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Abstract

Breast and mammary epithelial cells experience different local environments during tissue 

development and tumorigenesis. Microenvironmental heterogeneity gives rise to distinct cell-

regulatory states whose identity and importance are just beginning to be appreciated. Cellular 

states diversify when clonal three-dimensional (3D) spheroids are cultured in basement membrane, 

and one such state is associated with stress tolerance and poor response to anticancer therapeutics. 

Here, we found that this state was jointly coordinated by the NRF2 and p53 pathways, which were 

co-stabilized by spontaneous oxidative stress within 3D cultures. Inhibition of NRF2 or p53 

individually disrupted some of the transcripts defining the regulatory state but did not yield a 

notable phenotype in nontransformed breast epithelial cells. In contrast, combined perturbation 

prevented 3D growth in an oxidative stress-dependent manner. By integrating systems models of 
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NRF2 and p53 signaling in a single oxidative-stress network, we recapitulated these observations 

and made predictions about oxidative-stress profiles during 3D growth. NRF2 and p53 signaling 

were similarly coordinated in normal breast epithelial tissue and hormone-negative ductal 

carcinoma in situ lesions, but were uncoupled in triple-negative breast cancer (TNBC), a subtype 

in which p53 is usually mutated. Using the integrated model, we correlated the extent of this 

uncoupling in TNBC cell lines with the importance of NRF2 in the 3D growth of these cell lines 

and their predicted handling of oxidative stress. Our results point to an oxidative stress-tolerance 

network that is important for single cells during glandular development and the early stages of 

breast cancer.

Introduction

Among glandular tissues, the breast–mammary epithelium is unique because of the dramatic 

expansion and reorganization that occurs after birth (1). During puberty, a branched network 

of epithelial ducts is pioneered by terminal end buds (TEBs), which emerge from the 

rudimentary gland and extend into the surrounding mesenchyme (2). TEBs contain a 

mixture of proliferating stem–progenitor cells and differentiating cells fated to the secretory 

luminal-epithelial or contractile basal-myoepithelial lineages. During morphogenesis, TEB 

cells are dynamically exposed to different microenvironments that inform final organization 

of the gland (3). Some microenvironmental cues are supportive or instructive to cells 

[hormones (4), growth factors (5), basement membrane (6)]. Others are deleterious or lethal 

[loss of polarity (7), detachment (8), endoplasmic reticulum stress (9)]. All of these cues are 

reconfigured aberrantly and heterogeneously during the early stages of breast–mammary 

cancer (10–12).

Stress and survival signals also juxtapose when breast–mammary epithelial cells are grown 

in three-dimensional (3D) culture with reconstituted basement membrane extracellular 

matrix (ECM) (13, 14). Combining the appropriate adhesive and soluble cues yields TEB-

like behavior in 3D-cultured multicellular epithelial fragments from the mammary gland (7). 

For single-cell cultures that reliably organize as 3D structures, clones or progenitors must 

iteratively proliferate, maintain cell-cell adhesions, and coordinate function to establish a 

multicellular ecosystem (15, 16). Cell-regulatory states diversify within 3D organoids of 

primary breast–mammary epithelia (17–19) and also in the simplest 3D spheroids of 

isogenic cell lines (20–23). Identifying such cell-regulatory heterogeneities is important, 

because there are parallels to in situ lesions of the breast, where premalignant cells must 

survive and proliferate in the duct (24, 25).

Previously, we identified a cluster of transcripts (Fig. 1A, upper) that covaries 

heterogeneously among hormone-negative, basal breast epithelial cells grown as 3D 

spheroids (20). The cluster contains KRT5 (a PAM50 classifier for basal-like breast cancer) 

(26) along with multiple stress-tolerance genes, including JUND (27), CDKN1A (28), 

MUS81 (29), and HSPE1 (30). The transcripts in this cluster were among the strongest and 

most-negative predictors of breast-cancer response to chemotherapy and targeted agents in 

an independent clinical trial (31). We reported that individual genes in the cluster have 

complex time- and microenvironment-dependent relationships in 3D spheroids, animal 
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models of ductal carcinoma in situ (DCIS), and clinical hormone-negative premalignancies 

(24). However, the overarching regulation of the cluster was not determined.

Here, we found that regulatory-state heterogeneity emerges from the coordinated action of 

two stress-responsive transcription factors—NFE2L2 (NRF2) (32, 33) and TP53 (p53) (34)

—which become stabilized posttranslationally when breast-epithelial cells variably 

experience oxidative stress in 3D culture. Genetic disruption of NRF2 signaling altered the 

transcriptional cluster, but 3D phenotypes were buffered or redirected by compensatory 

increases in p53 signaling. Disabling p53 function synergized with NRF2 deficiency, 

suppressing normal 3D proliferation and promoting irregular hyperproliferation in a 

transformed-yet-premalignant derivative. These observations were consistent with an 

integrated-systems model of NRF2–p53 signaling that encoded a shared oxidative-stress 

trigger and common pool of antioxidant target genes without any further crosstalk. Among 

clinical specimens, NRF2–p53 coordination was retained in normal primary breast tissue 

and hormone-negative DCIS. However, the two pathways were largely uncoupled in triple-

negative breast cancers (TNBCs), in which p53 is usually mutated (35). The integrated 

NRF2–p53 model predicted variable extents of uncoupling among TNBCs lines, and high 

uncoupling coincided with the most-severe 3D growth alterations upon NRF2 knockdown. 

Past work on NRF2 in breast cancer has focused on its direct interactions with TNBC-

associated tumor suppressors (36, 37). Our results suggest a broader systems-level role for 

NRF2 and p53 in oxidative-stress tolerance of normal breast–mammary epithelia and 

hormone-negative premalignancies.

Results

Statistical bioinformatics links gene-cluster regulation to NRF2 and p53

We began by looking within the gene cluster (Fig. 1A, upper) for potential regulatory 

mechanisms. The only transcription factor in the cluster is JUND, and we showed previously 

that its chronic knockdown in MCF10A-5E cells (20) causes specific morphometric defects 

during spheroid growth (24). We revisited these results by acutely knocking down the 

expression of JUND with inducible short-hairpin RNA (shRNA) and measuring transcript 

abundance of cluster genes by quantitative polymerase chain reaction (qPCR) (see Materials 

and Methods). Unexpectedly, other than JUND itself, no transcripts were reliably altered by 

its knockdown (see later in this section), supporting a regulatory role for other factors 

outside of the cluster.

We constrained the search for candidate regulators by using maximum-likelihood inference 

(38) to estimate a frequency of bimodal transcriptional regulation (39) for the gene cluster. 

Given the 10-cell-averaged fluctuations from the original study (20), the maximum-

likelihood approach inferred two lognormal regulatory states defined by transcript 

abundance (Fig. 1A, lower). The data supported a low-abundance regulatory state 

predominating in 58% of ECM-attached cells along with a second, high-abundance 

subpopulation in the remaining 42%. The frequency estimates placed quantitative bounds on 

the bimodal characteristics of upstream regulatory mechanisms.
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Next, we applied a panel of bioinformatics approaches to search for transcription factors that 

might impinge upon the gene cluster (see Materials and Methods). The informatic methods 

adopt different strategies for assessing binding-site overrepresentation (40–43). Therefore, 

we intersected their respective outputs to arrive at predictions that were robust to algorithmic 

details. The analysis converged upon two transcription factors: the G1/S regulator E2F1 and 

the stress-response effector NRF2 (Fig. 1B and data file S1). We assessed the relative 

activation of the NRF2 and E2F1 pathways in single cells by quantitative 

immunofluorescence for total stabilized NRF2 protein or phosphorylated RB (pRB indicates 

disinhibited E2F1; see Materials and Methods). In 3D spheroid cultures, pRB 

immunostaining was bimodal, but high-pRB cells were much rarer than the inferred 

regulatory frequency of the gene cluster (Fig. 1C, upper). In 2D cultures, pRB staining was 

over twice as immunoreactive and nearly twice as prevalent in the population (Fig. 1C, 

middle). The reduced proportion of high-pRB cells in 3D is consistent with the proliferative 

suppression of late-stage spheroid cultures (23). A 3D-like distribution of pRB was achieved 

in 2D cultures upon addition of dilute ECM (Fig. 1C, lower) stemming from soluble 

proliferation-suppressing factors in the reconstituted basement membrane preparation (44). 

By contrast, NRF2 stabilization was only distinctly bimodal in 3D spheroids, and the 

observed frequency of low- and high-NRF2 states almost exactly coincided with that 

inferred for the gene cluster (Fig. 1D). Stabilization of hypoxia-inducible factor-1α 
(HIF-1α) was negligible in 3D spheroids overall (fig. S1, A and B), excluding irregular 

hypoxic stress as a contributor to the two-state distribution of NRF2. These results build a 

strong statistical argument for NRF2 as a covarying regulator of the gene cluster.

The NRF2-associated gene cluster (Fig. 1A, upper) was originally identified by quantitative 

analysis of transcriptomic fluctuations among 4557 genes profiled by oligonucleotide 

microarray (20). The same samples were later reprofiled by 10-cell RNA sequencing 

(10cRNA-seq) (45), creating an opportunity to look more deeply at covariates with the 

NRF2-associated gene cluster. We used the median ranked fluctuations of the cluster across 

10-cell samples (Fig. 1A, upper) and surveyed the 10cRNA-seq data for genes that covaried 

(Spearman ρ > 0.5), identifying 633 candidates (Fig. 2A). When this expanded cluster was 

assessed for functional enrichments by Gene Ontology (GO) (data file S2) (46), we noted 

multiple GO terms linked to cell stress (“Response to stress”, “Oxidative stress”) and the 

transcription factor p53 (“DNA damage response”, “p53 pathway”). p53 is sporadically 

stabilized in regenerating epithelia such as the intestine and skin, but p53 activation in 

quiescent tissues is rare (47). Recognizing the residual proliferation observed in 3D cultures 

(Fig. 1C), we immunostained for p53 and found nonuniform stabilization associated with the 

abundance of NRF2 in single cells (Fig. 2B, estimated mutual information: MI = 0.15 [0.12–

0.18]; see Materials and Methods). The analysis raised the possibility of a coordinated 

NRF2–p53 regulatory event triggered heterogeneously when breast epithelial cells 

proliferate and organize in reconstituted ECM.

