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Abstract

Several public databases have emerged over the past decade to enable chemo- and bioinformatics 

research in the field of drug development. To a naive observer, as well as many seasoned 

professionals, the differences among many drug databases are unclear. We assessed the availability 

of all pharmaceuticals with evidence of clinical testing (i.e., been in at least a Phase I clinical trial) 

and highlight the major differences and similarities between public databases containing clinically 

tested pharmaceuticals. We review a selection of the most recent and prominent databases 

including: ChEMBL, CRIB NME, DrugBank, DrugCentral, PubChem, repoDB, SuperDrug2 and 

WITHDRAWN, and found that ~11 700 unique active pharmaceutical ingredients are available in 

the public domain, with evidence of clinical testing.
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Introduction

The recent rise in the number of drug discovery databases has initiated interest in analyzing 

the usage and adoption of each database and the interconnections and cross-fertilization that 

exists between them. A variety of databases focusing on targets, proteins, metabolism and 

active pharmaceutical ingredients (APIs) has proliferated, particularly over the past 5 years. 

These databases are crucial resources for in silico drug discovery, for prioritizing 

repurposing opportunities and for identifying trends in the drug development enterprise. 

Drug repurposing has become increasingly attractive in recent years as a less expensive 

option with lower barriers to approval than traditional drug discovery and development. 

Therefore, it is of interest to assess the current public landscape of approved APIs and APIs 

that have been in clinical trials.
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Assessing the public landscape of clinical-stage APIs involves comparison of various 

biopharmaceutical databases, which is a notoriously challenging task. Yonchev et al. [1] 

reported on the redundancies in PubChem and ChEMBL. The authors pointed out specific 

aspects that made comparing the two databases difficult. For example, in PubChem the same 

API can have multiple compound records. Furthermore, differences in terminology and ways 

in which the databases are structured impede straightforward comparison of database 

content. Furthermore, owing to the compound submission model of PubChem, a researcher 

might run the risk of extracting duplicate compounds. Southan et al. compared chemical 

structures in ChEMBL, DrugBank, Human Metabolome Database and the Therapeutic 

Target Database in 2013 [2]. In 2018, Southan reviewed the largest chemical structure 

databases: PubChem, ChemSpider and UniChem, which contain 95, 63 and 154 million 

chemical structure records, respectively [3]. Here, Southan examined the databases’ 

contributing sources and found that sources common among databases could have 

substantial differences in chemical structure count. Fourches et al. [4] provided guidance on 

reviewing and comparing chemogenomic datasets with suggestions for how to curate and 

clean chemical datasets and discuss the importance of properly cleaning chemical datasets, 

including removing duplicates. Ambiguity in and across databases can confound efforts to 

model and analyze data.

Although not immediately obvious, one fact emerging from our studies was that each 

database has a distinct emphasis and target audience. Chemistry-based databases, such as 

PubChem and ChEMBL, contain large-scale record counts of compounds with potential 

medicinal uses. Other databases, such as DrugBank, focus on unique APIs, most of which 

convey some evidence of clinical interest. Several open databases specialize in specific 

subsets of drugs, such as approved or withdrawn medicines. In this review, we have selected 

databases to meet the following criteria: (i) are public and freely available with 

downloadable data; (ii) are compound oriented and contain clinically tested compounds; (iii) 

have at least one peer-reviewed publication describing the content and construction of the 

database. The databases meeting these criteria are: ChEMBL [5], CRIB NME [6], DrugBank 

[7], DrugCentral [8], PubChem [9], repoDB [10], SuperDrug2 [11] and WITHDRAWN 

[12]. Whereas additional databases are undoubtedly available through commercial sources 

on a subscription basis or as the result of extensive competitive intelligence, these are not 

freely available and therefore not included in our present analysis. Instead, we focus on 

public and freely available databases.

For the work herein, a short summary of each selected database is provided. The usage and 

adoption of each database is discussed by analyzing peer-reviewed publications citing each 

database. The relationships between each database is examined according to the sources 

used for construction as well as the overlap in clinical-stage drug compounds in each 

database. Finally, we summarize the current number of pharmaceuticals in the public 

domain with evidence of inhuman experience. Raw data files and codes for this review can 

be found at: https://github.com/WUSTL-CRIB/clinical_databases_review.
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Overview of selected databases

The past decade has witnessed an increase in publications citing public drug databases. In 

Figure 1, we review the largest and most cited databases: PubChem, Chembl and DrugBank. 

