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a b s t r a c t 

Recently, anovel coronavirus disease (COVID-19) has become a serious concern for global public health. 

Infectious disease outbreaks such as COVID-19 can also significantly affect the sustainable development 

of urban areas. Several factors such as population density and climatology parameters could potentially 

affect the spread of the COVID-19. In this study, a combination of the virus optimization algorithm (VOA) 

and adaptive network-based fuzzy inference system (ANFIS) was used to investigate the effects of vari- 

ous climate-related factors and population density on the spread of the COVID-19. For this purpose, data 

on the climate-related factors and the confirmed infected cases by the COVID-19 across the U.S counties 

was used. The results show that the variable defined for the population density had the most significant 

impact on the performance of the developed models, which is an indication of the importance of social 

distancing in reducing the infection rate and spread rate of the COVID-19. Among the climatology param- 

eters, an increase in the maximum temperature was found to slightly reduce the infection rate. Average 

temperature, minimum temperature, precipitation, and average wind speed were not found to signifi- 

cantly affect the spread of the COVID-19 while an increase in the relative humidity was found to slightly 

increase the infection rate. The findings of this research show that it could be expected to have slightly 

reduced infection rate over the summer season. However, it should be noted that the models developed 

in this study were based on limited one-month data. Future investigation can benefit from using more 

comprehensive data covering a wider range for the input variables. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The rapid spread of the novel coronavirus disease (i.e., COVID-

9), which was started since the late December 2019, has be-

ome a serious global issue [1–4] . As of April 28, 2020, the offi-

ial reports indicated more than 3,0 0 0,0 0 0 infected cases and over

17,0 0 0 confirmed deaths attributed to the COVID-19 complica-

ions. In addition, the rapid spread of the COVID-19 has affected

10 countries worldwide. The official statistics shows that with

ore than 1,0 0 0,0 0 0 infected cases and over 59,0 0 0 confirmed

eaths, the USA is one of the countries where the rapid widespread

f COVID-19 has seriously threatened the life of people. Several

actors could potentially affect the spread and transmission rates

f the viruses including population density and climatology param-

ters (e.g., wind speed, humidity, precipitation, and temperature)

5–10] . The sustainable development of urban areas necessities the
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nvestigation of the effects of these factors on the transmission rate

f the viruses to have an efficient spatial organization of the resi-

ent areas. Different climate conditions have been reported to af-

ect the transmission rate of viruses differently. The transmission

ate of some viruses such as HIV/AIDS are not affected by cli-

ate parameters. The HIV/AIDS virus never leaves the host’s in-

ernal condition as it transfers through sexual intercourse, blood

ransfusions, or during pregnancy or breastfeeding from mother to

hild. For the flu virus, dry and cold climates have been found

s favorable conditions to spread the virus, while temperatures

bove 30 ̊C halt its transmission [11] . With regard to the MERS-

oV, the widespread occurrence of this virus was reported to be

etween April to August, when high temperature is dominant [12] .

oreover, high ultraviolet index, low relative humidity, and low

ind speeds were found as favorable conditions for the spread of

he MERS-CoV [12] .In terms of the spread of the COVID-19, lower

pread rate is attributed to warm and humid climate conditions in

hina [5] . However, a warm and humid climate does not seem to

ompletely stop the spread of the COVID-19 [6] . 

https://doi.org/10.1016/j.chaos.2020.110051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110051&domain=pdf
mailto:abehnood@purdue.edu
mailto:Golafshani@srbiau.ac.ir
https://doi.org/10.1016/j.chaos.2020.110051
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Table 1 

Examples of the ML techniques for the prediction of outbreak. 

Outbreak infection ML technique Main findings Reference 

Dengue Naïve Bayes and adopted 

multi-regression 

A high relative humidity accompanied with a temperature of 30-35 ̊ C is a favorable 

condition for the spread of dengue. 

[18] 

Dengue Neural network Integration ofremote sensing data, a ML technique and spatiotemporal analysis provided a 

climate-based predictive model with high accuracy for the spread of dengue. 

[19] 

Oyster norovirus Neural network With 2-day lead time, the developed model can predict oyster norovirus outbreaks. [20] 

Oyster norovirus Genetic programming and 

neural network 

Climate-related factors were found to play a significant role in the cause likelihood of oyster 

norovirus outbreaks. 

[ 21 , 22 ] 

Oyster norovirus Probability-based artificial 

neural network 

Climate-related factors such as temperature, wind, salinity, and rainfall were found as the 

determinants of norovirus outbreaks. Moreover, depth of water in an oyster bed was found 

as the most significant factor in the developed model. 