NRF2 co-immunoprecipitates with p53 in triple-negative breast cancer cells harboring gain-

of-function p53 mutations, but this complex is absent in MCF10A cells with wild-type p53 

(37). Loss of wild-type p53 function in MCF10A cells yields only minor 3D culture defects, 

but gain-of-function p53 mutants strongly perturb 3D architecture (48). Suspecting that 

some of p53’s effects could be explained through NRF2, we inducibly knocked down NRF2 
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with shRNA and inducibly coexpressed a truncated p53 (49) that acts as a dominant negative 

(DNp53; Fig. 2C). Compared with the gene-cluster response to JUND knockdown or 

constitutive E2F1 activation through RB inhibition with overexpressed human 

papillomavirus E7 protein, we observed substantially more alterations upon NRF2 

knockdown (66%) or inhibition of p53 (31%; Fig. 2D and fig. S2, A to D). Using public 

ChIP-seq datasets (50, 51), we found significant enrichment of proximal NRF2 binding 

among transcripts reduced by NRF2 knockdown and a slight enrichment in p53 binding 

among those increased by NRF2 knockdown (fig. S2C). Compound perturbation of NRF2 

and p53 elicited further nonadditive changes to multiple genes in the cluster, including 

synergistic reduction of CDKN1A, encoding a cyclin-dependent kinase inhibitor, and KRT5, 

encoding a basal cytokeratin. Although p53 can antagonize certain NRF2 target genes in 

reporter assays (52), significant antagonism was detected for only one transcript in the 

cluster (MRPL33, fig. S2C). Phenotypically, disruption of NRF2 reduced mean 3D growth 

by 10–13% (fig. S3, A to D), but dual perturbation with p53 gave rise to an increase in 

aborted spheroids unable to grow in the culture (Fig. 2E). The penetrance of the phenotype 

(37%; range: 34–44%) was close to the percentage of cells showing stabilized NRF2 at the 

same time point in 3D culture (43%, Fig. 1E). For this clonal basal-like breast epithelial line 

(20), we conclude that 3D culture heterogeneously elicits NRF2- and p53-inducing stresses, 

which must be withstood for extended proliferation.

NRF2 disruption in basal-like premalignancy causes similar p53 adaptations but different 
3D phenotypes

We next asked how the cellular, molecular, and phenotypic relationships between NRF2 and 

p53 change in basal-like premalignancy by using isogenic MCF10DCIS.com cells (53) as a 

proxy for ductal carcinoma in situ (54). MCF10DCIS.com cells express oncogenic HRAS 

(55) and hyperproliferate as 3D spheroids (confirmed in fig. S4A), but they retain wild-type 

p53 function, albeit at reduced levels compared to parental MCF10A cells (fig. S4, B and C). 

By two-color immunostaining, we found that NRF2–p53 co-stabilization was even more 

pronounced in MCF10DCIS.com cells (Fig. 3A; MI = 0.30 [0.27–0.33]). To identify 

common adaptive programs downstream of NRF2 deficiency, we inducibly knocked down 

NRF2 and profiled 3D spheroids by RNA sequencing (see Materials and Methods). Among 

transcripts consistently increased or decreased in both MCF10A-5E and MCF10DCIS.com 

spheroids, there was a significant enrichment in gene signatures encompassing p53, 

including transcriptional programs downstream of BRCA1, ATM, and CHEK2 (Fig. 3B and 

data file S3). Consistent with these results, NRF2 knockdown in MCF10DCIS.com cells was 

sufficient to significantly stabilize p53 (fig. S5A). Stabilization of wild-type p53 upon NRF2 

knockdown was also observed in premalignant CHEK21100delC SUM102PT cells (56) and 

became even more pronounced when these cells were reconstituted with inducible wild-type 

CHEK2 (fig. S5, B and C), as expected given the feedforward stabilization of p53 by ATM 

and ATM-activated CHEK2 (57). Thus, NRF2 impairment promotes p53 pathway activity in 

basal-like breast epithelia without the need for specific oncogenic drivers.

Despite many transcriptomic alterations in common with MCF10A-5E cells (Fig. 3B), 

MCF10DCIS.com cells yielded very different 3D phenotypes when NRF2 or p53 were 

perturbed. NRF2 knockdown did not detectably alter 3D growth (fig. S6A) but instead gave 
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rise to more rounded, organized MCF10DCIS.com spheroids of high circularity compared to 

control (Fig. 3C), which reverted upon addback of an RNAi-resistant NRF2 mutant (fig. 

S6B). NRF2 deficiency also increased rounding in 3D cultures of SUM102PT cells with or 

without CHEK2 reconstitution (fig. S6C). By contrast, p53 disruption in MCF10DCIS.com 

cells with either DNp53 or a gain-of-function p53R280K mutant increased the prevalence of 

hyper-enlarged outgrowths (Fig. 3D). Combined NRF2–p53 perturbation elicited a 

synergistic increase in non-spherical hyper-enlargement (Fig. 3E), starkly contrasting the 

proliferative suppression observed with the same combination in nontransformed 

MCF10A-5E cells (Fig. 2E). The data suggested that the coordinate transcriptional 

adaptations of NRF2 and p53 are conserved in premalignant cells but insufficient to buffer 

the cellular phenotypes caused by single-gene perturbations in either pathway.

NRF2 and p53 are coordinately stabilized by sporadic oxidative stress

Coordination of the NRF2–p53 pathways could be achieved if they shared the same inducer. 

We thus considered various potential upstream-and-intermediate triggers for NRF2 and p53 

stabilization in basal-like breast epithelia. Inhibition of KEAP1 with the electrophile 

sulforaphane (58) stabilized NRF2 but not p53, and pharmacologic inhibition of MDM2 

with nutlin-3 (59) stabilized p53 but not NRF2 (fig. S4, B to E), suggesting they act as 

parallel pathways downstream of a common inducer. An obvious candidate was DNA 

damage given CDKN1A and MUS81 in the gene cluster (Fig. 1A, upper) and the most-

recognized function of p53 (60). However, chemotherapy-induced double-strand breaks did 

not appreciably stabilize NRF2 in cells with wildtype p53 (Fig. 4A and fig. S7, A and B), 

and genetically driving increased proliferation (61) did not detectably impact regulation of 

the gene cluster in 3D spheroids (fig. S2, B and D). The lack of NRF2–p53 co-induction by 

conventional agonists prompted a search for less canonical activators.

One shared inducer of the KEAP1–NRF2 and ATM–CHEK2–p53 pathways is oxidative 

stress (62, 63). In human breast tissue, increased levels of reactive oxygen species are 

generated and tolerated by basoluminal progenitors (64), which are the cells of origin for 

basal-like breast cancer (65). We documented local niches of Nrf2 stabilization in the murine 

mammary gland during puberty (fig. S8, A to F), potentially linking NRF2 and oxidative 

stress in expanding progenitor(-like) cells, such as MCF10A. When MCF10A-5E cells were 

exogenously stimulated with H2O2, NRF2 was rapidly stabilized and, importantly, p53 also 

accumulated after several hours (Fig. 4B and fig. S7, A and B). Recognizing oxidative-stress 

heterogeneities in 3D spheroids (21, 22, 66), we used the genetically-encoded sensor 

HyPer-2 (67) together with an engineered mRFP1-NRF2 reporter (NRF2rep) to colocalize 

intracellular H2O2 with stabilized NRF2 (see Materials and Methods and fig. S9, A to F). 

We observed a small-but-nonzero mutual information between HyPer-2 fluorescence ratios 

and NRF2rep (Fig. 4C, MI = 0.05 [0.02–0.10]; randomized MI = 0.0004 [0.0001–0.0007]), 

suggesting a complex connection between the two reporters (see next section). Next, we 

evaluated whether oxidative stress resided upstream of NRF2–p53 coordination by using the 

cell-permeable, vitamin E analog Trolox to quench overall reactive oxygen species in the 3D 

cultures. Trolox treatment halved the mutual information between stabilized NRF2–p53 and 

significantly reduced the synergistic proliferative suppression caused by dual perturbation of 
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NRF2 and p53 (Fig. 4, D and E, and fig. S10). Together, the data suggested that NRF2 and 

p53 pathway co-regulation involves upstream heterogeneities in oxidative stress.

An integrated NRF2–p53 model of oxidative stress reconciles pathway coordination with 
3D phenotypes

To connect NRF2 and p53 co-stabilization with spontaneous heterogeneities in oxidative 

stress, we assembled an integrated computational-systems model. The model expands or 

condenses isolated modules of NRF2 and p53 signaling from the literature, fusing them 

through known or reported mechanisms of crosstalk and convergence (Fig. 5A). For the 

NRF2 pathway, we streamlined the detailed model of Khalil et al. (68) at several points. 

Instead of relying on ill-defined kinetic parameters for KEAP1-mediated ubiquitination, 

KEAP1:NRF2 complexes were modeled as separate oxidized or reduced species with 

distinct half-lives estimated by experiment (see Materials and Methods). We likewise 

abandoned the elaborate multistep encoding of thioredoxins, peroxiredoxins, and glutathione 

transferases (68) by substituting a simpler, lumped pool of antioxidant enzymes in the 

model. The resulting architecture is similar to the general negative-feedback control scheme 

of stress-response gene-regulatory networks described by Zhang & Anderson (69). Last, we 

retained the nucleocytoplasmic trafficking of stabilized NRF2 to account for observations 

that H2O2 stimulation retains NRF2 in the cytoplasm longer than treatment with the 

electrophilic stress, sulforaphane (fig. S11, A to C). Oxidative stress feeds directly into the 

NRF2 module according to a basal production rate of reactive oxygen species (ROS), which 

was adjusted in the final model to yield steady-state intracellular H2O2 concentrations 

consistent with the literature (70).

For the p53 pathway, we built upon the base model of Batchelor et al. (71), which was 

originally used to describe oscillations in p53 abundance after ionizing radiation. In this 

model, the kinases ATM and CHEK2 act as aggregate sensors–transducers of the DNA 

damage response (Fig. 5A). They phosphorylate and stabilize p53 against degradation 

triggered by the ubiquitin ligase MDM2, which is also directly phosphorylated and 

inactivated by ATM. Stabilized p53 promotes its own degradation by inducing the 

expression of MDM2 transcripts and deactivates ATM–CHEK2 by enhancing transcription 

of the phosphatase-encoding gene PPM1D. For the integrated model, oxidative stress 

replaced DNA double-strand breaks as the pathway trigger, recognizing that ATM 

autoactivates in the presence of oxidants (63). Further, in response to oxidative stress, proper 

induction of many antioxidant enzymes requires p53 (72), which contributes to the overall 

antioxidant pool along with ARE target genes (Fig. 5A). Oxidative stress has also been 

reported to inhibit p53 DNA binding (73), but we found that p53 stabilized by H2O2 

treatment was as capable at increasing MDM2 abundance as was p53 stabilized by nutlin-3 

(fig. S12). Likewise, NRF2 increases MDM2 abundance in some settings (74, 75) (Fig. 5A, 

gray), but we were unable to detect changes in MDM2 when NRF2 was knocked down with 

shRNA or stabilized with sulforaphane (fig. S13, A to D). As a final candidate for NRF2–

p53 crosstalk that was conditionally incorporated in the model, we considered reports that 

p21, encoded by the p53 target gene CDKN1A, directly stabilizes NRF2 by interfering with 

KEAP1-catalyzed turnover (76, 77) (Fig. 5A, gray). Together, the modifications provided an 
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integrated model of NRF2–p53 signaling downstream of oxidative stress with enough 

molecular detail to enable kinetic and functional predictions.

