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Abstract: Hyperspectral imaging (HSI) and multispectral imaging (MSI) technologies have the
potential to transform the fields of digital and computational pathology. Traditional digitized
histopathological slides are imaged with RGB imaging. Utilizing HSI/MSI, spectral information
across wavelengths within and beyond the visual range can complement spatial information for the
creation of computer-aided diagnostic tools for both stained and unstained histological specimens.
In this systematic review, we summarize the methods and uses of HSI/MSI for staining and color
correction, immunohistochemistry, autofluorescence, and histopathological diagnostic research.
Studies include hematology, breast cancer, head and neck cancer, skin cancer, and diseases of
central nervous, gastrointestinal, and genitourinary systems. The use of HSI/MSI suggest an
improvement in the detection of diseases and clinical practice compared with traditional RGB
analysis, and brings new opportunities in histological analysis of samples, such as digital staining
or alleviating the inter-laboratory variability of digitized samples. Nevertheless, the number of
studies in this field is currently limited, and more research is needed to confirm the advantages of
this technology compared to conventional imagery.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Traditional computational pathology, also known as digital pathology, is an emerging technology
that promises quantitative diagnosis of pathological samples, reduction of inter-observer variabil-
ity among pathologists, and saving time in the manual examination of histological samples [1,2].
Traditional computational pathology relies on RGB digitized histology images. Within computa-
tional pathology, several research groups have begun to explore if hyperspectral/multispectral
(HS/MS) imaging (HSI/MSI) are technologies able to provide further advantages to this end.

The study of light propagation through biological tissues is useful to identify several diseases.
Light propagation in biological tissues involves three different photophysical processes: refraction,
scattering and absorption [3]. Refraction and reflection of light within biological tissues, which
are usually non-homogeneous media, is related to the changes in speed and direction of light. The
absorption of light involves the extraction of energy from light by molecules. Thus, absorption
peaks are related to transitions between two energy levels in a molecule at a specific wavelength.
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These absorption peaks are used as a fingerprint of the molecules’ response to light, providing
information that can be used for diagnostic purposes. Scattering of light occurs when there
is a spatial variation of the reflective index within tissues. The scattering of some biological
components shows variations under certain disease conditions, becoming useful for diagnosis
purposes [4]. Finally, some tissues show fluorescence when are excited by an external light source.
For example, the emission of proteins and nucleic acids can be observed after exciting tissue
with ultraviolet light. Traditionally, these properties of tissue are measured in the spectral range
known as therapeutic window, from 600 to 1300 nm [5], where tissues present weak absorption,
and light is more likely to penetrate tissues.
These properties of the interaction between light and biological tissue motivate the use

of technologies that exploit the information of light propagation through tissues to develop
tools for diagnosis support. Raman Spectroscopy (RS) and Fourier Transform Infrared (FTIR)
Spectroscopy make use of the information of the vibrating molecules produced by photons for
diagnostics [6–8]. RS and FTIR spectroscopy are useful for identifying types ofmolecules, leading
to their usage in biomedical applications. Both techniques are based on the vibrational state of
the molecules, but while FTIR spectroscopy is more appropriate for absorption measurements,
RS is more sensitive to scattering changes. This makes both technologies complementary.
Additionally, Spatial Frequency Domain Imaging (SFDI) make use of modulated light sources
and light transport models to extract information about absorption and scattering about different
tissues, which can be subsequently used for diagnosis [9]. Finally, after the application of specific
fluorescent agents to the sample, fluorescence spectroscopy techniques are able to measure the
fluorescence spectra of the specimen after light excitation. Such fluorescence spectra can be
associated with different disease states, leading in applications for biomedical diagnosis [10].
In opposition to these spectral technologies, HSI/MSI are optical spectroscopy imaging

modalities, which directly measure the incoming radiance spectra of light. There are two major
detection modes, depending on the incidence of light within the tissue: light reflection or light
transmission. The spectral information measured by these technologies is usually related to
the information about both scattering and absorption of light within the sample but can also
be used for fluorescence measurements. In this sense, HSI/MSI are imaging techniques (also
called imaging spectroscopy) able to obtain both spatial and spectral information within and
beyond the human visual sensitivity, which is restricted to the spectral range from 380 to 740 nm
[3]. HSI/MSI can obtain additional information within the electromagnetic (EM) spectrum by
capturing the information regarding different wavelengths (also called spectral bands or spectral
channels) up to 2500 nm. Similarly to the human eye capabilities, RGB imaging can be conceived
as a multispectral image with only three spectral bands, related with the opsins of the retina (blue
light – 430 nm – cianopsin; green light – 530 nm – cloropsin; red light – 650 nm – eritropsin))
[11]. Each pixel of an HS/MS image represent the light measured by the camera at each specific
wavelength, creating a set of light measurements which comprise the spectral signature. This
spectral signature can be understood as a fingerprint of each material that can allow differentiation
of elements in a captured scene by using HS/MS processing algorithms [12].
In the medical field, several studies implement HSI/MSI for automated disease diagnosis