[23] 

Swine fever Random forests Precipitation and driest month had the most significant effects on the outbreak of African 

swine fever. 

[24] 

Influenza Neural network, random 

forests, support vector 

machine 

The random forests time series provided better statistical fit than support vector machine 

and artificial neural network in modeling weekly influenza like illness. 

[25] 

COVID-19 Genetic programming The predictive models based on genetic programming provide high accuracy in determining 

the factors that affect the infection rate of COVID-19. 

[26] 
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An accurate model to investigate the climatology-related deter-

minants of the spread of COVID-19 can be helpful for the sustain-

able development of the urban areas. Machine learning (ML) tech-

niques and algorithms, due to their exceptional ability in knowl-

edge processing, have been proven to provide accurate models in

many fields of science and engineering [13–15] . ML techniques

have also been widely used in the study of developing models for

the prediction of outbreak [ 16 , 17 ]. Table 1 provides some examples

of the previous studies on using the ML techniques for the predic-

tion of the disease outbreak. 

In this study, adaptive network-based fuzzy inference system

(ANFIS) and virus optimization algorithm (VOA) were used to in-

vestigate the effects of climate-related factors on the spread of

COVID-19. For this purpose, a dataset containing the information

on COVID-19 spread across the U.S. counties was used. A sensitivity

analysis was also performed to identify the most significant factors

affecting the spread of the COVID-19. 

2. Data collection 

The data used in this research to study the climate-related de-

terminants of the spread of the COVID-19 in the U.S. was collected

from various sources. The distribution of the confirmed infected

cases by the COVID-19 across the country was provided by the

USAFacts (2020) ( Fig. 1 ) [27] . Information about the average tem-

perature, maximum temperature, minimum temperature, and pre-

cipitation was obtained from the NOAA (2020) [28] . It should be

noted that the data for the month of March was used for these

variables. Data for the information on the average annual humidity,

average annual wind speed, and population was collected from the

USA.com (2020) [29] . The population density, as one of the input

variables, indicates the number of people per squared miles. The

only output variable in this study was the infection rate, which was

defined as the number of confirmed infected cases over the days of

infection. The counties with less than 10 confirmed infected cases

were removed from the analysis to reduce the errors related to the

random effects of these counties. Overall, a total of 1657 counties

were used to model the spread of the COVID-19. The descriptive

statistics of the input and output variables are given in Table 2 . 

In order to further demonstrate the distribution of the clima-

tology variables in the gathered database, Fig. 2 shows the infec-

tion rate, as the indicator of the COVID-19 outbreak, versus the

seven input variables. As depicted in this figure, there is a direct

relationship between the infection rate and the population density.

However, the changing range of the infection rate for a given pop-

ulation density is remarkable. In the case of the other six input

variables, there is not an apparent trend between them and the in-
ection rate, which makes the modeling of the COVID-19 outbreak

ore difficult. 

The pairwise relationships between the input variables are de-

icted in Fig. 3 . As expected, the correlation between the average,

inimum and maximum temperatures are high. However, because

f the non-parametric nature of the ML methods, all these vari-

bles are considered in the proposed model. Additionally, the other

nput variables do not have high correlation with each other. 

. Proposed machine learning method 

To introduce the proposed machine learning method, the virus

ptimization algorithm (VOA) is described at first, followed by the

ain concepts of the adaptive neuro-fuzzy inference system (AN-

IS). Finally, the incorporation of the ANFIS and VOA is explained

s the suggested model for the determination of the influence of

limatology factors on the spread of the COVID-19. 

.1. Virus optimization algorithm (VOA) 

All viruses with different sources include an envelope, a pro-

ein coat, and a genetic element that can infect the cells of human

eings. By changing the metabolism of the host cell, which is the

nfected cell by the viruses, the viruses can reproduce a consid-

rable number of new viruses, and it can cause the death of the

ell. The rate of virus replication depends totally on the interaction

etween the virus and the cell, and it is higher for potent viruses

ith powerful RNA and DNA structures, like the COVID-19. By pro-

ucing antibodies, the defense system of the body acts after enter-

ng the virus into the cell, protects the cell against the virus, and

ries to prevent the death of the host cell. Due to the severity of

he virus, probably, the produced antibodies could not protect the

ost cell and lead to its death. 

The VOA is a population-based optimization algorithm in which

ach virus that attacks a host cell is a candidate solution for the

ptimization problem [30] . There are three main steps in the VOA,

ncluding initialization, replication, and maintenance phases. In the

nitialization phase, the primitive viruses are randomly generated,

valuated, and sorted from the best to the worst virus. Then, all

reated viruses are classified into strong viruses (SVs) and the

ommon viruses (CVs) in which the SVs and the CVs are the best

nd the worst viruses, respectively. Next, the replication phase

tarts by producing new viruses by changing the SVs and CVs using

he following equations: 

 

N 
ij = C V ij ( 1 ± rand ( ) ) (1)
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Fig. 1. COVID-19 map by county [27] . 