We revisited the oxidative stress time course (Fig. 4B) to append immunoblot quantification 

of ATM–CHEK2 phosphorylation and p21 abundance after H2O2 addition (fig. S14A). 

Exogenous H2O2 was encoded as an extracellular spike-in that decayed rapidly and 

spontaneously (78) amidst a basal ROS generation rate yielding a realistic intracellular H2O2 

burden at steady state (70). The H2O2 partition coefficient in the model was calibrated to 

capture the magnitude of NRF2 stabilization (see Materials and Methods). Likewise, the 

parameters for H2O2-induced autoactivation of ATM–CHEK2 and signal inactivation were 

defined to align with the time-delayed kinetics and duration of p53 stabilization (fig. S14B). 

In this model, addition of p53–p21–NRF2 crosstalk (76) caused NRF2 stabilization to peak 

earlier and deactivate faster than observations (fig. S14C). We were also unable to detect 

even transient short-range interactions between inducible BirA*-fused versions of p21 or 

NRF2 and endogenous NRF2 or p21 by proximity ligation (fig. S15, A to C). The results 

thus argued against p53–p21–NRF2 crosstalk during oxidative stress in these cells.

With the provisionally calibrated base model, we sought to test whether the encoded 

mechanisms of regulation were sufficient to capture prior observations relating NRF2, p53, 

and oxidative stress. The data obtained by quantitative fluorescence microscopy (Fig. 2B, 

3A, and 4C) presumably arose from spontaneous oxidative stress that was occurring 

transiently and asynchronously during imaging. We mimicked oxidative-stress transients by 

triggering a step increase in the rate of ROS production for two hours followed by relaxation 

of the system for an additional 10 hours (Fig. 5B). The magnitude of the step was sampled 

lognormally to elicit intracellular H2O2 concentrations within the range of HyPer-2 ratios 

observed experimentally (see Materials and Methods). We represented the asynchrony of 

image acquisition by randomly selecting ten snapshots of the network for each model 

iteration. This collection of 1000 snapshots (100 random generation rates x 10 random time 

points) was used to quantify coordination of species within the model.

For connecting oxidative stress to NRF2 stabilization (Fig. 4C), we expanded the base model 

to include the mRFP1-NRF2 reporter, which does not bind DNA or interact with MAF 

proteins and requires ~1 hour to mature fully (79) (see Materials and Methods). By contrast, 

HyPer-2 becomes fully oxidized within ~1 min of H2O2 addition (67), enabling intracellular 

H2O2 concentration in the model to be used directly as a surrogate of HyPer-2 fluorescence 

ratio. We calculated the mutual information from 1000 simulated snapshots and found that 

the two reporters were statistically coupled in the model (Fig. 5C, MI = 0.14 [0.10–0.19]; 

randomized MI = 0.001 [2.8×10−6–0.0005]). Associations were stronger than those observed 

by experiment (Fig. 4C) due to the early time points sampled in the model (yellow-orange 

times in Fig. 5C), suggesting that peak H2O2 transients may be difficult to observe in 

practice. We next compared endogenous NRF2–p53 co-stabilization between MCF10A-5E 

and MCF10DCIS.com cells. The base MCF10A-5E model was adjusted to reflect (i) 

proportional differences in species abundance estimated from RNA-seq (see Materials and 

Methods) and (ii) an increased ROS generation rate estimated from HyPer-2 imaging (fig. 

S9D). NRF2–p53 mutual information was much less dependent on signaling transients, and 

coupling was substantially higher in MCF10DCIS.com cells. The simulations were 
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consistent with our immunofluorescence data (Fig. 3A, 4C, 5, D and E) and support that 

NRF2–p53 pathway kinetics were accurately encoded in the base model.

We then investigated whether the base model could also relate to the synergistic phenotypes 

observed upon dual NRF2–p53 perturbation in MCF10A-5E and MCF10DCIS.com cells 

(Fig. 2E, 3E). We mimicked shNRF2-mediated knockdown by reducing the NRF2 

production rate fivefold in the model (Fig. 2C) and encoding secondary transcriptional 

adaptations in other components by using the associated RNA-seq data (Fig. 3B). For 

DNp53, the p53 species was rendered unable to induce transcription of MDM2, PPM1D, 

p21, and its share of the antioxidant enzyme pool. After re-establishing steady state, the 

perturbed models were challenged with the random step increase in ROS production 

described above. We used the time-integrated intracellular H2O2 concentration as the overall 

measure of oxidative stress experienced during simulation with either the MCF10A-5E or 

MCF10DCIS.com initial conditions. For both cell lines, the base model predicted synergistic 

increases in oxidative stress beyond the linear superposition of shNRF2 and DNp53 effects 

(Fig. 5F). Encouragingly, the same conclusions were reached with models that simply 

encoded the reduced NRF2 production rate without secondary adaptations (Fig. 5G). 

Beyond oxidative-stress inducers and antioxidant target enzymes, we conclude that the 

NRF2–p53 network does not require any additional mechanisms to capture signaling 

coordination or phenotypic interactions.

NRF2–p53 co-regulation occurs in normal breast tissue and hormone-negative DCIS but 
not invasive TNBC

The regulatory heterogeneities observed in 3D culture often reflect adaptations in hormone-

negative premalignancy (24) that become further disrupted in TNBCs (25). We thus sought 

to quantify NRF2–p53 coordination in TNBC and premalignant DCIS lesions, using 

adjacent-normal tissue as a comparator. The TP53 gene is frequently mutated in TNBC (35) 

and gives rise to loss of p53 protein or hyperstabilization of a dominant-negative mutant in 

tumors (80). By contrast, prior immunohistochemistry of NRF2 abundance in breast 

carcinomas was inconclusive (81), owing to an NRF2 antibody that was later shown to be 

non-specific (82). There was an opportunity to revisit NRF2–p53 abundance heterogeneities 

from the perspective of co-stabilization, with a focus on TNBC and its precursor lesions.

Using a knockout-verified commercial antibody (83), we immunoblotted with our 

production lot and confirmed detection of basal and induced NRF2 with only ~35% 

immunoreactivity attributed to nonspecific bands (fig. S16, A to C). By 

immunohistochemistry, the antibody detected endogenous NRF2 stabilized with 

electrophiles in paraffin sections of cell pellets (fig. S16D). The antibody has also been used 

independently to track NRF2 abundance in other solid tumors (84). However, when we 

stained adjacent-normal epithelium immunohistochemically, NRF2 was not clearly 

discernible (Fig. 6A, upper). In MCF10A 3D spheroids, stabilized p53 is not detected by 

immunohistochemistry either (85), and yet we readily visualized it by immunofluorescence 

(Fig. 2B). Therefore, to improve signal-to-background and facilitate multiplex 

quantification, we used two-color immunofluorescence after antigen retrieval, segmenting 
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24,949 normal and transformed epithelial cells in 15 cases of TNBC and hormone-negative 

DCIS.

In adjacent-normal epithelium, we observed local niches of stabilized NRF2 in lobules and 

ducts, which often corresponded with stabilized p53 (Fig. 6A, lower, and fig. S17). 

Stabilized NRF2 was frequently detected in the cytoplasm, consistent with the prolonged 

cytoplasmic localization observed in H2O2-treated cells compared to cells stressed with an 

electrophile (fig. S11). The results corroborated findings that KEAP1 senses oxidative stress 

differently than electrophilic stress (62). The patterns of NRF2–p53 co-accumulation were 

largely preserved in hormone-negative DCIS (Fig. 6B and fig. S18, A to C), even in cases 

with abundantly stabilized p53 that was likely mutated (see later in this section). Nuclear 

localization of NRF2 was also more prominent, perhaps reflecting the stronger ROS 

generation rates of transformed cells (86). Notably, NRF2 and p53 were almost completely 

uncoupled in invasive TNBCs (Fig. 6C and fig. S18D), reflecting a profound shift in single-

cell regulation. We quantified NRF2–p53 coordination by mutual information and found that 

it was largely eliminated in regions of invasive TNBC, irrespective of whether p53 was 

chronically stabilized or not (Fig. 6D). Such alterations were not apparent in regional 

estimates of protein abundance by cell population-averaged fluorescence, where neither 

NRF2 nor p53 were reproducibly different among groups (Fig. 6, E and F). We conclude 

that 3D culture in reconstituted basement membrane co-stimulates the NRF2–p53 pathways 

akin to that observed in normal breast tissue and hormone-negative premalignancy. Full-

blown TNBC, by contrast, evokes a different set of dependencies.

TNBC adaptations to p53 disruption predict variable NRF2 miscoordination, NRF2-
deficient oxidative-stress profiles, and 3D growth responses

TP53 is the most-frequently mutated gene in TNBC (35), and transcriptomic analyses 

support it as a prevalent founder mutation in the disease (87). Disrupting p53 would 

undoubtedly impact transcriptional feedback and the overall cellular response to oxidative 

stress (Fig. 5A). Conversely, neither NFE2L2 nor KEAP1 are mutated in breast cancer (88), 

but unclear is whether wild-type NRF2 might serve as a transient “non-oncogene” (89) that 

promotes stress tolerance during early tumorigenesis. Compared to in situ lesions, the 

stromal environment of invasive tumors is stiffer and more mesenchymal (90), which may 

render NRF2 signaling dispensable at later stages. We wondered whether the fragmentation 

of the NRF2–p53 network in TNBC cells and its origins could be reconciled with the 

systems model.

Using RNA-seq data from the NIH Library of Integrated Network-Based Cellular Signatures 

(LINCS) consortium (91) on 15 TNBC lines with mutated p53 (six claudin-low subtype, 

nine basal-like subtype), we adjusted initial conditions from the original MCF10A model 

and removed all transcriptional processes downstream of p53 (Fig. 7A; see Materials and 

Methods). The individual TNBC models were run to steady state and then challenged with 

increased ROS generation rates as in Fig. 5B. The coordination between NRF2 and mutant 

p53 was calculated by mutual information, and the integrated H2O2 response was scaled to 

that of MCF10A-5E cells as a relative measure of ROS tolerance. The goal was to associate 

the model-derived predictions with NRF2-knockdown phenotype in ROS-generating 
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environments such as 3D culture. To the extent possible, we hoped that 3D growth in 

reconstituted basement membrane might quantify any vestigial requirements for NRF2 

signaling from the in situ stage of the TNBC lines.

For all TNBC lines, the model predicted substantially reduced covariation between mutant 

p53 and NRF2 compared to MCF10DCIS.com cells with wild-type p53 (Fig. 7B, MI < 

0.25). We noted a spectrum of residual NRF2–p53 co-stabilization from weak (HCC1937, 

SUM159PT) to virtually nonexistent (MDA-MB-468, MDA-MB-231). Despite complete 

p53 deficiency in the model, this residual NRF2–p53 mutual information correlated strongly 

with the simulated relative increase in oxidative stress when ROS generation rate was 

increased (Fig. 7B). Neither of these predictions mapped directly to specific transcripts in 

the TNBC-specific RNA-seq data (Fig. 7A), reinforcing that the models were making 

nonobvious predictions about oxidative-stress handling.