and image-guided surgery [13], for example, both in-vivo and ex-vivo cancer detection [14],
or gastroenterology applications [15], and many others. There are existing reviews related to
the use of HSI/MSI for microscopy and digital histology available in the literature. Some of
these reviews aim to present the basics on technology and the common processing approaches
[16–18], but those manuscripts are limited in the number of applications covered and are not
up to date. Other reviews are focused on technology aspects. Gao et al. performed a review
describing the instrumentation used in HSI/MSI for microscopy applications [19], while Hermes
et al. performed an overview of the different infrared sensing techniques [20]. Finally, Mansfield
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et al. presented a review about the application of only MSI for histopathological analysis more
focused in the technical aspects [21].

In this systematic review, we analyze the use of both HSI and MSI for pathological diagnosis,
digital staining and other applications. This review adheres to the guidelines of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and the objectives of
this review can be summarized by using the PICOS (Participants, Interventions, Comparisons,
Outcomes and Study design) criteria [22]. The subjects of studies found in this review are
limited to specimens from healthy and diseased humans and mammals. Prior to conducting the
search and systematic review, it was unknown if other studies would compare outcomes of HSI
to other image analysis techniques using conventional RGB images. Therefore, the nature of
this review is non-interventional and studies the applications of HSI/MSI only for microscopic
examination. Papers that provide comparisons of imaging modalities are reported, but this
systematic review is not restricted to them. The outcome is to summarize the current status of
HSI/MSI in histological analysis and methodology, including details about the population of
each study, sample preparation, instrumentation and data analysis methods. Lastly, regarding
study design, all primary research publications that make use of HSI/MSI for analysis of all
types of histological specimens (including both journal papers and conference proceedings)
are considered for inclusion in this review. A detailed technological analysis and summary
is provided for clinical applications, methodology, instrumentation, data analysis techniques,
limitations, and quality of outcomes compared to conventional imagery.

2. HSI/MSI information processing overview

This manuscript is focused on the current advances in HSI/MSI for histological applications. As
stated previously, HS/MS data contain information about both the spectral and the morphological
features of the samples. However, in order to extract useful information for different applications,
such data should be properly analyzed using image processing techniques. The available options
for HS/MS image processing are currently wide, and there are multiple choices about how to
analyze such data. One important stage in HS/MS image processing is data calibration methods.
Such methods are used to alleviate the heterogeneities between HS/MS data, which are mainly
caused by the instrumentation itself [23]. Nevertheless, the main trend in HSI/MSI is the use of
machine learning algorithms to extract information about the different materials or substances
which are present in a HS/MS image in order to make accurate predictions. The first attempt
to exploit information from HS/MS images was carried out in a pixel-wise manner, where only
the spectral information of the different pixels in the image was used to identify the different
materials within the image. In a recent survey manuscript, Ghamisi et al. performed a comparison
between the most common supervised classifiers used for information retrieval in HSI/MSI [24].
The authors discussed the most popular supervised classifiers for HS/MS classification, namely
Support Vector Machines (SVM), Random Forests (RF), Neural Networks (NN) and Multinomial
Logistic Regression (MLR). Critically, the aforementioned classifiers do not necessarily take into
account the morphological properties of the samples. For this reason, other approaches are based
in the joint exploitation of both the spectral and the spatial properties of data [25].

The aforementioned machine learning techniques can be applied either directly to the spectral
data or after applying some feature extraction methods. On one hand, dimensionality reduction
methods have the goal of performing a mathematical transformation in the data, where the
most important information is kept, achieving a reduced dimensionality. On the other hand,
band selection methods are devoted to identifying the most important spectral bands for a
given application. More recently, deep learning techniques have shown their potential for
automatic HSI/MSI feature extraction and classification [26,27]. Such approaches are mainly
based on different Convolutional Neural Networks (CNN) architectures, which extract spatial and
spectral features simultaneously. The main advantage of deep learning techniques for supervised
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classification is their capability to find which features from the original dataset are more relevant
for the identification of different materials within a HS/MS image through stacked layers of
abstraction. Beyond the usage of machine learning approaches, other processing techniques for
HSI/MSI image processing are spectral unmixing [28], the use of Normalized Difference Index
(NDI) estimation [29], or simply the statistical analysis of HSI/MSI data.