Table 2 

Statistical indicators of the input and output variables. 

Input variables 

Statistical 

indicators Population density Average temperature Maximum temperature Minimum temperature Precipitation Wind speed Humidity 

Output variable 

Infection rate 

Minimum 1.4016 9.8000 19.6000 -0.1000 0.0200 7.3000 63.3700 0.1266 

Maximum 71340.6045 76.4000 86.4000 67.8000 10.7300 34.5000 87.4100 913.5435 

Average 603.5411 9.4837 9.7883 9.2526 1.8044 2.1282 2.5300 15.2436 

Standard deviation 2439.0458 11.1792 11.5296 10.9617 2.1978 2.8359 3.2920 55.1694 

Skewness 19.3877 0.0355 0.0093 0.0552 0.4957 0.5096 -0.3014 11.0189 

Kurtosis 484.5741 -0.7785 -0.7959 -0.7015 -0.3631 2.5896 0.8900 140.0478 
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N 
ij = S V ij 

(
1 ± rand ( ) 

Int 

)
(2) 

here V 

N 
ij 

, CV ij and SV ij are the j th dimension of the i th new virus,

he common virus, and the strong virus, respectively; rand() is a

umber between zero and one; and Int is a parameter which set

o one at the beginning of the algorithm. If the average perfor-

ance of all viruses in the current replication is less than that in

he previous replication, one unit is added to Int. The new viruses

enerated by CVs keep the exploration ability of the VOA, while

hose produced by SVs maintain the exploitation capacity of the

lgorithm. If the generated value for any dimension of a new virus

s out of the allowable range, the process is repeated so that an

llowable value is generated. At the beginning of the VOA, the fo-

us of the algorithm is on the identification of new viruses in the

ecision space. During the replications and with increasing the Int

alue, the changes in the produced virus decreases, and the neigh-

ors of the SVs, as the best viruses in the host cell, are exploited.

he number of generated viruses from CVs and SVs are determined

sing two control parameters called common viruses’ growth rate

CVGR) and strong viruses’ growth rate (SVGR), respectively. After-

ard, the newly produced viruses are evaluated, merged with the

revious viruses, and sorted. In the VOA, the number of existing

iruses is dynamic and can vary from one replication to another

ne. The third phase of the VOA is the maintenance procedure in
hich several viruses (n kv ) are killed to survive the host cell. The

umber of killed viruses in each replication is defined as a random

nteger between one and the number of viruses in the cell minus

he number of SVs. To select the candidate viruses to be killed,

ore chance is given to the worst viruses, which are the weak-

st ones. Based on the scientific experiments, the average capacity

f a host cell is about 10 0 0 viruses. It means that if the number

f viruses in a host exceeds this threshold, more viruses should be

illed to keep the capacity of the cell. The three main phases of the

OA are repeated until the termination condition of the algorithm

s met. The maximum number of the replication is used as the ter-

ination condition in this study. The Pseudo-code of the VOA is

hown in Fig. 4 . 

.2. Adaptive network-based fuzzy inference system (ANFIS) 

ANFIS is a ML method that benefits the fuzzy system in an

dapted network structure [31] . This method is an extension of the

SK fuzzy system [32] , which discovers the knowledge between

nput and output variables of a system using If-Then fuzzy rules.

ach fuzzy rule consists of the antecedent and consequence parts

n which the former part is presented as fuzzy inputs, and the lat-

er one can be expressed as a linear combination of crisp input

ariables. Moreover, the fuzzy inputs in the antecedent part of a

ule are aggregated with each other with AND logistic operator.
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Fig. 2. The relationship between the infection rate and the climatology variables. 
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The k th fuzzy rule (R 

k ) of a system with n input variables is as

follows: 

R 

k : if x 1 is A 

k 
1 and . . . and x i is A 

k 
i and . . . and x n is A 

k 
n 

Then y k = a k 0 + a k 1 x 1 + . . . + a k i x i + . . . + a k n x n (3)

where x i and y k are the i th input variable and the output of k th

fuzzy rule, respectively; A 

k 
i 

is the membership function of the i th

input variable related to the k th rule; a k 
i 
is the regression coeffi-

cients in the antecedent part; and a k is its bias. Fig. 5 depicts an

0 
NFIS structure with two input variables and two fuzzy rules. As

llustrated in this figure, there are five layers in the ANFIS, and

ore explanation about the tasks of each layer are given in the

ollowings: 

First layer: This layer is called the fuzzification layer in which

he membership degrees of all membership functions for given in-

ut variables are calculated. Prior to computing the membership

egrees, the membership functions of the input variables and the

egression coefficients of the consequence parts of all fuzzy rules,

s well as the number of the fuzzy rules, should be determined.
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Fig. 3. The pairwise relationship between the climatology variables. 