To connect the model predictions with a continued role for NRF2 signaling in TNBC 

behavior, we selected five lines along the spectrum of mutual information and ROS 

tolerance. HCC1937 and SUM159PT cells were both predicted to have residual NRF2–p53 

coordination and moderate ROS tolerance (Fig. 7B). Accordingly, inducible knockdown of 

NRF2 in these lines did not lead to any consistent changes in 3D growth (Fig. 7, C and D). 

By contrast, MDA-MB-231, HCC1806, and MDA-MB-468 cells were predicted to have 

among the least NRF2–p53 co-stabilization and ROS tolerance (Fig. 7B). Knockdown of 

NRF2 in these lines with two different shRNAs caused significant increases or decreases in 

overall cell growth (Fig. 7, E to G). Thus, model and experiment support that, despite p53 

mutation, residual NRF2–p53 coupling indicates the primordial susceptibility of triple-

negative malignancies to perturbations in the NRF2 pathway.

Lastly, we sought to extend model predictions to 122 cases of TNBC sequenced by The 

Cancer Genome Atlas (TCGA) (35). Compared to the TNBC lines, we noted reduced 

abundance of MDM2, the NRF2 binding partner MAFK, ATM, and CHEK2 (Fig. 7H), 

which suggested that TCGA tumors would be a considerable deviation from prior 

simulations. There was also more variability in the abundance of multiple antioxidant genes 

(SOD1, TXN, PRDX1), anticipating a greater breadth in model outcomes. Unexpectedly, 

when tumor-derived profiles were encoded and simulated (see Materials and Methods), the 

models predicted ROS tolerances that were largely within the range of TNBC lines analyzed 

before (Fig. 7I). The associated NRF2–p53 coordination, by contrast, was qualitatively 

different, with various TCGA cases giving rise to strong coordination despite pervasive 

TP53 mutation (Fig. 7I, purple). The high-coordination, low-tolerance TNBC cases (Fig. 7I, 

vertical lines) form a subset that could be especially sensitive to changes in NRF2 activation.

Discussion

This work posits ROS as an endogenous, spatially heterogeneous trigger of dual NRF2–p53 

activation in breast–mammary epithelia surrounded by basement membrane ECM. NRF2 

and p53 regulate target-gene abundance—both cooperatively and independently—to 

promote stress tolerance and adaptation. NRF2 deficits are buffered by compensatory 

increases in p53 signaling, and striking ROS-dependent phenotypes arise when both 
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pathways are perturbed. In hormone-negative premalignant lesions, stabilization of NRF2–

p53 remains coordinated, even in cases where p53 has likely mutated. At this preinvasive 

stage, NRF2 should be most important for tumorigenesis. After invasion through basement 

membrane and progression to TNBC, the stromal microenvironment reduces overall NRF2 

signaling and often uncouples it from (now-mutant) p53. Here, the effect of activating or 

inhibiting NRF2 will depend more on the exact cellular context and thus be unpredictable 

(for example, Fig. 7, E to G). Despite the overall complexity of NRF2- and p53-mediated 

transcriptional programs (92, 93), the coordinated response to oxidative stress is captured by 

a relatively simple mathematical encoding. Known core mechanisms of NRF2–p53 

regulation are brought together by a shared ROS inducer and a common pool of detoxifying 

target genes without the need for any further crosstalk. Therefore, oxidative-stress handling 

in normal breast–mammary epithelia is usefully abstracted as two stability-regulated 

transcription factors working independently toward a common homeostatic goal.

Although NRF2 is not an oncogene for breast cancer, it has been connected with multiple 

breast-cancer tumor suppressors previously. In mouse mammary epithelial cells, loss of 

Brca1 (a predisposing event for basal-subtype TNBC) destabilizes Nrf2 and causes an 

increase in ROS, favoring the future acquisition of p53 mutations (36, 94). In human breast 

cancer cells, gain-of-function p53 mutants interact directly with NRF2 and may help retain 

NRF2 in the nucleus (37). If certain p53 mutations were also to promote NRF2 stabilization, 

then it would provide a two-for-one benefit to cancer progression by relieving tumor 

suppression and conferring ROS tolerance constitutively. However, we did not note any 

association between gain-of-function p53 mutants and NRF2 abundance in TNBC lines, 

suggesting that KEAP1 regulation predominates as indicated by the TNBC models. Chronic 

activation of the NRF2 pathway (for example, by activating NFE2L2 mutation or KEAP1 
loss) may be disfavored if increased intracellular ROS is not permanent. The models suggest 

that supraphysiological activation of NRF2 would lead to runaway induction of antioxidant 

enzymes, causing reductive stress as documented for NRF2 in other tissues (95). Wild-type 

NRF2 function must be sufficient to buffer cells from the early stresses of premalignancy 

and p53 disruption, allowing invasive TNBCs to deactivate the pathway when it is no longer 

needed. There are parallels to FOXO transcription factors (96), which are reversibly 

inactivated by mitogenic signals yet provide critical oxidative-stress tolerance when the 

breast-cancer tumor suppressor RUNX1 is disrupted (22, 97, 98).

Breast cancer cell lines organize very differently in 3D culture (99), but their response to 

perturbations is often less disparate. For example, gain-of-function p53 mutations cause 

luminal filling in MCF10A 3D cultures (48), similar to the delay in mammary-gland 

involution observed with mutant p53 in vivo (100). Reciprocally, knockdown of mutant p53 

in MDA-MB-468 cells promotes luminal hollowing (101). Among p53-mutant TNBC lines, 

the impact of NRF2 knockdown on 3D growth was nonuniform but explainable through the 

oxidative-stress profiles inferred from TNBC-specific systems models. The balance of 

complexity and tractability make 3D spheroid–organoid cultures a compelling platform for 

systems-level dissection of cell-state heterogeneity and early tumorigenesis.

The 3D behavior of breast–mammary cancer cells is highly dependent on the surrounding 

ECM (102). Invasive cancers no longer encounter basement membrane ECM but must have 
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bypassed it upon progression to carcinoma. Although multiple TNBC lines will grow as 3D 

colonies in reconstituted basement membrane, others cannot, suggesting a type of cellular 

“amnesia” toward that past encounter. For cancers that do grow in 3D, the use of 

reconstituted basement membrane (as a more normal-like microenvironment) may give rise 

to cellular changes reminiscent of premalignancy. We exploited these changes to evaluate the 

relative importance of NRF2 signaling in different TNBC backgrounds. There are likely 

other opportunities to examine hurdles of premalignancy by using basement-membrane 3D 

cultures. For 3D-organoid biobanks (19), however, it is a reminder that such cultures are not 

propagating the primary breast tumor but rather tumor-derived cells in a more-primitive 

state.

Cancer mutations engage and cooperate with cell signaling in ways that are not captured by 

DNA sequencing (103). The coupling of the NRF2 and p53 pathways described here 

provides a robust oxidative stress-handling network for glandular morphogenesis and 

maintenance. But, this same coupling creates a redundancy upon which p53 mutations can 

occur and neoplasms can evolve. Our results give pause to the nutraceutical use of 

sulforaphane as a potent NRF2 stabilizer (104)—in lung cancer, where KEAP1–NRF2 
mutations are common and TP53 is secondary, antioxidants accelerate tumor progression 

(105). The extraordinary complexity of ROS generation and its cellular effects reinforce the 

value of modeling redox networks at a granularity suited to a given physiology or pathology 

(106).

Materials and Methods

Plasmids

shRNA targeting sequences from the RNAi consortium (107) were cloned into tet-pLKO.1-

puro as previously described (38) for shLuc (TRCN0000072250, Addgene #136587), 

shNRF2 #1 (TRCN0000281950, Addgene #136584), shNRF2 #2 (TRCN0000284998, 

Addgene #136585), shJUND #1 (TRCN0000416347, Addgene #136581), shJUND #2 

(TRCN0000416920, Addgene #136583).

For the mRFP1-NRF2 reporter (Addgene #136580), the DNA binding domain of NRF2 was 

mutated (C506S) along with four leucines (L4A) in the leucine zipper region of the bZIP 

domain by site-directed mutagenesis of the pBabe mRFP1-NRF2 hygro plasmid (Addgene 

#136579) originally prepared by subcloning into pBabe mRFP1 hygro. The RNAi-resistant 

(RR) version of NRF2 (Addgene #136522) was prepared by introducing four silent 

mutations into the sequence targeted by shNRF2 #1 in pEN_TT 3xFLAG-NRF2 (Addgene 

#136527). Site-directed mutagenesis was performed with the QuikChange II XL kit 

(Agilent).

pDONR223 CHEK2 was obtained from the human Orfeome V5.1 (108). CHEK2 amplicon 

was prepared with XbaI and MfeI restriction sites and cloned into pEN_TTmiRc2 3xFLAG 

(Addgene #83274) that had been digested with SpeI and MfeI (Addgene #136526). BirA* 

was cloned out of pcDNA3.1 mycBioID (Addgene) (109) with XbaI and SpeI restriction 

sites and cloned into pEN_TTmiRc2 digested with SpeI and Mfe1 (Addgene #136521). 

CDKN1A and NRF2 PCR amplicons were prepared with SpeI and MfeI restriction sites and 
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cloned into pEN_TTmiRc2 BirA* (Addgene #136521). Luciferase PCR amplicon was 

prepared with SpeI and EcoRI restriction sites and cloned into pEN_TTmiRc2 3xFLAG 

digested with SpeI and MfeI sites (Addgene #136519). p53DD (p53DN) and p53(R280K)-

V5 PCR amplicon was prepared with SpeI and MfeI restriction sites and cloned into 

pEN_TTmiRc2 (Addgene #25752) digested with SpeI and MfeI (Addgene #136520, 

#136525).

pEN_TT donor vectors were recombined into pSLIK neo (Addgene #25735), pSLIK zeo 

(Addgene #25736), or pSLIK hygro (Addgene #25737) by LR recombination to obtain 

pSLIK 3xFLAG-Luciferase zeo (Addgene #136533), pSLIK p53DD zeo (Addgene 

#136534), pSLIK 3xFLAG-Luciferase hygro (Addgene #136528), pSLIK 3xFLAG-

NRF2(RR) hygro (Addgene #136535), pSLIK BirA* hygro (Addgene #136537), pSLIK 

BirA*-CDKN1A hygro (Addgene #136538), pSLIK BirA*-NRF2 hygro (Addgene 

#136539), pSLIK p53(R280K)-V5 hygro (Addgene #136540) and pSLIK 3xFLAG-CHEK2 

neo (Addgene #136536).

pLXSN HPV16E7 (110) and the ΔDLYC mutant (Addgene #136588) were provided by 

Scott Vande Pol (University of Virginia). pCDH-Hyper2-puro (66) was provided by Joan 

Brugge (Harvard Medical School).