In this section, we provided a brief context about the processing techniques that can be used
for HSI/MSI information retrieval. In conclusion, we find that the current information extraction
methods are not standardized, and there is a wide range of options to reach the same goal. In
our systematic review, researchers employ a variety of processing techniques to evaluate the
disease detection ability of HSI/MSI. A more concise analysis about the processing methods
for HSI/MSI image processing is outside the scope of this manuscript. However, we provide
the basic context about HSI/MSI image processing and some state-of-art references for readers
interested in deeper details about this topic.

3. Systematic review methodology

The methodology carried out for this systematic review adheres to the previously established
PRISMA guidelines. The PRISMA guidelines consist of a four-phase flow chart and item
checklist. The PRISMA statement [22] aims to improve the reporting of systematic reviews and
meta-analyses. While the original focus of PRISMA is on randomized trials and interventions,
it can also be used as the foundation for reporting systematic reviews of any type of research.
Additionally, we used the PRISMA explanation and elaboration document [30] as a guideline,
which is intended to enhance the use, understanding and dissemination of the PRISMA statement.
The PRISMA statement establishes a methodology to perform a systematic review that includes
a description of information sources to be used, the search strategy, the eligibility criteria of
manuscripts, a report on how the study selection was carried out, and the protocol that researchers
should follow when reviewing the manuscripts selected for the systematic review.

3.1. Eligibility criteria

The eligibility criteria of the manuscripts are highly related with the aforementioned objectives,
which follow the PICOS guideline. To this end, the manuscripts eligible to be included in this
systematic review consist of applications of MSI, HSI, or near-infrared (NIR) imaging. The
former is included just in case that some studies exploit the use of only a few wavelengths, but not
the standard RGB for histopathological analysis. Moreover, this review will only cover optical
microscopy, which excludes point-wise and non-imaging spectroscopy, RS, SFDI, or FTIR
from the scope of this review. Furthermore, the specimens used by the studies covered in this
manuscript are restricted to be acquired from human or mammals. Regarding the data analysis
methods, all data analysis techniques will be included in this manuscript. Articles considered
must be published between 2004 and 2019 and written in English.

3.2. Information sources

The search for manuscripts to be included in this systematic review was performed in the Scopus
and PubMed databases. The Scopus database [31] is the largest abstract and citation database
of peer-reviewed literature. Scopus comprises a comprehensive collection of research outputs
in the fields of science, technology, medicine, social sciences, and arts and humanities. On
the other hand, the PubMed database [32] is a free resource developed by the National Center
for Biotechnology Information (NCBI) and the National Institutes of Health (NIH) of United
States of America. PubMed comprises over 30 million citations and abstracts from the fields
of biomedicine and health, including life sciences, behavioral sciences, chemical sciences, and
bioengineering. As an additional source of information, after performing the study selection, we
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considered all references cited by the selected manuscripts for the clinical diagnostic research
category for potential inclusion if they adhere to the previous eligibility criteria.

3.3. Search

The database search for manuscripts was performed on August 13th 2019. The search was
limited to manuscripts published between 2004 and 2019 and written in English. Two different
researchers performed the search (S.O. and M.H.), one in PubMed and the other one in Scopus.
The keywords used in both searches were:

(Hyperspectral OR Multispectral) AND (histology OR pathology OR histopathology)

The primary searches produced 2,213 citations and abstracts in total: 1,115 from PubMed and
1,098 from Scopus.

3.4. Study selection

The screening was performed by two researchers by reading the titles and abstracts of the
manuscript citations found in the search. If the suitability of a manuscript was not clear from the
abstract, the full manuscript was obtained and scrutinized to decide if the document should be
included in the systematic review. The studies that adhere to the above eligibility criteria were
selected.