Fig. 4. The Pseudo-code of the VOA. 
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he number of fuzzy rules in the ANFIS is set using subtractive

lustering (SC) algorithm, as one of the fastest unsupervised train-

ng algorithms [33] . Moreover, the fuzzy c-means (FCM) clustering

lgorithm is served to determine the initial center and spread of

aussian fuzzy membership functions of the input variables [34] .

dditionally, the regression coefficients of the consequence parts

f all fuzzy rules are the same and equal the regression coeffi-

ients achieved from the linear regression model fitted the exist-

ng data. After generating the initial fuzzy rule base, the training
hase of the ANFIS begins in which the membership functions and

egression coefficients are optimized in such a way that the error

f the system minimized. The hybrid optimization algorithm is the

ost popular training algorithm of the ANFIS in which the least-

quares method (LSM) is used to optimize the regression coeffi-

ients of fuzzy rules in the forward movement of information from

he first layer to the fifth layer [35] . Meanwhile, the gradient de-

cend (GD) algorithm is used to optimize the parameters related to

he membership functions in the backward movement. 
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Fig. 5. An example of an ANFIS model with two input variables and two rules. 

Fig. 6. A schematic representation of a virus in the proposed model. 
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Second layer: After calculating the membership degrees of all

membership functions for given input variables, the aggregated

value of the antecedent part of each fuzzy rule is calculated, us-

ing the following equation, which shows the firing strength of the

rule. 

w 

k = 

n ∏ 

i=1 

A 

k 
i ( x i ) (4)

Third layer: The normalized weights of all rules are calculated

using the following equation: 

w 

k 
N = 

w 

k ∑ 

k w 

k 
(5)

Fourth layer: Having the regression coefficients of all rules, the

consequence value of each rule is calculated for given input vari-

ables, as follows: 

y k = a k 0 + 

n ∑ 

i=1 

a k i x i (6)

Fifth layer: The output of the ANFIS model for given input vari-

ables is calculated as the weighted consequence values of all rules,

formulated as follows: 

y = 

∑ 

k 

w 

k 
N y 

k (7)

3.3. Incorporated model of ANFIS and VOA 

Trapping in the local optima is the critical drawback of the GD

algorithm. The accuracy of this algorithm depends totally on the

initial values of decision variables in the optimization problem.

Therefore, serving VOA can be a good idea to optimize the centers

and spreads of membership functions of input variables as well as

the regression coefficients of the consequence parts of fuzzy rules
n such a way to avoid the local optima through the exploration of

earching space at the beginning of replications and also to con-

erge to the optimal solution through the exploitation of the best

xisting solutions. In this regard, each virus in the VOA is repre-

ented as a matrix with the dimension of NR × (3 × n + 1) in which

 is the number of input variables, and NR is the number of rules

n the rule base. A schematic representation of a virus in the pro-

osed model is revealed in Fig. 6 . The flowchart of the proposed

odel is shown in Fig. 7 , and its different stages are explained in

he followings: 

Stage 1: Prior to running the proposed algorithm, its control

arameters, including the maximum number of virus replication

MNVR), the number of initial viruses (NIV), the number of SVs

NSV) in the host cell, the CVGR and the SVGR are set. 

Stage 2: The initial fuzzy rule base is created using the SC and

CM algorithms; where its parameters are coded as the first virus

n the host cell, and other viruses are randomly created. 

Stage 3: Each virus represents an ANFIS model with the defined

arameters. Using the first to the fifth steps in the ANFIS, the pre-

icted values are computed for given input variables, compared to

he real values, and the error of a virus can be calculated. 

Stage 4: All viruses are sorted from the best to the worst ones,

nd the first SVN viruses are chosen as the SVs, while the rest are

elected as the CVs. 

Stage 5: Based on the CVGR and SVGR, the new viruses are,

espectively, created using Eqs. (1) and (2) for the CVs and SVs,

ecoded into an ANFIS model, and evaluated. 