Cell lines

The MCF10A-5E clone was previously reported and cultured as described for MCF-10A 

cells (13, 20). MCF10DCIS.com cells were obtained from Wayne State University and 

cultured in DMEM/F-12 medium (Gibco) plus 5% horse serum (Gibco). SUM102PT cells 

were obtained from Asterand Biosciences and cultured in Ham’s F-12 (Gibco) plus 10 mM 

HEPES (Gibco), 10 ng/ml epidermal growth factor (Peprotech), 5 mM ethanolamine 

(Sigma), 50 nM sodium selenite (Sigma), 5 μg/ml apo-Transferrin (Sigma), 10 nM Triiodo-

L-Thyronine (VWR), 5 μg/ml insulin (Sigma), 1 μg/ml hydrocortisone (Sigma), and 5% 

fatty acid free bovine serum albumin (VWR). SUM159PT cells were obtained from 

Asterand Biosciences and cultured in Ham’s F-12 (Gibco) plus 10 mM HEPES (Gibco), 5 

μg/ml insulin (Sigma), 1 μg/ml hydrocortisone (Sigma), and 5% fetal bovine serum 

(Hyclone). All other cell lines were obtained directly from ATCC. MDA-MB-231 and 

MDA-MB-468 cells were cultured in L-15 medium plus 10% fetal bovine serum without 

supplemental CO2. HCC1806 and HCC1937 cells were cultured in RPMI 1640 medium plus 

10% fetal bovine serum. All base media were further supplemented with 1× penicillin and 

streptomycin (Gibco). All cell lines are female, were grown at 37°C, authenticated by short 

tandem repeat profiling by ATCC, and confirmed negative for mycoplasma contamination.

Viral transduction and selection

Lentiviruses were prepared in human embryonic kidney 293T cells (ATCC) by triple 

transfection of the viral vector with psPAX2 + pMD.2G (Addgene) and transduced into 

MCF10A-5E, MCF10DCIS.com, HCC1937, SUM159PT, MDA-MB-231, HCC1806, and 

MDA-MB-468 as previously described (25). Retroviruses were prepared similarly by double 

transfection of the viral vector with pCL ampho (Addgene) and transduced into 

MCF10A-5E cells as previously described (22). Transduced cells were selected in growth 
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medium containing 2 μg/ml puromycin, 300 μg/ml G418, 100 μg/ml hygromycin, or 25 

μg/ml zeocin until control plates had cleared. For RNAi-resistant addback, viral titers were 

adjusted to match the endogenous protein abundance as closely as possible. For mRFP1-

NRF2 fluorescent reporter, we used the minimum viral titer that gave sufficient signal in 

sulforaphane-treated cells compared to DMSO-treated cells. Reporter abundance was 

roughly equal to endogenous NRF2 expression (fig. S9F).

3D culture

3D overlay cultures were performed on top of Matrigel (BD Biosciences) as described 

previously for MCF-10A cells (111) with culture media previously optimized for each cell 

line (25). In addition, HCC1806 cells were cultured in MCF10A assay media (111), and 

SUM159PT cells were cultured in SUM159PT growth media (described above) plus 2% 

fetal bovine serum. For each culture, 45 μl of Matrigel was spread with a pipette tip on the 

bottom of an 8-well chamber slide. A suspension of 5000 single cells per well was laid on 

top of the Matrigel in culture media supplemented with 2% Matrigel. 3D culture medium 

was replaced every four days as originally described (111). For antioxidant supplementation, 

cells were treated with 50 μM Trolox (Calbiochem) for two days before 3D culture, and 

Trolox was included in media refeeds and supplemented every two days between refeeds. 

For long-term knockdown experiments, cells were treated with 1 μg/ml doxycycline (Sigma) 

for three days before 3D culture, and doxycycline was maintained in the 3D culture medium 

throughout the experiment. For experiments with long-term knockdown and inducible 

overexpression, cells were treated with 1 μg/ml doxycycline for two days before 3D culture, 

and doxycycline was maintained in the 3D culture medium throughout the experiment.

RNA purification

RNA from cultured cells was isolated with the RNeasy Plus Mini Kit (Qiagen) according to 

the manufacturer’s protocol. RNA from 3D cultures at day 10 was extracted by lysing 

individual wells in 500 μl RNA STAT-60 (Tel-Test) and purified as described previously 

(25).

RNA sequencing and analysis

Total RNA was diluted to 50 ng/μl and prepared using the TruSeq Stranded mRNA Library 

Preparation Kit (Illumina). Samples were sequenced on a NextSeq 500 instrument with 

NextSeq 500/550 High Output v2.5 kits (Illumina) to obtain 75-bp paired-end reads at an 

average depth of 15 million reads per sample. Adapters were trimmed using fastq-mcf in the 

EAutils package (version ea-utils.1.1.2–537) with the following options: -q 10 -t 0.01 -k 0 

(quality threshold 10, 0.01% occurrence frequency, no nucleotide skew causing cycle 

removal). Quality checks were performed with FastQC (version 0.11.7) and multiqc (version 

1.5). Datasets were aligned to the human (GRCh38.86) genome using HISAT2 with the 

option: --rna-strandness RF (for paired end reads generated by the TruSeq strand-specific 

library). Alignments were assembled into transcripts using Stringtie (version 1.3.4) with the 

reference guided option. Transcripts that were expressed at greater than five transcripts per 

million across all samples were retained for downstream analysis. Differential gene 

expression analysis was carried out using edgeR (version 3.8) (112) on raw read counts 

corresponding to transcripts that passed the abundance-filtering step. Trimmed Mean of M-
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values normalization (TMM) normalization using the calcNormFactors function was done 

before differential expression analysis using exactTest in edgeR. The 1,132 transcripts that 

were commonly differentially expressed (5% FDR) between MCF10A-5E shControl and 

shNRF2 #1, shControl and shNRF2 #2, and MCF10DCIS.com shControl and shNRF2 #1 

are shown in Fig. 3B. Gene Set Enrichment Analysis was done on transcripts that were 

differentially increased or decreased in shNRF2 compared to shControl using the Molecular 

Signatures database collections C1-C4, C6, C7 (113, 114). The full list of enrichments (5% 

FDR) is provided in data file S2.

Quantitative PCR

cDNA synthesis and quantitative PCR were performed as previously described (25, 115) 

with the primers listed in table S1. Human samples were normalized to the geometric mean 

of ACTB, HINT1, PP1A, and TBP (Fig. 2D and fig. S2C); B2M, GAPDH, GUSB, HINT1, 

PRDX6 (fig. S2A); or ACTB, B2M, GUSB, PPIA, PRDX6 (fig. S2B).

Brightfield imaging and quantification of spheroid phenotypes

Brightfield 3D images were acquired on an Olympus CKX41 inverted microscope with a 4× 

Plan objective (four fields per chamber) and a qColor3 camera (Qimaging). Images were 

segmented using OrganoSeg (116) to produce morphometric measures for each segmented 

spheroid. ‘Rounded’ spheres were classified as having circularity greater than 0.9 (Fig. 3, C 

and E, and fig. S6, B and C). ‘Hyper-enlarged’ spheres were classified as having an area 

greater than e8.5 ~ 5000 μm2 (Fig. 3, D and E). “Proliferation suppressed” spheres were 

classified as having an area less than 1600 μm2 for MCF10A-5E cells after 10 days of 3D 

culture (Figs. 2E and 4E).

Clinical samples

Cases were identified from the pathology archives at the University of Virginia and build 

upon a cohort of samples previously described (24, 25). Hormone-negative DCIS lesions 

were deemed negative (less than 10% expression frequency) for estrogen receptor and 

progesterone receptor by clinical immunohistochemistry, and TNBC cases were additionally 

scored negative for HER2 amplification by clinical DNA chromogenic in situ hybridization. 

All clinical work was done according to IRB-HSR approval #14176 and PRC approval 

#1363 (502–09).

Immunofluorescence

MCF10A-5E and MCF10DCIS.com 3D cultures were embedded at day 10 of 

morphogenesis, and 5-μm sections were cut and mounted on Superfrost Plus slides (Fisher). 

For clinical samples, paraffin tissue sections were dewaxed and antigens retrieved on a PT 

Link (Dako) with low-pH EnVision FLEX Target Retrieval Solution (Dako) for 20 min at 

97°C. Immunofluorescence on cryosections and antigen-retrieved slides was performed as 

previously described (20) with the following primary antibodies: NRF2 (Santa Cruz 

#sc-13032, 1:100), phospho-Rb (Cell Signaling #8516, 1:1600), HIF-1α (Cell Signaling 

#79233, 1:800), p53 (Santa Cruz #sc-126, 1:200). Slides were incubated the next day for 1 
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hour in the following secondary antibodies: Alexa Fluor 555-conjugated goat anti-rabbit 

(1:200; Invitrogen), Alexa Fluor 647-conjugated goat anti-mouse (1:200; Invitrogen).

Image acquisition–analysis and mutual information calculation

Fluorescent images were collected unblinded on an Olympus BX51 fluorescence 

microscope with a 40× 1.3 numerical aperture (NA) UPlanFL oil-immersion objective and 

an Orca R2 CCD camera (Hamamatsu) with no binning. Images were segmented in 

CellProfiler (117) using DAPI to identify nuclei. Nuclear objects were dilated to a median 

diameter of 15 μm to capture approximately one whole cell. NRF2 staining was quantified in 

the nucleus, the whole cell, and the cytoplasm (whole cell area – nuclear area). p53 staining 

was quantified in the whole cell. Immunoreactivity was quantified as the median 

fluorescence intensity of the whole cell unless otherwise noted.

For pRB and NRF2 immunofluorescence (Fig. 1, D and E), log-transformed distributions 

were analyzed with the MClust function in R using the unequal variance model with either 

one or two mixture components specified. Model fit was evaluated by F test.

MCF10A-5E cells stably expressing pCDH-HyPer2-puro were imaged at 37°C in Hank’s 

Balanced Salt Solution (Gibco) with a 40× 1.3 NA EC Plan Neofluar oil-immersion 

objective on a Zeiss LSM 700 laser scanning confocal microscope. 405 nm and 488 nm 

lasers were used to sequentially excite two excitation peaks of HyPer-2 and collect 

fluorescence emission from 500–550 nm. To calculate HyPer-2 ratios on a pixel-by-pixel 

basis, 488-nm images were divided by 405-nm images and thresholded in ImageJ to remove 

background pixel values (~10%). For quantification of cells cultured in 2D (fig. S9, B to D), 

the mean HyPer-2 ratio per image was used for analysis. For quantification of cells cultured 

as spheroids (Fig. 4C), cells were manually segmented to calculate the median HyPer-2 ratio 

per cell.