Whereas there were only two mentions of PubChem, ChEMBL or DrugBank in the 

literature in 2004, the field began to grow soon thereafter. By 2010, the rate of annual 

citations was nearing 500 and would more than double within 2 years. This trend continues 

as the rates of new citations have continued to climb after 2010. At present, the number of 

citations of these databases exceeds 2500 per year.

A summary of the different databases is provided in Table 1. The size of each database in 

terms of ‘compound records’ and a subset of ‘clinical-stage compounds’ is given. PubChem 

and ChEMBL dwarf the other databases in this analysis. PubChem, by far the largest, 

contains almost 100 million compound records. PubChem is an open database, which relies 

upon investigator submission of data. Beyond conveying the properties of the molecules 

themselves, PubChem aggregates supplementary data pertaining to the chemistry and 

bioactivity of compounds including chemical structures, physical properties, toxicity and 

safety information. The most impactful articles citing PubChem include the descriptions of 

the DrugBank database [13] (1318 citations) and the IUPHAR/BPS Guide to 

PHARMACOLOGY [14] (cited by 874), which both provide external links to PubChem. 

Other commonly cited articles referencing PubChem include a chemical visualization and 

analysis platform, Avogadro [15] (with 1318 citations), and an article focusing on 

quantitative HTS [16] (with 457 citations).

ChEMBL is a bioactivity database with >2 million compound records created by mining and 

extracting data from medicinal chemistry literature. Recently, ChEMBL expanded the focus 

of their offerings to aid the drug discovery and development process by including data 

generated during preclinical and clinical investigation (including metabolism, mechanisms 

of action and therapeutic indications) [5]. Some of the most impactful applications of the 

ChEMBL database include medicinal chemistry applications such as in silico target 

predictions [17], visualization tools including Reactome.org (714 citations) and 

biopharmaceutical databases created from subsets of ChEMBL data [18] or databases 

providing external links to ChEMBL [14].

DrugBank is the third-largest database and provides a rich source of quality data on drugs in 

the preclinical, clinical and approved stages of drug development. With >10 000 compounds, 

DrugBank pairs drug and target information in an encyclopedic manner, providing the 

chemo- and bio-informatics communities with a rich source of data. Articles describing the 

construction and content of the DrugBank database are themselves highly cited, with >4500 

citations of their original publication and subsequent update publications in Nucleic Acids 
Research. Other impactful articles citing DrugBank include descriptions of drug discovery 

trends and the use of novel drug targets [19] (439 citations), a web server for identifying 

potential drug targets [20] (237 citations) and a protein database constructed from DrugBank 

data subsets [21] (193 citations).
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The CRIB NME database is a collection of FDA-approved new molecular entities (NMEs). 

The unique features of the CRIB NME database are the inclusion of data on the 

organizations responsible for the R&D of each NME, linked patent information, approval 

dates for all NME data (including those not found within current FDA regulatory databases) 

and a focus on capturing historic NME data (with approval dates going back to and before 

the 1800s). Impactful articles reviewing pharmacogenomics in the clinic [22] (165 citations), 

natural product discovery [23] (125 citations) and reviews of oral drug candidates [24] (102) 

all cite the CRIB NME database paper [6].

The WITHDRAWN database contains 270 drugs withdrawn for toxicity and/or safety 

reasons and 308 drugs withdrawn for reasons other than safety (such as market obsolescence 

or ineffectiveness). WITHDRAWN provides information such as chemical structures, 

withdrawal reasons, toxicity information and protein targets. The focus of the 

WITHDRAWN database is toxicity and adverse events of drugs. A unique data field within 

the WITHDRAWN database is the curated ‘reason for withdrawal’ field, which has been 

manually extracted and labeled from scientific literature. The WITHDRAWN database was 

added to ChEMBL in 2017 [5]. Other impactful references to the WITHDRAWN database 

include looking at trends in molecular medicine [25] (40 citations) and studies looking at 

safety [26] and toxicity [27].

The motivation for SuperDrug2 was the burdensome nature of manually patrolling 

regulatory websites to investigate components for use with in silico drug discovery. The 

unique features of SuperDrug2 include the pharmacokinetic simulator and 3D drug 

conformer visualizations. Articles referencing SuperDrug2 include the 2018 Southan et al. 
review of major chemistry databases [3], and drug repositioning [28] and drug design studies 

[29].

DrugCentral also focuses on molecules approved from regulatory agencies across the world. 

DrugCentral contains unique regulatory information (such as FDA drug labels and approval 

dates), drug indications, contraindications and off-label indications. Another unique feature 

of DrugCentral is an emphasis upon frequent updates by continuously monitoring the 

activities of regulatory agencies worldwide. Impactful articles referencing DrugCentral 

include the IUPHAR/BPS Guide to PHARMACOLOGY [14], which again provides 

external database links to DrugCentral, an article providing a comprehensive map of drug 

targets [30] (192 citations) and a study using DrugCentral’s drug target bioactivity data to 

study the druggable genome [31] (19 citations).