Stage 6: The newly generated viruses are mixed with the pre-

ious ones to make an archive, and its average error is assessed. If

here is no improvement, the Int parameter is updated. Then, the

aintenance strategy of the host cell is pursued to kill some vul-

erable CVs for the surviving principle of the host cell. If the virus

opulation is more than 10 0 0, the additional weak viruses should
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Fig. 7. The flowchart of the proposed ANFIS-VOA method. 
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Fig. 8.. The relative importance of the climatology variables on the infection rate. 

R

w  

o  
e removed. The replication process of viruses is continued until

he maximum number of virus replicationis satisfied. After finish-

ng the algorithm, the best virus is saved as the final ANFIS model,

alled the ANFIS-VOA-I model in this study. 

Stage 7: In the ANFIS-VOA model-II, the parameters achieved

rom the best virus of the previous stage are used to train using

SM and GD algorithms. If there is any better solution around the

est virus, this procedure can help the algorithm to find it. 

. Results and discussion 

To measure the quality of the developed ANFIS models in map-

ing the climatology variables to the infection rate, three statistical

ndicators, including root mean squared deviation (RMSE), correla-

ion coefficient and coefficient of determination (R 

2 ) were used. All

hese indicators are shown in the followings: 

MSD = 

√ 

1 

n c 

n c ∑ 

i=1 

( P O i − O O i ) 
2 (8) 

 = 

n c 

∑ n c 
i=1 

O O i P O i (
n c 

∑ n c 
i=1 

O O i 
2 −

(∑ n c 
i=1 

O O i 

)2 
)(

n c 

∑ n c 
i=1 

P O i 
2 −

(∑ n c 
i=1 

P O i 

)2 
)

(9) 
 

2 = 1 −
∑ n c 

i=1 ( P O i − O O i ) 
2 

∑ n c 
i=1 

(
O O i − 1 

n 

∑ n 
i=1 O O i 

)2 
(10) 

here OO i and PO i are the observed and predicted infection rate

f the i th county, respectively; and n c is the number of counties. A



8 A. Behnood, E. Mohammadi Golafshani and S.M. Hosseini / Chaos, Solitons and Fractals 139 (2020) 110051 

Table 3 

Statistical indicators of the developed models. 

Models 

Statistical indicators 

RMSD (Infected people/Days) MAE (Infected people/Days) R 2 R-value 

Linear regression 43.0204 12.1912 0.3925 0.6257 

ANFIS 30.6515 9.0127 0.6911 0.8314 

ANFIS-VOA-I 27.6533 9.0494 0.7486 0.8653 

ANFIS-VOA-II 22.4744 7.3337 0.8339 0.9132 

Fig. 9.. The change trend of the infection rate by changing the climatology variables. 
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odel with higher accuracy will have a lower RMSE value and R

nd R 

2 values close to one. 

In this study, the curve fitting was carried out on the avail-

ble data about the COVID-19 outbreak of 1657 counties in the

SA using three developed ANFIS models. To run the developed

NFIS-VOA models, the MNVR, NIV, NSV, CVGR, and SVGR were,

espectively, set as 50 0 0, 50, 10, 8, and 2, where the first two pa-

ameters were determined using the trial and error and the rest

ere selected based on the values obtained in a previous study

35] . The statistical indicators of all developed models are shown

n Table 3 . To compare the results of the developed models, the

inear regression (LR) model was also used. As inferred from this

able, the performance of the ANFIS-VOA-II is better than the other

NFIS and LR models. Moreover, the LR model is by far the worst

odel, and the performance of the classical ANFIS model is weaker

han the ANFIS-VOA models. In terms of RMSD, the ANFIS-VOA-II

odel is 18.73%, 26.68%, and 47.76% better than the ANFIS-VOA-I,

lassic ANFIS, and LR models, respectively. The higher R 

2 value of

he ANFIS-VOA-II model compared to the other developed models

hows the strength of the relationship between this model and the

nput variables considered in this study. The correlations between

he observed and predicted infection rate of all developed ANFIS

odels are more than 0.7, which shows strong correlations. How-

ver, the ANFIS-VOA-II and LR models have the best and the worst

anks, respectively. The MAE of the ANFIS-VOA-II model is 7.3337,

hich is respectively, 18.96%, 18.63%, and 39.84% lower than the

AEs of the ANFIS-VOA-I, classic ANFIS ,and LR models. 