3.5. Protocol and registration

As stated in the PRISMA guidelines, prior to the search and analysis of the manuscripts for
this systematic review, we developed a protocol to be followed for reviewing manuscripts. This
protocol is mainly focused in covering the objectives, i.e. questions to be addressed, of this
systematic review, and it defines the data items to be sought during the evaluation of each
manuscript. Our protocol is based on four major questions to be answered: the analysis of clinical
data, the methodology used to carry out the experiments, the description of instrumentation
employed, and the analysis of the data processing methods. For the analysis of clinical data,
the authors should identify the types of tissues to be imaged, the number of patients, the types
of patients, the histological preparation, e.g. staining, embedding, sectioning, etc., and the
outcomes from a medical perspective. In the instrumentation, we searched for the type of HS/MS
system employed and its characteristics, such as the spectral resolution, the spatial resolution, the
number of bands, and the magnification. Lastly, regarding the data analysis methods, we sought
for information regarding the calibration of data and the goal of the data analysis method, e.g.
classification or segmentation. The information extracted from each manuscript is summarized
in a table that contains all the data items previously mentioned.

3.6. Risk of bias

It is worth noting that the studies herein presented may suffer from publication bias or selection
bias because these studies demonstrate positive results on the utility of HS/MS histological
analysis. It is possible that only promising results are published and that comparison to other
technologies, such as conventional imaging, could be intentionally omitted from experimental
design or the final manuscript preparation.

3.7. Search results

In this section, we describe the study selection performed after the search. We make use of the
PRISMA four-phase flow diagram (Fig. 1). We also used Mendeley reference manager (Elsevier
B.V., Amsterdam, Netherlands) as a computer-aid tool for the study selection. The primary search
provided 1,115 manuscripts from PubMed and 1,098 manuscripts from Scopus, having a total of
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2,213 manuscripts. After removing duplicates, we analyzed abstracts from 1,648 manuscripts.
From these records, we selected 311 for full-text review, and we rejected 1,337 records. We
excluded 497 records, which were not related to HSI/MSI, and 840 records, which were not
associated to histology. After reviewing the full-text articles, 118 were excluded because they
were not in the scope of this systematic review. Finally, additional 20 manuscripts were included
from the references of the selected articles.

Fig. 1. PRISMA flowchart for the search of literatures and studies.

In total, we have included 193 research articles for this systematic review. The papers were
categorized into five different sections: system development, color and staining, inmunohisto-
chemistry (IHC), autoflorescence (AF) and diagnostic research for clinical routine practice. In
addition to the systematic review of the selected papers, we have included some critical remarks
on the current limitations and challenges of HSI/MSI at the end of each section.

4. Hyperspectral/multispectral system development

In this section, we provide readers with a basic background about the instrumentation used for
HSI/MSI in histology applications, and we briefly summarize the main research carried out in
the context of HS/MS instrumentation development and optimization.

There are three main characteristics of any HS/MS acquisition system: spectral range, spectral
resolution, and spatial resolution. The spectral range is related to the range of EM wavelengths
covered by the spectral camera. For biomedical applications, several light-tissue interactions
can be observed in the diagnostic window, i.e. from 600 to 1300 nm. There are several types of
commercial HS/MS acquisition systems which cover different spectral ranges: visible and near-
infrared (VNIR) spectrum (400–1,000 nm), NIR spectrum (900–1,700 nm) or short-wavelength
infrared (SWIR) spectrum (1,000–2,500 nm). The spectral resolution is defined as the resolution
the EM is sampled, i.e. the difference between two consecutive spectral channels. A narrow
spectral resolution may enable the identification of subtle absorption peaks, which is not possible
to differentiate at lower spectral resolutions. Finally, the spatial resolution is related to the
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actual pixel size. Depending on the application, higher spatial resolutions are required to image
small objects. In spectral imaging, the use of low spatial resolution can ultimately lead to
spectrally-mixed measurements, i.e. finding the combined spectral signatures of several materials
which are present in the current pixel. Low spatial resolution, and therefore high spectral-mixing,
is admissible only when the application deals with homogenous materials, or at least materials
that are homogenous enough for such spatial granularity.