As the name implies, repoDB has a drug repurposing focus. repoDB contains true positives 

(i.e., approved drug-indication pairs) and true negatives (i.e., failed drug-indication pairs) to 

train and validate predictive models for drug repurposing. The unique features of repoDB is 

that it contains drug-indication failure information to remove the bias in building predictive 

drug models on successful drug-indication pairs alone. As one might expect, articles citing 

repoDB are primarily concerned with drug repurposing [32–34].

In aggregate, these databases contain an overwhelming amount of information, which can 

unintentionally impede the overall impact of any given dataset. Immersed in data, many 
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researchers have created or deployed visualization tools and applications that function as 

subsets of other databases with a focus on a particular aspect of drug development. For 

example, Reactome.org [35] created a website with tools for browsing pathway and 

interaction data by interacting with the ChEMBL database. Additionally, Mysinger et al. 
[18] used a subset of ChEMBL data to create a resource of ligands and decoys for improved 

benchmarking. PDTD is a web-accessible protein database created using a subset of 

DrugBank data [21] and WITHDRAWN was added as a data source to PubChem in 2017. 

Databases focused on approved drugs (SuperDrug2, CRIB NME and DrugCentral) were 

created to establish resources for analyzing clinically successful drugs. The WITHDRAWN 

database specializes in drug toxicities and, as the name suggests, archives information about 

medicines that have been approved and subsequently withdrawn from the market. The CRIB 

NME database focuses exclusively upon FDA-approved medicines, including withdrawn 

drugs. DrugBank is a curated database that contains preclinical, clinical-stage and approved 

drugs. An overview of the contents of each database in terms of drug development staging is 

shown in Table 2. ChEMBL and PubChem contain compounds at all stages of the drug 

development spectrum. Other databases focus on approved or withdrawn drugs only.

Usage and adoption

To quantify the adoption and usage of each database, peer-reviewed publications were 

extracted from the Elsevier Scopus literature database. For the top-three most-cited drug 

databases (ChEMBL, DrugBank and PubChem) the database name itself was used as the 

search term to obtain a set of publications that cite the database. For the remaining 

databases, articles citing the main manuscript containing the database description were 

included for analysis.

Table 3 summarizes the adoption of the selected databases from the citation perspective as 

well as geographic location of the authors. The most widely adopted database is PubChem 

with 6122 citation records, followed closely by DrugBank with 5675 citation records. Newer 

databases such as SuperDrug2 (2018), repoDB (2017) and DrugCentral (2017) have the least 

amount of citations records. Author affiliations gathered from the records citing each 

database provided a means to summarize the adoption of each database by country. Overall, 

the USA is the primary consumer of drug databases followed by the UK, France, China and 

India. However, we did identify apparent geographic preferences, such as a disproportionate 

citation of ChEMBL and WITHDRAWN databases by European (German and British) 

investigators.

Source analysis

We examined the relationships between sources used to create open drug databases along 

with external links to other databases to assess their interconnectivity. The sources of each 

database were compiled from publications describing the content and construction of the 

database. Online descriptions of data sources from the websites hosting each database were 

also included in this evaluation. A network graph of all sources and external links and their 

shared connections to each database is shown in Figure 2. Overall, the total number of 
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unique data sources amounts to 688, with 87% of those being attributed to PubChem. 

PubChem and Drugbank share the most sources and external links, totaling 14.

This study highlighted the connectivity of the selected databases in terms of sources used for 

database construction and links to external databases. The network is color-coordinated to 

highlight which source is used for each database. When databases share a source or external 

link, two or more colored edges connect at a single node (or source). Data sources used most 

frequently are shown as numbered nodes in the network graph. These include the WHO 

ATC index [36], PubMed publications, FDA-approval packages, the KEGG database [37] 

and the Therapeutic Target Database (TTD) [38]. This network analysis reveals each 

database has a handful of unique sources but they share a significant portion of sources with 

other databases. The network also shows that many databases cite each other as sources or 

provide links to external databases for cross-referencing and user convenience. For example, 

ChEMBL, DrugBank, WITHDRAWN and DrugCentral use PubChem as a source or 

external link and PubChem uses DrugCentral, ChEMBL and DrugBank as sources or 

external links.