In order to obtain the relative importance of each input vari-

ble, a parametric study was performed. In this regard, the change

n the infection rate was measured when a variable was altered

rom its lowest to highest values, and other variables were fixed

n their average values. By calculating the changes in the infection

ate for all input variables, their values were normalized and ex-

ressed in percentage to obtain their relative importance. Fig. 8 il-

ustrates the relative importance of all input variables using the

NFIS-VOA-II model. As revealed in this figure, the population den-

ity with the relative importance of 62% is by far the most critical

ariable. The maximum temperature with the relative importance

f almost one-third of the population density is in the second rank,

nd the humidity variable with the relative importance of about

ne-ninth of the population density has the third rank. The other

ve climatology variables have the relative importance of less than

0% so that the sum of their relative importance is still 2% less

han the relative importance of the maximum temperature, and it

s also about 30% of the relative importance of the population den-

ity. Moreover, the precipitation and the average temperature are

he two climatology variables held in the lowest rank. 

The changing trends of the infection rate by changing the input

ariables are shown in Fig. 9 . By increasing the population den-

ity, the infection rate grows significantly, which can be a sign of

he importance of social distancing. It can also be seen that as the

verage and maximum temperature of weather increase, the infec-

ion rate decreases, but the reduction is more in the case of the

aximum temperature. Additionally, the slight decline in the in-

ection rate is observed by increasing the wind speed. Moreover,

ith increasing the humidity of the county, the infection rate rises.

. Summary and concluding remarks 

The rapid spread of the novel Coronavirus disease (i.e., COVID-

9) has become a serious global issue. The official statistics shows

hat the U.S. is on top of the list of confirmed infected cases by the

OVID-19. Previous studies have shown that several factors could

otentially affect the spread and transmission rates of the viruses

ncluding population density and climatology parameters. In this

tudy, a combination of the virus optimization algorithm (VOA)
nd adaptive network-based fuzzy inference system (ANFIS) was

sed to investigate the effects of various climate-related factors

nd population density on the spread of the COVID-19. The use

f the VOA can optimize the centers and spreads of membership

unctions of input variables as well as the regression coefficients

f the consequence parts of fuzzy rules in such a way to avoid the

ocal optima. To develop the predictive models, a dataset contain-

ng information on the climate related factors (i.e., average tem-

erature, maximum temperature, minimum temperature, precipi-

ation, average annual humidity, and average annual wind speed)

nd population density were used as input variables while infec-

ion rate was defined as the only output variable. 

The developed models based on the machine learning tech-

ique could successfully predict the effects of the different vari-

bles on the infection rate and showed superior performance com-

ared to the linear regression. Among the input variables, popu-

ation density showed the most significant effect on the infection

ate. This finding highlights the importance of social distancing in

educing the infection rate. Among the climate parameters, maxi-

um temperature was found to have the most significant effect on

he infection rate. An increase in the maximum temperature could

educe the infection rate. Average temperature, minimum tempera-

ure, precipitation, and average wind speed were not found to sig-

ificantly affect the spread of the COVID-19 while an increase in

he relative humidity was found to slightly increase the infection

ate. The findings of this research show that it could be expected

o have slightly reduced infection rate over the summer season.

owever, it should be noted that the models developed in this

tudy were based on limited one-month data. Future investigation

an benefit from using more comprehensive data covering a wider

ange for the input variables. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Ali Behnood: Conceptualization, Data curation, Validation, 

riting - original draft, Writing - review & editing. Emadaldin

ohammadi Golafshani: Conceptualization, Software, Method- 

logy, Writing - original draft, Writing - review & editing.

eyedeh Mohaddeseh Hosseini: Data curation, Writing - original

raft. 

eferences 

[1] Lahmiri S, Bekiros S. The impact of COVID-19 pandemic upon stability and se-

quential irregularity of equity and cryptocurrency markets. Chaos, Solitons &

Fractals 2020;138:109936. doi: https://doi.org/10.1016/j.chaos.2020.109936 . 
[2] Sun T, Wang Y. Modeling COVID-19 epidemic in Heilongjiang Province, China.

Chaos, Solitons & Fractals 2020:109949. doi: https://doi.org/10.1016/j.chaos. 
2020.109949 . 

[3] Arias Velásquez RM, Mejía Lara JV. Forecast and evaluation of COVID-19
spreading in USA with reduced-space Gaussian process regression. Chaos,

Solitons & Fractals 2020;136:109924. doi: https://doi.org/10.1016/j.chaos.2020. 

109924 . 
[4] Ribeiro MHDM, da Silva RG, Mariani VC, Coelho L dos S. Short-term forecasting

COVID-19 cumulative confirmed cases: perspectives for Brazil. Chaos, Solitons
& Fractals 2020;135:109853. doi: https://doi.org/10.1016/j.chaos.2020.109853 . 

[5] Wang J, Tang K, Feng K, Lv W. High temperature and high humidity reduce the
transmission of COVID-19 2020. 