Clinical samples were imaged on an Olympus BX51 fluorescence microscope with a 40× 

1.3 NA UPlanFL oil-immersion objective and an Orca R2 CCD camera (Hamamatsu) with 

2×2 binning and fixed exposure times for NRF2 (150 msec) and p53 (50 msec). Images were 

autoexposed in the DAPI channel for nuclear segmentation and in the unlabeled FITC 

channel for autofluorescence estimation. Image fields were classified as follows: Normal—

bilayered epithelium, intact basement membrane (visualized by FITC autofluorescence), and 

normal cytoarchitecture; DCIS—multilayered and disorganized epithelium (with partial or 

complete luminal filling), intact basement membrane, cytologic atypia; TNBC—invasive 

carcinoma cells with cytologic atypia and no discernable basement membrane. All images 

were segmented in CellProfiler as described above. After nuclear identification, nuclei 

outside of the ductal epithelium (fibroblasts, endothelial cells, and immune cells) were 

manually removed using the IdentifyObjectsManually module. Because paraffin fixation of 

tissue increases autofluorescence (118), the analysis excluded images that were dominated 

by autofluorescent bleedthrough into the Alexa 555 channel localizing NRF2. Spearman 

correlation was calculated between cellular FITC–555 channels and FITC–DAPI channels 

on a pixel-by-pixel basis for each image. Images with a FITC–555 correlation coefficient 

above the 95th percentile for FITC–DAPI correlation (in which autofluorescent artifacts 

were negligible due to the low exposure time) were excluded from further analysis.
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For NRF2 quantification in neighboring cells (fig. S8), spheroid and mouse mammary gland 

images were loaded into CellProfiler and the IdentifyObjectManually module was used to 

manually identify regions of ductal epithelium. The images were cropped manually, and cell 

nuclei within the cropped area were identified by DAPI staining. Nuclear area was dilated to 

a median diameter of ~15 μm to define a cell. Position, area, and median NRF2 staining 

intensity were measured for each cell. Measurements were loaded into MATLAB, and 

single-cell NRF2 intensities were normalized to the median intensity of all exposure-

matched cells. Neighboring cells were defined as cells located within a radius of 1.5 times 

the median cell diameter. For more distant neighbors, annular areas of 3–5 and 5–10 times 

the median cell diameter were used. Cells that fell within the applied search area were used 

to calculate the median neighbor NRF2 intensity. The original cell at the center of the search 

area was not included in the intensity calculations, and cells with NRF2 intensity values 

equal to 0 or lacking neighboring cells within the defined search area were excluded from 

calculations.

To quantify the association between fluorescence channels, we used mutual information in 

lieu of standard correlation measures (Pearson, Spearman). After appropriate transformation 

and binning into discrete high-low states, mutual information provides greater flexibility to 

capture nonlinear relationships (119) and more stringency to detect compressions in 

dynamic range (120). Median fluorescence intensity distributions were transformed by their 

respective cumulative distribution functions (probability integral transform) to produce 

uniformly distributed random variables (121). The uniform distributions were split into low 

and high states at the 67th percentile, and the joint–marginal state probabilities estimated for 

the two fluorescence channels (R, G) were used to calculate the mutual information (MI) as 

follows:

MI = ∑∑pRGlog
pRG
pRpG

MI confidence intervals were estimated by bootstrapping the segmented cell population 

1000 times. To create a randomized (null) dataset, the values of one fluorescence channel 

were randomly shuffled before analysis.

Clinical samples often had fewer areas of classified cells for imaging, which require an 

added analysis step in the mutual information calculation. For a classification (normal, 

DCIS, TNBC) comprised of two images from one case, we evaluated batch effects by 

hypergeometric test to determine if the two images separated by high-vs.-low staining 

intensity. If so, the case for that classification was excluded.

Quantitative immunoblotting

Quantitative immunoblotting was performed as previously described (122). Primary 

antibodies recognizing the following proteins or epitopes were used: NRF2 (Santa Cruz 

Biotechnologies, #sc-13032, 1:1000), p53 (Santa Cruz Biotechnology #sc-126, 1:1000), p21 

(Proteintech #10355–1-AP, 1:1000), total Chk2 (Cell Signaling #2662, 1:1000), phospho-

Chk2 (Thr68, Cell Signaling #2197, 1:1000), phospho-ATM (Ser1981, Abcam #ab81292, 
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1:1000), KEAP1 (Santa Cruz Biotechnology #sc-15246, 1:1000), CDK4 (Cell Signaling 

#12790, 1:1000), CDK2 (Santa Cruz Biotechnology #sc-6248, 1:200), vinculin (Millipore 

#05–386, 1:10,000), GAPDH (Ambion #AM4300, 1:20,000), tubulin (Abcam #ab89984, 

1:20,000), p38 (Santa Cruz Biotechnology #sc-535, 1:5000), Hsp90 (Santa Cruz 

Biotechnology #sc-7947, 1:5000).

Proximity ligation using BirA*-fusions of p21 and NRF2

MCF10A-5E cells inducibly expressing the promiscuous biotin ligase BirA* (123), BirA*-

NRF2, or BirA*-CDKN1A were plated on 10-cm plates and induced with 1 μg/ml 

doxycycline at 50% confluency. After 24 hours, media was refed with 1 μg/ml doxycycline, 

10 μM sulforaphane (Sigma), 10 μM nutlin-3 (Calbiochem) and 1 mM biotin (Sigma). After 

24 hours, cells were lysed in 200 μl RIPA buffer (50 mM Tris (pH 8.0), 150 mM NaCl, 5 

mM EDTA, 1% Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate). Anti-biotin antibody 

enrichment of biotinylated peptides was performed as previously described (124). Briefly, 

biotin antibody bound agarose beads (ImmuneChem Pharmaceuticals Inc., #ICP0615) were 

washed three times in IAP buffer (50 mM MOPS (pH 7.2), 10 mM sodium phosphate and 50 

mM NaCl). 500 μg (50 μl) of antibody was added to each RIPA lysate on ice. Ice-cold IAP 

buffer was added up to 1 ml and samples were incubated on a nutator overnight at 4°C. The 

next day, beads were washed four times with ice-cold IAP buffer, boiled in dithiothreitol-

containing 2× Laemmli sample buffer, and used for immunoblotting against the indicated 

targets.

Promoter bioinformatics

The 36 transcripts of the Fig. 1A gene cluster (20, 24) were assessed with four promoter 

analysis algorithms to identify recurrent transcription factor (TF) candidates (125). First, 

distant regulatory elements (DiRE) analysis was conducted using the DiRE website (https://

dire.dcode.org) (40) searching evolutionary conserved 5’ untranslated regions (5’ UTR 

ECRs) and promoter regions (promoter ECRs) for genes on the human genome (hg18). A 

random set of 7500 genes was selected as background control genes. Second, 

Expression2Kinases (X2K) software was used to identify upstream TFs for the Fig. 1A gene 

cluster (41). The potential TFs were selected from ChIP-X Enrichment Analysis (ChEA) 

database using “mouse + human” as the background organisms (126). The p value from the 

Fisher Test and Z-score were used for sorting and ranking. Third, from the National Center 

for Biotechnology Information (NCBI), we collected the proximal promoter of each 

transcript—defined as 1416 base pairs (bp) upstream and 250 bp downstream of the 

transcription start site to remain within the 60 kb sequence limit—for use as an input set for 

MEME (127, 128). Using MEME-defined motifs from classic discovery mode, the top three 

enriched motifs were searched against the JASPAR CORE (2018) database (containing 1404 

defined TF binding sites for eukaryotes) (129) or HOCOMOCO Human (v11) database 

(containing 769 TF binding motifs) (130) using TOMTOM (131) to identify transcription 

factor recognition sequences. A recognition sequence for E2F6 was considered within the 

E2F group, and a recognition sequence for the NRF2 binding partner MAFK was considered 

within the NRF2 group. Last, oPOSSUM (43) was used to identify potential TFs targeting 

transcripts in the cluster. We selected Single Site Analysis – Human mode and used all 

24,752 genes in the oPOSSUM database as a background. All vertebrate profiles with a 
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minimum specificity of 8 bits in the JASPAR CORE Profiles were selected as TF binding 

sites sources. oPOSSUM was run with the following parameters: conservation cutoff of 0.4, 

matrix score threshold of 85%, amount of upstream/downstream sequence: 2000/0, and sort 

results by Fisher score. Outputs of the promoter bioinformatics are available in data file S1.

ChIP-seq bioinformatics

NRF2 ChIP-seq raw data files were downloaded from ENCODE (ENCAB800OND) (50), 

consisting of fastq files from three cell lines (K562, A549, HepG2) with two biological 

replicates each. Quality of the sequenced reads was analyzed using FastQC. Reads were 

aligned to the human genome (hg19) using BWA with the -M option. Peaks were identified 

using MACS2 (version 2.1.0) with an FDR cutoff of 0.01 to reduce the number of spurious 

peaks. Irreproducibility discovery rate analysis was performed on biological replicates and a 

cutoff of 0.05 was used to generate a list of high-confidence peaks for each cell line. Peaks 

were annotated using the Homer annotatePeaks program. p53 ChIP-seq binding sites were 

used from a ChIP-seq dataset (GSE86164) (51). Briefly, ChIP-seq was performed on three 

cell lines (HCT116, MCF7, SJSA) treated with or without nutlin-3. Reads were mapped to 

hg19 using Bowtie2 and peaks were identified and annotated using the Homer suite. NRF2–

p53 binding sites were indicated (fig. S2C) if a peak was present for a gene in at least one 

cell line analyzed for each ChIP-seq dataset.

Computational modeling

The NRF2 pathway was encoded as first- and second-order rate equations for KEAP1 

oxidation and NRF2 stabilization; NRF2-mediated transcription of antioxidant enzymes was 

modeled as a Hill function (68, 69). The p53 pathway was reconstructed from a delay 

differential equation model of p53 signaling in response to DNA damage (71). Abundances 

in the original p53 model were unitless, but abundances were cast as concentrations in the 

earlier NRF2 models. Consequently, the integrated model adopted unitless abundances in its 

initial conditions and second-order parameters (table S2). To adapt the p53 DNA-damage 

model to respond to oxidative stress, we changed the ‘Signal’ activation (representing 

activation of upstream kinases p-ATM and p-CHEK2) from a Heaviside step function to a 

first-order oxidation reaction of ATM/CHEK2 by intracellular H2O2 (63). A basal ROS 

generation rate was added yielding a realistic intracellular H2O2 burden at steady state (70). 

Transcription of antioxidant enzymes by p53 (72) was modeled using the same model 

parameters describing the p53-mediated induction of MDM2 (71). p53- and NRF2-mediated 

antioxidant gene transcription contribute to a shared pool of antioxidant enzymes, which 

catalytically reverse the oxidation states of KEAP1 and p-ATM/CHEK2. Transcription of 

CDKN1A by p53 (132) was included for model calibration (fig. S14) and for testing the 

relevance of p53–p21–NRF2 crosstalk (see next paragraph). The integrated base model of 

NRF2–p53 oxidative-stress signaling contains 42 reactions and 22 ordinary differential 

equations (ODEs). The model was simulated with dde23 in MATLAB to reach steady state 

before the addition of oxidative stress.