Content analysis

To assess the uniqueness and overlap of each drug database, compounds with evidence of 

clinical testing were extracted from each database. Evidence of clinical testing included 

links to any clinical trial information or records labeled as ‘approved’ or ‘withdrawn’ in any 

database. Data formats varied among the numerous data sources, therefore general coding 

ability in languages such as Python, Bash and Structured Query Language (SQL) was 

required to access and thoroughly evaluate all data included in this analysis. ChEMBL and 

DrugCentral make database dumps available for direct download. Database dumps contain 

records of the contents and structure of the database and are usually stored as SQL 

statements, allowing users to build local versions of a database. CRIB NME, repoDB and 

SuperDrug2 make all their data available in comma-separated value (CSV) formatted files. 

DrugBank and WITHDRAWN provide chemical-data SDF files, which were 

programmatically parsed into CSV-formatted files using custom python scripts. Finally, all 

clinicaltrials.gov sourced data were downloaded from PubChem using their pug_view API 

and then parsed using a python script. With all the data converted into a delimited format, 

they were then manually inserted into a single database for analysis.

A unique list of molecular entities was generated by merging together compounds by 

SMILES strings and synonyms provided by each database. First, we manually removed salts 

or solvents to achieve a list of APIs. When available, the SMILES string was downloaded 

from the source database. Then, the ChemDraw v16 plugin for Excel was used to convert 

any compound names into chemical structures using the Name>Struct functionality. The 

structures generated by the name-to-structure function were converted into SMILES strings 

using the CHEM_SMILES function. Afterwards, SMILE strings were checked during the 

merging process with the assumption that duplicate SMILES strings were the same API. 

After programmatic merging of compounds, the API list was manually reviewed to identify 

possible programmatic merging errors. This list was then used to probe each database and a 

link was created if the compound was present. Figure 3 shows the resulting overlap 
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summaries. The number of overlapping clinical-stage compounds between any two 

databases is shown in Figure 3. With this visualization, one can deduce that 99% of repoDB 

compounds can be found in ChEMBL, DrugCentral and DrugBank. Furthermore, 98% of 

SuperDrug2 compounds can be found in DrugCentral but only 82% of DrugCentral 

compounds can be found in SuperDrug2. Ninety-nine percent of the WITHDRAWN 

database can be found in PubChem. Another major observation is that no database is a 100% 

subset of another.

Discussion

Barriers to entry can impede the usefulness for compound databases for certain analytical 

efforts. For example, selecting drug compounds that have been through clinical testing is not 

a straightforward task in large compound databases (such as PubChem and ChEMBL). A 

handful of databases contain clinical-stage drugs but the extent to which clinical trial data 

are linked is limited. It is not clear and very difficult to ascertain which compounds are 

unique to a particular source because many of the databases do not explicitly link source 

information to a compound. The explicit linking of source information at the record level to 

APIs would be a significant improvement to any biopharmaceutical database that does not 

already include the metadata.

There are several limitations to comparing the contents of pharmaceutical databases. For 

example, name-to-structure comparison and merging of entities based on synonyms can be 

error prone. There are several limitations to merging entities based on SMILES strings. One 

issue to note is that not all entries have SMILES strings, such as large macromolecules (i.e., 

biologics), and therefore names and synonyms alone were used to remove ambiguity. Of the 

11 763 APIs included in this analysis, ~3840 were not small molecules. Furthermore, as 

pointed out by Fourches et al. [4], merging compounds using noncanonical SMILES strings 

can overlook duplicates. It is also possible that a small set of chemical structures was 

converted to SMILES strings incorrectly. Although we believe these errors to be small 

relative to the size of the whole dataset, improved chemical data curation methods, such as 

those outlined by Fourches et al. [4], could yield more duplicates than currently detected in 

our dataset. Overall, we do not recommend using this dataset in its current form for 

applications such as QSAR models because duplicates might still exist. Furthermore, most 

of these databases are constantly updated and new databases might have emerged while 

performing this study. Therefore, the contents of this review could already be slightly out of 

date.

In summary, PubChem and ChEMBL are large databases of compounds emphasizing 

medicinal chemistry. Some databases might have been originally built for one audience but 

later expanded their capabilities to reach a more diverse user pool. Given this complexity 

and specialty, the decision as to which database should be deployed to address problems 

outside their focus can present a considerable challenge. Based on our experience, PubChem 

and ChEMBL provide the greatest breadth of medicinal compounds but can be challenging 

to navigate. DrugBank is not as comprehensive as PubChem and ChEMBL but has reliable 

curated data that are relatively more approachable for non-experts to analyze. DrugCentral 

and SuperDrug2 are great resources for drugs that have successfully navigated the drug 
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development pipeline. WITHDRAWN is specifically valuable for toxicology studies. The 

CRIB NME database contains useful information regarding NMEs and the organizations 

involved in their development but is again limited to FDA-approved therapeutics. Finally, 

repoDB, although relatively small, contains approved and investigational drug-indication 

pairs and is an excellent resource for drug repurposing studies. It is interesting to note, 

however, that there is not one database that represents a comprehensive source of data for 

compounds of clinical interest. During our content analysis, we combined all data sources 

into a comprehensive database and found that ~11 700 unique APIs are currently available in 

public databases with some evidence of clinical experience. In future work, we will employ 

more-rigorous curation methods to study these clinical APIs to review overall trends in 

clinical-stage drug development.