In addition to the basic features of HS/MS instrumentation, there are several types of acquisition
systems that can be found in the literature depending on the way of capturing the spectral and
spatial information. Spatial-scanning techniques collect all the spectral information from a
single point (point-scanning or whisk-broom sensors) or from a single spatial line (push-broom
or line-scanning sensors) [33]. In order to collect the spatial information, spatial-scanning
techniques require relative movement between the camera and the sample. In opposition,
spectral-scanning methods aim to collect progressively all the spatial information for different
wavelengths. In spectral-scanning methods, a single wavelength is captured each time, and the
scan is performed by changing the central wavelength of the spectral channel to be imaged.
Examples of spatial-scanning systems are filter wheels, liquid crystal tunable filters (LCTFs),
and acousto-optic tunable filters (AOTFs) [34]. Finally, snapshot sensors are designed to
simultaneously collect both the spatial and the spectral information of the sample in a single
shot [34]. Further comparisons between HS/MS acquisition technologies in terms of spatial
resolution, spectral resolution, spectral range and acquisition time requirements can be found in
[35].
Most of the researchers who use HS/MS technologies for histopathological analysis use

equipment based on a conventional microscope attached to a commercial HS/MS camera.
Nevertheless, several research groups have focused their efforts in instrumentation development
of HS/MS image acquisition systems for histological analysis of samples. These approaches
include systems based on the following technology and sensors: AOTFs [36,37], tunable light
sources [38], imaging scanning spectrometers [39,40], thin-film tunable filters [41], MS filter
arrays [42], and push-broom scanning [43,44]. Most of the acquisition systems in HSI/MSI
are in the proof-of-concept stage and they are not ready to effectively perform whole-slide
spectral imaging over the samples. However, Jiang et al. proposed a whole-slide imaging (WSI)
system for HSI based on slit-array projections [45]. The aforementioned studies contain valuable
information about development of HS/MS microscopic systems, but the contents are too technical
for the previously established scope of this review. For completeness, the references are provided
for interested readers to explore in more detail.
In this section, we defined the most important parameters of HS/MS acquisition systems.

HS/MS technology is shown as a promising technology for biomedical applications, since the
spectral interaction between light and tissue has been proven to provide information about
diagnosis. However, the instrumentation is still quite expensive, large amounts of data storage
are needed, and computational requirements are extremely high. These storage requirements are
more evident for histopathological applications, where histopathological laboratories are able to
digitize hundreds of slides per day.
However, it is possible to reduce the cost of the HS/MS instrumentation. If a reduced subset

of spectral bands, which are useful for a certain application (e.g. certain tissue diagnosis) are
identified, it would be possible to develop a low-cost MS system with similar storage requirements
compared to conventional RGB imagery. In this situation, different low-cost MS systems can be
used for different applications, where different spectral bands are required. Nevertheless, to reach
this situation, more research should be performed with high resolution and wide spectral range
HS instrumentation to determine which bands are relevant for each application. Furthermore, the
storage capacity requirements can be also alleviated by making use of HS/MS data compression
algorithms. The impact of using lossless or lossy compression in the data analysis should be
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determined in the close future. More investigation is required for histological applications where
HS/MS analysis may increase the diagnosis ability of disease compared to conventional RGB
imagery.

5. Color enhancement and digital staining

The examination of pathological slides provides the final diagnosis for most diseases, and color
plays an important role. In this context, Cukierski et al. made use of the concept of metamers for
analyzing the advantages of MSI for histopathological imaging. If a color has a higher probability
of being metameric, then MSI will likely improve the task of distinguishing two structures, which
have similar color but different absorption spectra. Using the concept of metamers and linear
algebra transformations, the authors concluded that the maximum spectral difference between
two metamers is beyond the capabilities of the human eye, where MSI could boost the diagnostic
capabilities of conventional RGB imagery [46,47]. Uneven color conditions among different
samples can complicate the examination of samples and may be caused by different staining
conditions (staining time, temperature or pH of the solution) and instrumentation (camera and
microscope characteristics). To handle this problem, Abe et al. proposed a method where the
amount of dye is estimated by using MS images in combination with the Beer Lambert law,
and then the original image is weighted to obtain a color-corrected image. The method was
proven to perform the color correction under different conditions of H&E (hematoxylin and
eosin) stained slides of human liver, namely over-staining, under-staining, and excess of either
hematoxylin or eosin [48,49]. Yagi et al. proposed a method for color standardization based on
MSI and the use of a standardized color chart [50,51]. This procedure was proven to deal with
the variations in appearance of H&E stained slide from different laboratories, which is one of the
biggest challenges in whole slide imaging of histological slides. Additionally, the capabilities
of HSI/MSI to measure colors accurately make it attractive to be employed as benchmark for
measuring the color performance. Motivated by the lack of conventional color performance
techniques, such as colorimetry or spectroradiometry, to measure microscopic biological tissues,
Salehen et al. evaluated the color performance of two different whole-slide imaging systems
using HSI and three different H&E stained histological samples as color targets [52,53].
Another interesting application of HSI/MSI in histopathology is digital staining. The main