[6] Ahmadi M, Sharifi A, Dorosti S, Ghoushchi SJ, Ghanbari N. Investigation of ef-
fective climatology parameters on COVID-19 outbreak in Iran. Sci Total Environ

2020;729:138705. doi: https://doi.org/10.1016/j.scitotenv.2020.138705 . 

[7] Pirouz B, Shaffiee Haghshenas S, Pirouz B, Shaffiee Haghshenas S, Piro P.
Development of an assessment method for investigating the impact of cli-

mate and urban parameters in confirmed cases of COVID-19: A new chal-
lenge in sustainable development. Int J Environ Res Public Health 2020;17.

doi: 10.3390/ijerph17082801 . 

https://doi.org/10.1016/j.chaos.2020.109936
https://doi.org/10.1016/j.chaos.2020.109949
https://doi.org/10.1016/j.chaos.2020.109924
https://doi.org/10.1016/j.chaos.2020.109853
https://doi.org/10.1016/j.scitotenv.2020.138705
https://doi.org/10.3390/ijerph17082801


10 A. Behnood, E. Mohammadi Golafshani and S.M. Hosseini / Chaos, Solitons and Fractals 139 (2020) 110051 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

 

 

 

[  

 

 

 

 

 

[8] Pirouz B, Shaffiee Haghshenas S, Shaffiee Haghshenas S, Piro P. Investigat-
ing a serious challenge in the sustainable development process: analysis of

confirmed cases of COVID-19 (new type of coronavirus) through a binary
classification using artificial intelligence and regression analysis. Sustainability

2020;12. doi: 10.3390/su12062427 . 
[9] Geoghegan JL, Holmes EC. Predicting virus emergence amid evolutionary noise.

Open Biol 2017;7:170189. doi: 10.1098/rsob.170189 . 
[10] Xie J, Zhu Y. Association between ambient temperature and COVID-19 infection

in 122 cities from China. Sci Total Environ 2020;724:138201. https://doi.org/10.

1016/j.scitotenv.2020.138201 . 
[11] Lowen AC , Mubareka S , Steel J , Palese P . Influenza virus transmission is depen-

dent on relative humidity and temperature. PLOS Pathog 2007;3:e151 . 
[12] Altamimi A, Ahmed AE. Climate factors and incidence of Middle East respira-

tory syndrome coronavirus. J Infect Public Health 2019. https://doi.org/10.1016/
j.jiph.2019.11.011 . 

[13] Kandiri A, Mohammadi Golafshani E, Behnood A. Estimation of the compres-

sive strength of concretes containing ground granulated blast furnace slag us-
ing hybridized multi-objective ANN and salp swarm algorithm. Constr Build

Mater 2020;248:118676. https://doi.org/10.1016/j.conbuildmat.2020.118676 . 
[14] Behnood A, Golafshani EM. Machine learning study of the mechanical prop-

erties of concretes containing waste foundry sand. Constr Build Mater
2020;243:118152. https://doi.org/10.1016/j.conbuildmat.2020.118152 . 

[15] Daneshvar D, Behnood A.Estimation of the dynamic modulus of asphalt

concretes using random forests algorithm. Int J Pavement Eng 2020:1–11.
doi: 10.1080/10298436.2020.1741587 . 

[16] Rivers-Moore NA, Hill TR. A predictive management tool for blackfly outbreaks
on the Orange River, South Africa. River Res Appl 2018;34:1197–207. doi: 10.

1002/rra.3357 . 
[17] Yin R, Tran VH, Zhou X, Zheng J, Kwoh CK. Predicting antigenic variants of

H1N1 influenza virus based on epidemics and pandemics using a stacking

model. PLoS One 2018;13:e0207777. doi: 10.1371/journal.pone.0207777 . 
[18] Agarwal N , Koti SR , Saran S , Kumar AS . Data mining techniques for predict-

ing dengue outbreak in geospatial domain using weather parameters for New
Delhi, India. Curr Sci 2018;114:2281–91 . 

[19] Anno S, Hara T, Kai H, Lee M-A, Chang Y, Oyoshi K, et al. Spatiotemporal
dengue fever hotspots associated with climatic factors in Taiwan including out-

break predictions based on machine-learning. Geospat Health 2019;14:183–94.

doi: 10.4081/gh.2019.771 . 
[20] Chenar SS, Deng Z. Development of artificial intelligence approach to fore-

casting oyster norovirus outbreaks along Gulf of Mexico coast. Environ Int
2018;111:212–23. https://doi.org/10.1016/j.envint.2017.11.032 . 