Concluding remarks

In this study, we compiled >11 700 unique APIs with evidence of clinical testing. Online 

drug databases are crucial expeditors of in silico drug discovery and chemoinformatics, 

especially in academic, biotechnology startup and non-profit environments where high-cost 

subscription databases are undesirable. However, the cloudy existence of overlapping and 

unique compounds in common drug databases impedes comprehensive analysis.
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Highlights

• The content of biopharmaceutical databases is dictated by the intended 

audience

• Databases share sources in their construction and often cite each other as 

sources

• No single database captures comprehensive information

• Each database has at least a small number of distinct clinical drug compounds
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Figure 1. 
Increasing use of public and freely available drug databases for research. The total number 

of record counts is plotted over time since 2004. The total record counts were compiled by 

searching the databases selected for this review as search terms in Scopus.

Griesenauer et al. Page 12

Drug Discov Today. Author manuscript; available in PMC 2020 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Network graph displaying the interconnectivity of sources used to construct each database. 

Each node represents a unique data source. The nodes with the highest degrees represent 

data sources shared between several databases and are labeled 1–5 in the graph.
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Figure 3. 
Heatmap displaying the overlap in clinical-stage active pharmaceutical ingredients (APIs) 

between any two databases. The coloring and number displayed between any two databases 

is total number of shared clinical-stage drugs.
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Table 1.

Brief description, size and intended audience of select drug databases

Database Emphasis Access Compound 
Records

Clinical-Stage 
Compounds

PubChem Chemical entities and their bioactivities https://pubchem.ncbi.nlm.nih.gov 96398953 10028

ChEMBL Bioactivity for drug discovery https://www.ebi.ac.uk/chembl 2275906 7045

DrugBank in silico d rug discovery and 
exploration https://www.drugbank.ca 10562 4743

DrugCentral Active pharmaceutical ingredients 
approved by FDA and other agencies http://drugcentral.org 4608 4608

SuperDrug2 Marketed drugs http://cheminfo.charite.de/
superdrug2 3910 3910

CRIB NME FDA approved molecular entities and 
biopharmaceutical organizations http://cribdb.wustl.edu 1950 1950

repoDB Drug repurposing http://apps.chiragjpgroup.org/
repoDB 1541 1541

WITHDRAWN Withdrawn or discontinued drugs http://cheminfo.charite.de/withdrawn 618 618
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Table 2.

Overview of database content broken down by drug development stage

Database Approved Withdrawn Clinical stage Preclinical Bioactive

PubChem X X X X X

ChEMBL X X X X X

DrugBank X X X X

CRIB NME X X

repoDB X X

WITHDRAWN X

DrugCentral X

SuperDrug2 X

Approved: approved by regulatory agencies in the USA, Canada, Europe, Japan, Korea or China. Withdrawn: previously approved drugs 
withdrawn from the market for any reason. Clinical-stage investigational: drugs with evidence of first-in-human testing (i.e., in clinical trials). 
Preclinical: drug candidates with preclinical testing. Bioactivity: compounds showing activity in biological assays.
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Table 3.

Geographic adoption of drug databases and total number of associated citation records extracted from Scopus

Database Origin Geographic Adoption Citations

PubChem U.S. United States (23.2%), India (9.4%), China (7.1%) 6122

DrugBank Canada United States (19.7%), China (10.8%), India (10.8 %) 5675

ChEMBL U.K. United States (18.7%), United Kingdom (11.7%), Germany (10.3%) 2424

CRIB NME U.S. United States (48.8%), France (5.8%), India (5.8%) 67

WITHDRAWN Germany United Kingdom (19.3%), United States (19.3%), China (9.6%) 22

DrugCentral U.S. United States (28.9%), France (13.15%), United Kingdom (10.5%) 20

repoDB U.S. Turkey (16.6%), United States (16.6%), Egypt (8.3%) 8

SuperDrug2 Germany United Kingdom (100%) 1
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