The integrated model was calibrated to capture the dynamics of MCF10A-5E cells 

stimulated with 200 μM H2O2 (fig. S14). Bolus addition of H2O2 was simulated as an 

impulse of intracellular H2O2. We used an H2O2 partition coefficient that gave rise to NRF2 
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stabilization levels comparable to immunoblot quantification (extracellular / intracellular 

partition = 3). We approximated p-ATM/CHEK2 in the integrated model as the maximum 

normalized increase of p-ATM or p-CHEK2 over baseline at each experimental time point. 

Robustness of the system output to initial conditions was evaluated by randomly varying the 

concentration of model species with a log coefficient of variation of 10% taking the base 

model as the geometric mean.

For simulations involving the mRFP1-NRF2 reporter (NRF2rep, Fig. 5C), NRF2rep and 

mature fluorescent species (Nrf2repmat) were added to the MCF10A-5E base model. Both 

reporter species were allowed to react with KEAP1, but neither could bind MAF proteins or 

antioxidant-response elements in the model (fig. S9E). We used an mRFP1 maturation time 

of one hour (79) to model the conversion of NRF2rep to NRF2repmat. The modifications 

added 19 additional reactions and eight additional ODEs to the MCF10A-5E base model.

For simulations involving p53–p21–NRF2 crosstalk (fig. S14C), we added reactions 

involving p21 binding to NRF2 to the MCF10A-5E base model. p21 was assumed to interact 

with NRF2 like KEAP1 and compete with KEAP1 for binding NRF2 through its DLG and 

ETGE domains (76). The p21:NRF2 complex was assumed to degrade at the same reduced 

rate as when NRF2 is bound to oxidized KEAP1 (k_nrf2degox). These modifications added 

eight additional reactions and two additional ODEs to the MCF10A-5E base model.

For simulations involving MCF10DCIS.com cells (Fig. 5, E to G), RNA-sequencing data 

(Fig. 3B) was used to estimate proportional differences in model species abundance between 

MCF10DCIS.com and MCF10A-5E cells. Average gene expression in transcripts per 

million from the four biological replicates of MCF10DCIS.com and MCF10A-5E control 

cell lines was calculated for each gene. Fold changes in model species of MCF10DCIS.com 

relative to MCF10A-5E were used to adjust each initial condition in the model. For the 

“MAF” species, we used the median fold change in NRF2-binding small MAFs MAFF, 

MAFG, and MAFK (133). For the antioxidant species, we used the median fold-change in 

TXN, SOD1, PRDX1, and HMOX1 to include antioxidants that react with both free radicals 

and oxidized proteins (134). Additionally, the MCF10DCIS.com model included a 1.4-fold 

increase in the basal ROS generation rate, informed by the increased median HyPer2-ratio in 

MCF10DCIS.com cells compared to MCF10A-5E cells (fig. S9D). The increased ROS 

generation rate was paired with an increase basal turnover of the antioxidant pool to arrive at 

steady-state antioxidant gene expression levels consistent with MCF10DCIS.com RNA-seq 

data.

For simulations involving bursts of oxidative stress, an increased ROS production rate was 

added for two hours to match the duration of transient stabilizations of JUND (a gene in the 

NRF2-associated gene cluster) in 3D (24). We selected the minimum increase in ROS 

generation (20-fold; log CV = 20%) that gave rise to a detectable stabilization of both the 

NRF2 and p53 pathways in the MCF10A-5E base model. Under these conditions, overall 

oxidative-stress burden was within 4–16% of that observed with 200 μM H2O2. For 

MCF10DCIS.com and TNBC models, the mean ROS generation rate was scaled 1.4-fold to 

reflect the increased basal ROS generation rate described above. NRF2 knockdown was 

encoded by decreasing the net synthesis rate of NRF2 fivefold to mimic the fivefold 
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decrease in NRF2 protein resulting from short-hairpin knockdown (Fig. 2C). To account for 

secondary transcriptional adaptations (Fig. 5F), initial conditions were also adjusted by 

RNA-seq-based fold changes in model species for shNRF2 cells relative to negative-control 

cells (Fig. 3B). Dominant negative p53 was encoded by removing all reactions downstream 

of p53 (transcriptional activation of MDM2, PPM1D, CDKN1A, and the p53 share of the 

antioxidant enzyme pool).

For the control case and all genetic perturbations (shNRF2, DNp53, and shNRF2+DNp53), 

100 simulations were run with random ROS generation rates varied with a log coefficient of 

variation of 25% to capture the variability of HyPer-2 ratios observed experimentally (Fig. 

4D). Each simulation was run for two hours with increased ROS production rate and then an 

additional 10 hours to allow relaxation back to steady state. For assessment of species 

coordination (Fig. 5, C to E, and 7B), species abundances were captured at 10 random 

timepoints from each simulation and mutual information was calculated as it was for 

quantitative immunofluorescence datasets. For oxidative stress analysis (Fig. 5, F and G, and 

7B), the time-integrated intracellular H2O2 concentration was used as an overall measure of 

oxidative stress.

For simulations involving TNBC cells (Fig. 7, A and B), RNA-seq data from the NIH 

LINCS consortium (91) (HMS dataset ID: 20348) was used to estimate proportional 

differences in model species abundance between 15 TNBC cell lines and MCF10A cells. 

Reads per kilobase per million mapped reads values were normalized as transcripts per 

million before fold-change calculation. MAF and antioxidant species were estimated as 

described above. TNBC models used the same increased basal ROS generation rate as in the 

MCF10DCIS.com model (135). To simulate p53 mutation in the 15 p53-mutant TNBC cell 

lines, all reactions downstream of p53 were removed.

For simulations involving TNBC tumors from TCGA (Fig. 7, H and I), breast cancer 

sequencing data and associated clinical information was downloaded from TCGA Data 

Portal (https://portal.gdc.cancer.gov/). We identified 122 TNBC cases as tumors that were 

scored negative for estrogen receptor expression, progesterone receptor expression, and 

HER2 amplification in the clinical record. Fragments per kilobase per million mapped reads 

were normalized as transcripts per million before fold change calculation to model species 

abundance in MCF10A cells. Simulations were carried out exactly as described for TNBC 

cell lines. All computational models and associated results are available in data file S4.

Statistical analysis

For analysis of the 10cRNA-seq dataset (Fig. 2A), Spearman correlation between transcripts 

and the median expression of the NRF2-associated gene cluster was calculated at a false-

discovery rate of 10%. Transcripts with a Spearman correlation coefficient above 0.5 were 

examined by Gene Ontology analysis. Statistical enrichment of Gene Ontology terms was 

assessed by Fisher exact test with FDR-corrected p values. Statistical enrichments in ChIP-

seq binding were determined by hypergeometric test (fig. S2C). For quantitative PCR data, 

differences in geometric means were assessed by Welch’s t test after log transformation (fig. 

S2, A and B). Statistical interaction between shNRF2 and DNp53 and differences between 

immunoblotting time courses were assessed by one-way ANOVA (Fig. 2, D and E, 3E, 4, A 
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and B, 5, F and G, and fig. S2C). Statistical interaction between shNRF2, DNp53, and 

Trolox was assessed by three-way ANOVA (Fig. 4E). For fig. S15B, two-way ANOVA 

without replication was used. For unpaired clinical data, multi-group comparison was made 

by Kruskal-Wallis rank-sum test (Fig. 6, D to F). For 3D spheroid growth, mean differences 

in area were assessed by Kruskal-Wallis test with Dunn’s post-hoc test (Fig. 7, C to G). 

Distributions were compared by Kolmogorov-Smirnov test (fig. S2D, S9, and S11). All 

other two-sample comparisons were performed by Student’s t test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Transcriptomic fluctuations of ECM-cultured breast epithelial spheroids reveal a gene 
cluster associated with heterogeneous NRF2 stabilization in a 3D-specific environment.
(A) Maximum-likelihood inference parameterization (lower) of a two-state distribution of 

transcript abundances for the gene cluster from microarray profiles (upper) of ECM-attached 

basal-like MCF10A-5E breast epithelial cells, randomly collected as 10-cell pools (n = 16) 

from 3D-cultured spheroids after 10 days, extracted from (20). Inferred expression 

frequencies are the maximum likelihood estimate with 90% confidence interval (CI). (B) 

Venn diagram summarizing the candidate transcription factors predicted from four different 

bioinformatics algorithms (data file S1). (C and D) Quantitative immunofluorescence of (C) 

hyperphosphorylated RB (pRB, an upstream proxy of active E2F1) and (D) NRF2 in 3D 

culture with ECM (upper), 2D culture (middle), and 2D culture with ECM (lower). 

Expression frequencies for a two-state lognormal mixture model (preferred over a one-state 

model by F test; p < 0.05) were calculated by nonlinear least squares of 60 histogram bins 

collected from n = 1100–1600 of cells quantified from 100–200 spheroids from two separate 

3D cultures. For each subpanel, representative pseudocolored images are shown in the upper 

right inset and merged (magenta) with DAPI nuclear counterstain (blue) in the lower right 

inset. Scale bar is 10 μm.

Pereira et al. Page 33

Sci Signal. Author manuscript; available in PMC 2020 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Transcriptome-wide covariate analysis of the NRF2-associated gene cluster suggests a 
coordinated adaptive-stress response involving p53.
(A) Transcripts covarying with the median NRF2-associated fluctuation signature (Fig. 1A, 

upper; 20) measured by 10-cell RNA sequencing (45) of ECM-attached MCF10A-5E cells 

grown as 3D spheroids (n = 18 10-cell pools from GSE120261). Selected Gene Ontology 

enrichment analysis (green and purple) is shown for the transcripts with a Spearman 

correlation (ρ) greater than 0.5. The complete list of enrichments is available in file S2. (B) 

Quantitative immunofluorescence of NRF2 and p53 abundance in ECM-attached 

MCF10A-5E cells grown as 3D spheroids. Representative pseudocolored images for NRF2 

(upper left) and p53 (middle left) are shown merged with DAPI nuclear counterstain (lower 

left). White arrows indicate concurrent NRF2 and p53 stabilization. Median-scaled two-

color average fluorescence intensities are quantified (right) along with the log-scaled and 

background-subtracted mutual information (MI) with 90% CI for n = 1691 cells segmented 

from 50–100 spheroids from two separate 3D cultures. (C) Genetic perturbation of NRF2 by 

inducible shRNA knockdown (upper) and p53 by inducible expression of a FLAG-tagged 

carboxy terminal (residues 1–13, 302–390) dominant-negative p53 (DNp53, lower). NRF2 

knockdown reduced NRF2 protein abundance to 22 ± 4% of control knockdown (fig. S3B). 

