Future Directions
The emerging concept that tooth eruption is regulated by a 
diverse group of dental mesenchymal progenitor cells is sup-
ported by new mouse genetic approaches. The majority of our 
current and previous knowledge on molecular regulation of 
this process has been derived from global knockout/knock-in 
mice and cell type–specific conditional gene deletion experi-
ments based on conventional cre-loxP transgenic systems. The 
limitation of these approaches is that roles of a particular gene 
or cell population tend to be overestimated without the ability 

to temporally control gene manipulation and/or target a single 
population of mesenchymal progenitor cells.

Tooth eruption occurs during the stages of postnatal tooth 
development. Therefore, studying this process requires a 
highly specific inducible approach that allows temporal 
labeling and gene manipulation during a specific window of 
time within a specific population of mesenchymal progenitor 
cells. Moreover, there is a need to thoroughly characterize 
subpopulations of mesenchymal progenitor populations 
through more rigorous emerging single-cell technologies. 
There is a hope that these more detailed analyses will lead to 
identification of new marker genes that enable us to perform 
more detailed functional characterization of distinct subsets 
of mesenchymal progenitor cell populations, particularly 
through generation of new inducible transgenic lines. 
Furthermore, functional analyses of tooth eruption have been 
largely hampered by lack of standardization for the pheno-
type assessment. The use of 3-dimensional imaging analyses 
will be instrumental for a more objective standard for the 
assessment of tooth eruption.

Table.  Transgenic Mouse Lines Used for the Analysis of Tooth Eruption.

Mouse Genotype

Cre 
Transgenic 

Line
Tooth 

Eruption Emergence
Root 

Formation Reference
How Gene Manipulation Affects Root and 

Alveolar Bone

Osx-Cre;Tgfbr2fl/fl Osx-Cre Delay Infraerupted Short roots Wang et al. 2013 Reduced number of osteoclasts, reduced 
odontoblast and osteoblast differentiation 
marker genes

Osx-Cre;PPRfl/fl Osx-Cre Failure No emergence Short roots Ono et al. 2016 Ankylosis of cementum to bone, no PDL
Osx-CreER;PPRfl/fl Osx-CreER Failure Infraerupted Short roots Ono et al. 2016, 

Takahashi et al. 
2019

Increased cementum thickness

PTHrP-CreER;PPRfl/fl PTHrP-
CreER

Failure Infraerupted Short roots Takahashi et al. 2019 A cell fate shift of PTHrP+ dental follicle cells 
to cementoblast-like cells

UBC-CreER; 
Bmp1fl/fl;Tll1fl/fl

UBC-CreER Delay Infraerupted Short roots Wang et al. 2017 Decreased number of odontoblasts and 
osteoclasts with reduced DMP and DSPP 
expression

Col1a1-Cre; 
Ctnnb+/lox(ex3)

Col1a1-Cre Failure No emergence Short roots Kim et al. 2012 Increased alveolar bone mass

Gli1-CreER;R26SmoM2 Gli1-CreER Normal Normally erupted Short roots Liu et al. 2015 Decreased proliferation of apical papilla cells
Oc-Cre;Ctnnb1fl/fl Oc-Cre Normal Normally erupted No roots Kim et al. 2013 Lack of odontoblasts and dentin in roots due 

to disruption in odontoblast differentiation
Col2-Cre;Sik3fl/fl;PTHrP-/- Col2-Cre Failure No emergence Short roots Nishimori et.al. 2019 Not listed
Ptch1mes/mes — Delay Infraerupted Short roots Nakatomi et al. 2006 Increased proliferation of apical cells
Ntl-/- — Delay No emergence No roots Lu et al. 2009 Malformed osteoclasts and formation of 

odontoma-like structures
c-Fos-/- — Failure No emergence No roots Alfaqeeh et al. 2015 Reduced osteoclast formation with the HERS 

unable to extend downward due to the 
presence of bone

Msx2-/- — Failure Infraerupted 
(M1, M2), no 
emergence (M3)

Short roots Aïoub et al. 2007 Decreased osteoclast formation with reduced 
RANKL expression in alveolar bone

Runx2/Cbf1-/- — Delay Infraerupted Not listed Yoda et al. 2004 Suppressed osteoclast formation.
PTHrP-/-; Col2-PTHrP — Failure No emergence No roots Philbrick et al. 1998 Unabsorbed alveolar bone surrounding tooth 

bud despite abundant osteoclasts
NFIC-/- — Not listed Infraerupted but 

extracted at P190
No roots Steele-Perkins et al. 

2003
Decreased alveolar bone formation with 

reduced DSPP expression

DMP, dentin matrix protein; DSPP, dentin sialophosphoprotein; HERS, Hertwig’s epithelial root sheath; M1 to M3, first to third molars; P190, postnatal 
day 190; PDL, periodontal ligament; PTHrP, parathyroid hormone–related protein.
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Conclusion
Tooth eruption is a continuous biological process that occurs 
during postnatal tooth development, which is closely inter-
twined with tooth root formation. Dental mesenchymal pro-
genitor cells contributing to tooth root formation can directly 
and indirectly regulate tooth eruption. Thanks to insight from 
the rare human genetic disease exclusively affecting tooth 
eruption (PFE) and continuous progress in mouse genetics, we 
are now beginning to understand that PTHrP-PPR autocrine 
signaling functions as the linchpin for tooth eruption and tooth 
root formation, with potential involvement of the major signal-
ing pathways, such as Wnt/β-catenin, Hh, and TGF-β/BMP 
(Table and Fig. 3). For better understanding of this important 
biological process, we need to develop more specific genetic 
tools that allow functional analysis of specific groups of dental 
mesenchymal progenitor cells. We expect that further under-
standing of dental mesenchymal progenitor cells and how they 
regulate tooth eruption will facilitate development of innova-
tive dental regenerative approaches in the future.
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