[21] Chenar SS, Deng Z. Development of genetic programming-based model for
predicting oyster norovirus outbreak risks. Water Res 2018;128:20–37. https:

//doi.org/10.1016/j.watres.2017.10.032 . 
22] Shamkhali Chenar S, Deng Z. Environmental indicators of oyster norovirus out-
breaks in coastal waters. Mar Environ Res 2017;130:275–81. https://doi.org/10.

1016/j.marenvres.2017.08.009 . 
[23] Jiao W, Zhiqiang D. Modeling and prediction of oyster norovirus outbreaks

along Gulf of Mexico Coast. Environ Health Perspect 2016;124:627–33. doi: 10.
1289/ehp.1509764 . 

[24] Liang R, Lu Y, Qu X, Su Q, Li C, Xia S, et al. Prediction for global African
swine fever outbreaks based on a combination of random forest algorithms

and meteorological data. Transbound Emerg Dis 2020;67:935–46. doi: 10.1111/

tbed.13424 . 
[25] Topak L, Hamidi O, Fathian M, Karami M. Comparative evaluation of time se-

ries models for predicting influenza outbreaks: application of influenza-like
illness data from sentinel sites of healthcare centers in Iran. BMC Res Notes

2019;12:353. doi: 10.1186/s13104- 019- 4393- y . 
26] Salgotra R, Gandomi M, Gandomi AH. Time Series Analysis and forecast of

the COVID-19 pandemic in India using genetic programming. Chaos, Solitons

& Fractals 2020:109945. https://doi.org/10.1016/j.chaos.2020.109945 . 
[27] USAFacts. Coronavirus locations: COVID-19 map by county and state 2020.

https://usafacts.org/visualizations/coronavirus- covid- 19- spread- map/ (ac-
cessed April 28, 2020). 

28] NOAA. Climate at a Glance - (National Center for Environmental Informa-
tion) 2020. https://www.ncdc.noaa.gov/cag/county/mapping (accessed April 28,

2020). 

29] USA.com. Your local guide to cities, towns, neighborhoods, states, counties,
metro areas, zip codes, area codes, and schools in USA 2020. http://www.usa.

com/ (accessed April 28, 2020). 
[30] Liang Y-C, Cuevas Juarez JR. A novel metaheuristic for continuous optimization

problems: virus optimization algorithm. Eng Optim 2016;48:73–93. doi: 10.
1080/0305215X.2014.994 86 8 . 

[31] Jang JSR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans

Syst Man Cybern 1993;23:665–85. doi: 10.1109/21.256541 . 
32] Takagi T , Sugeno M . Fuzzy identification of systems and its applications to

modeling and control. IEEE Trans Syst Man Cybern 1985;SMC-15:116–32 . 
[33] Chiu SL. Fuzzy model identification based on cluster estimation. J Intell Fuzzy

Syst 1994;2:257–78. doi: 10.3233/IFS- 1994- 2306 . 
[34] Peizhuang W. Pattern recognition with fuzzy objective function algorithms

(James C. Bezdek). SIAM Rev 1983. doi: 10.1137/1025116 . 

[35] Golafshani EM, Behnood A, Arashpour M. Predicting the compressive strength
of normal and High-Performance Concretes using ANN and ANFIS hybridized

with Grey Wolf Optimizer. Constr Build Mater 2020;232:117266. doi: 10.1016/j.
conbuildmat.2019.117266 . 

https://doi.org/10.3390/su12062427
https://doi.org/10.1098/rsob.170189
https://doi.org/10.1016/j.scitotenv.2020.138201
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0009
https://doi.org/10.1016/j.jiph.2019.11.011
https://doi.org/10.1016/j.conbuildmat.2020.118676
https://doi.org/10.1016/j.conbuildmat.2020.118152
https://doi.org/10.1080/10298436.2020.1741587
https://doi.org/10.1002/rra.3357
https://doi.org/10.1371/journal.pone.0207777
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0015
https://doi.org/10.4081/gh.2019.771
https://doi.org/10.1016/j.envint.2017.11.032
https://doi.org/10.1016/j.watres.2017.10.032
https://doi.org/10.1016/j.marenvres.2017.08.009
https://doi.org/10.1289/ehp.1509764
https://doi.org/10.1111/tbed.13424
https://doi.org/10.1186/s13104-019-4393-y
https://doi.org/10.1016/j.chaos.2020.109945
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://www.ncdc.noaa.gov/cag/county/mapping
http://www.usa.com/
https://doi.org/10.1080/0305215X.2014.994868
https://doi.org/10.1109/21.256541
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30448-3/sbref0026
https://doi.org/10.3233/IFS-1994-2306
https://doi.org/10.1137/1025116
https://doi.org/10.1016/j.conbuildmat.2019.117266