MCF10A-5E cells were treated with 1 μg/ml doxycycline for 72 (upper) or 24 (lower) hours 

and immunoblotted for NRF2 or FLAG with vinculin, tubulin, and p38 used as loading 

controls and p21 used to confirm efficacy of DNp53. The negative control for shNRF2 was 

an inducible shGFP, and the negative control for DNp53 was an inducible FLAG-tagged 

LacZ. (D) Abundance changes in the gene cluster after single and combined perturbations of 

NRF2 and p53. NQO1 was used as a control for efficacy of shNRF2, and CDKN1A shows 
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efficacy of DNp53. MCF10A-5E cells with or without NRF2 knockdown or DNp53 were 

treated with 1 μg/ml doxycycline for 48 hours, grown as 3D spheroids for 10 days, and 

profiled for the indicated genes by quantitative PCR. Data are log2 geometric mean relative 

to the negative control (shGFP + FLAG-tagged LacZ), with asterisks indicating significant 

changes (left and middle columns) or interaction effects (right column) by two-way ANOVA 

of n = 8 independent 3D-cultured samples and a false-discovery rate of 5%. The complete 

set of transcripts in the gene cluster is shown in fig. S2C. (E) Dual inactivation of NRF2 and 

p53 causes synergistic proliferative suppression in MCF10A-5E 3D spheroids. Black arrows 

indicate proliferation-suppressed spheroids. Data are mean percentage of proliferation-

suppressed spheroids ± s.e.m. of n = 8 independent 3D-cultured samples after 10 days. 

Statistical interaction between NRF2 and p53 (pint) was assessed by two-way ANOVA with 

replication. Scale bars are 20 μm (B) and 100 μm (E).
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Fig. 3. NRF2–p53 co-stabilization is enhanced and shNRF2-induced p53 adaptations are 
preserved in basal-like premalignancy but have different morphometric consequences.
(A) Quantitative immunofluorescence of NRF2 and p53 abundance in ECM-attached 

MCF10DCIS.com cells grown as 3D spheroids. Median-scaled two-color average 

fluorescence intensities are quantified along with the log-scaled and background-subtracted 

mutual information (MI) with 90% CI for n = 1832 cells segmented from 70–110 spheroids 

from two separate 3D cultures. (B) Common changes in transcript abundance identified by 

RNA sequencing of MCF10A-5E (5E) and MCF10DCIS.com (DCIS.com) cells grown as 

3D spheroids with or without NRF2 knockdown. The negative control for shNRF2 was an 
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inducible shGFP (5E) or shLacZ (DCIS.com). Data are log2-transformed Z-scores for genes 

detected at >5 transcripts per million from n = 4 biological replicates. Enriched gene sets for 

the BRCA1, ATM, and CHEK2 networks are indicated, with black denoting multiple 

enrichments. The complete list of enrichments is available in data file S3. (C) Quantification 

of rounded spheroids (circularity > 0.9) in 3D-cultured MCF10DCIS.com cells with or 

without NRF2 knockdown. The negative control for shNRF2 was an inducible shLacZ. (D) 

Quantification of large spheroids (size > e8.5 ~ 5000 μm2) in 3D-cultured MCF10DCIS.com 

cells with or without p53 disruption. The negative control for p53 constructs was an 

inducible FLAG-tagged LacZ. (E) Quantification of size and circularity in 3D-cultured 

MCF10DCIS.com cells with or without NRF2 knockdown, p53 disruption, or both. For (C) 

to (E), cells with or without inducible perturbations were treated with 1 μg/ml doxycycline 

for 48 hours, grown as 3D spheroids for 10 days, imaged by brightfield microscopy, and 

segmented. For (C) and (D), data are mean ± 90% bootstrap-estimated CI from n = 8 

biological replicates, with p values by rank-sum test estimated by bootstrapping. For (E), 

data are mean ± s.e.m. of n = 8 biological replicates. Statistical interaction between NRF2 

and p53 perturbations (pint) was assessed by two-way ANOVA with replication. Scale bars 

are 100 μm.
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Fig. 4. NRF2–p53 signaling coordination and 3D phenotypes arise from spontaneous and 
oncogene-induced oxidative stress.
(A and B) NRF2 and p53 stabilization by oxidative stress compared to DNA double-strand 

breaks. MCF10A-5E cells were treated with 5 μM doxorubicin (double-strand breaks) or 

200 μM H2O2 (oxidative stress) for the indicated time points, and NRF2 (magenta) or p53 

(green) protein abundance was estimated by quantitative immunoblotting. Data are mean ± 

s.e.m. of n = 3 (A) or 4 (B) independent perturbations. (C) Endogenous oxidative stress 

association with NRF2 stabilization in 3D spheroids. MCF10A-5E cells stably expressing 
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HyPer-2 (67) and mRFP1-NRF2 reporter (NRF2rep) were grown as 3D spheroids for 10 

days and imaged by laser-scanning confocal microscopy. Representative pseudocolored 

images for HyPer-2 ratio (upper left) and mRFP1-NRF2 reporter (lower left) are shown. 

HyPer-2 ratios and mRFP1-NRF2 reporter fluorescence are quantified (right) along with the 

log-scaled mutual information (MI) with 90% CI for n = 605 cells segmented from 10–25 

spheroids from four separate 3D cultures. (D) Suppression of endogenous NRF2–p53 

coordination during 3D culture with the antioxidant Trolox. Representative pseudocolored 

images for NRF2 (upper left) and p53 (middle left) are shown merged with DAPI nuclear 

counterstain (lower left). White arrows indicate concurrent NRF2 and p53 stabilization. The 

log-scaled and background-subtracted MI (right) is shown with 90% CI estimated from n = 

1000 bootstrap replicates. (E) Trolox interference with the synergistic proliferative 

suppression caused by dual inactivation of NRF2 and p53 in MCF10A-5E cells. Data are 

mean percentage of proliferation-suppressed spheroids ± s.e.m. of n = 8 independent 3D-

cultured samples after 10 days. The overall effect of Trolox on spheroid size is shown in fig. 

S10. Statistical interaction between Trolox and NRF2–p53 (pint) was assessed by three-way 

ANOVA with replication. For (A) and (B), change in protein abundance over time was 

assessed by one-way ANOVA. For (D) and (E), MCF10A-5E cells cultured for 10 days in 

3D with or without 50 μM Trolox supplemented every two days. Scale bars are 10 μm (C) 

and 20 μm (D).
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Fig. 5. NRF2–p53 pathway coordination and synergistic phenotypes are captured by an 
integrated-systems model of oxidative stress.
(A) Connecting NRF2 and p53 signaling models (68, 69, 71) through oxidative-stress 

activators and antioxidant target enzymes. Additional crosstalk linking oxidative stress to 

p53 inhibition (73), p53 to NRF2 through p21 (76), and NRF2 to MDM2 (74, 75) was 

considered (gray). (B) Simulation strategy for quantifying association between signaling 

intermediates. The model was challenged with various ROS production rates and randomly 

sampled at multiple intermediate time points (yellow to blue). Integrated intracellular H2O2 

(gray) is used for phenotype predictions related to NRF2 and p53 perturbation. (C) 

Intracellular H2O2 concentration is associated with a reporter of NRF2 stabilization 

(NRF2rep) following simulated step increases in ROS production rate as illustrated in (B). 

Pereira et al. Page 40

Sci Signal. Author manuscript; available in PMC 2020 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D and E) Coordination of NRF2 and p53 stabilization in the oxidative-stress model and in 

simulations of premalignancy through the computational approach illustrated in (B). (F and 

G) Modeling NRF2 knockdown by reduced synthesis captures the synergistic oxidative-

stress profile of cells harboring dual perturbation of the NRF2 and p53 pathways. In (F), 

transcriptional changes secondary to NRF2 knockdown were added to the model according 

to the results in Fig. 3B. For (C) to (E), simulated time points are log-scaled and 

background-subtracted mutual information (MI) with 90% CI for ten time points from n = 

100 random ROS generation rates. For (F) and (G), time-integrated intracellular H2O2 

profiles are scaled to the unperturbed simulations and reported as the mean oxidative stress 

with 90% CI from n = 100 random ROS generation rates. Statistical interaction between 

shNRF2 and DNp53 perturbations (pint) was assessed by two-way ANOVA with replication.
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Fig. 6. NRF2 and p53 are co-stabilized in breast epithelial tissue and premalignant lesions but 
uncoupled in TNBC.
(A) Immunohistochemistry (upper) and immunofluorescence (lower) for NRF2 and p53 in 

tumor-adjacent normal breast lobules. Hematoxylin and eosin (H+E, upper right) histology 

is from a serial paraffin section for p53. Images from a tumor-adjacent normal breast duct 

are shown in fig. S17. (B and C) Multicolor immunofluorescence for NRF2 and p53 in (B) 

hormone-negative ductal carcinoma in situ and (C) triple-negative breast cancer. (D) 

Quantification of the association between NRF2 and p53 immunoreactivities represented in 
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(A) to (C). (E and F) Median NRF2 and p53 immunoreactivities for the designated tissue 

type in each clinical case. n.s., not significant (p > 0.05). For (A) to (C), 

immunofluorescence is shown as representative pseudocolored images for NRF2 (left) and 

p53 (middle) are shown merged with DAPI nuclear counterstain (right). White arrows 

indicate concurrent NRF2 and p53 stabilization, and magenta or green arrows indicate 

stabilization of NRF2 or p53 separately. Scale bars are 20 μm. For (D) to (F) data are mean ± 

s.e.m. of n = 14 cases with tumor-adjacent normal epithelium (Normal), 8 cases with ductal 

carcinoma in situ (DCIS), and 7 cases of triple-negative breast cancer (TNBC). Multi-group 

comparison was made by Kruskal-Wallis rank-sum test with Šidák correction for multiple-

hypothesis testing.
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Fig. 7. TNBC-specific signatures of the oxidative-stress network predict NRF2–p53 coupling and 
the response to NRF2 perturbations.
(A) Transcripts per million for the indicated TNBC cell lines scaled to MCF10A cells from 

the NIH LINCS dataset (91). (B) NRF2–p53 mutual information (MI) and ROS tolerance for 

TNBC cell lines using the simulation strategy in Fig. 5B. (C to G) Quantification of mean 

spheroid area with or without NRF2 knockdown in 3D-cultured TNBC cells with higher 

simulated ROS tolerance and NRF2–p53 MI (C and D) and with lower simulated ROS 

tolerance and NRF2–p53 MI (E to G). (H) Transcripts per million for the TNBC lines in (A) 
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scaled to clinical cases of TNBC in TCGA (35). (I) Simulated NRF2–p53 MI and ROS 

tolerance for TNBC tumors. Vertical lines indicate cases with high MI in the lower quartile 

of ROS tolerance. For (A) and (H), the clustered transcripts were used to adjust the initial 

conditions of the model simulations for each cell line and tumor. For (B) and (I), ROS 

tolerance was defined as the integrated intracellular H2O2 concentration in each cell line 

compared to that of MCF10A-5E cells in response to an increased ROS production rate as in 

Fig. 5B. For (C) to (G), TNBC cells with or without inducible NRF2 knockdown were 

treated with 1 μg/ml doxycycline for 72 hours, grown as 3D spheroids, imaged by brightfield 

microscopy, and segmented. Data are mean ± s.e.m. of n = 4–8 biological replicates. The 

difference between means was assessed by Student’s t test with Šidák correction for 

multiple-hypothesis testing, and the specific p53 mutation of each line is shown (lower left).
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