goal of this approach is to highlight molecular components in digitized slides without performing
a physical stain of the samples. For example, Masson’s trichrome (MT) stain is used to emphasize
fibrosis structures, which can aid in the diagnosis of chronic liver diseases. In this sense, Bautista
et al. proposed several techniques to digitally stain H&E MS images and virtually transform into
MT stained samples [54–60]. Apart from the digital stain to simulate MT, the same group also
applied digital staining to visualize the color differences between tissue structures that displayed
similar H&E staining patterns. This approach promises to be useful to visualize tissue structures
that are not emphasized by the original stain, without the requirement of additional physical
staining [61,62]. An example of this application can be observed in Fig. 2. Beyond digital staining
of previously H&E stained samples, some researchers have focused their work in performing
digital staining of unstained samples. In this field, Bautista et al. also performed digital generation
of an H&E image from an unstained kidney slide using supervised classification of nucleus,
cytoplasm and RBCs (Red Blood Cells), and then applied a linear transformation to stain those
components into a H&E like image [63]. Additionally, Bayramoglu et al. digitally stained
an unstained lung specimen, producing the appearance of H&E staining, using a conditional
generative adversarial network (cGAN) [64].

In summary, the current state-of-art uses of HSI/MSI in the field of digital staining and color
optimization are mostly focused on color optimization, standardization of digitized slides, and
digital staining of samples.
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Fig. 2. Example of digital staining of H&E images to provide them with the appearance
of MT stain. (a) Original H&E image (b) Digitally stained image (c) MT stained image.
Reproduced from [62]; Creative Commons BY 4.0; published by SPIE (2012).

In the context of color enhancement and standardization, the research carried out by theHSI/MSI
community has been limited to proof-of-concept research, where the color reproducibility and the
inter-laboratory variations of digitized slides are improved by means of HS/MS image processing.
Nevertheless, such studies have not demonstrated a significant difference between conventional
WSI digitized slides and HSI/MSI. For this reason, HSI/MSI solutions have been proven as a
realistic alternative to conventional RGB imagery for clinical environments despite increased
instrumentation costs, data storage, and computational requirements for color enhancement
and standardization. Furthermore, recently, Campanella et al. found a performance drop in a
supervised classification for histological diagnosis when data used for training belong to different
institutions, even when the number of training samples was high [65]. For this reason, and
regardless of the cost associated with image acquisition in the preliminary stages, HSI/MSI
technology should be further analyzed as an alternative to compensate the differences in color
between data from different institutions or acquisition systems. Once such research is performed,
there could be a well-founded argument discussion about the enhancements of using expensive
HSI/MSI to alleviate inter-laboratory differences, and hence, compensating the problems in
automatic machine learning approaches, which could benefit histopathological laboratories in the
long-term.

In the context of digital staining, some of these works have the goal of generating trichromatic
images from H&E stained images by processing MS/HS images. Some researchers have
recently proposed new approaches to reach the same goal using conventional imaging techniques.
Fereidouni et al. demonstrated the feasibility of HSI/MSI for the generation of trichrome images
exploiting the combination of a fluorescence image and a brightfield image [66]; while Rivenson
et al. suggested the use of deep learning to generate trichrome images from standard RGB data
from H&E slides [67]. In fact, both approaches were presented as cost-effective alternatives to
the use of HSI/MSI. However, these are only examples of the generation of one specific type of
digital stain. Further research should be performed in order to investigate if HSI/MSI is able to
outperform RGB or fluorescence technologies for this and other digital stain applications. For
this reason, the research in the field of digital staining by using HSI/MSI should be focused in the
exploration of unstained samples. The dyes used to stain tissues for subsequent examination of
histological samples modify the spectral signature of the sample itself, restricting the spectral
information only to the visible spectral range of light. Therefore, it should be investigated if the
spectral information within unstained histological samples could provide advantages compared to
conventional stained samples. The main opportunity of HSI/MSI technologies is to use unstained
samples for digitally synthesized multiple-dye digital staining. According to the literature, this
information can be found in the diagnostic window of the EM spectrum from 600 to 1300 nm [5].
In addition, Sordillo et al. have recently proposed the spectral window from 1600 to 1800nm to
be also useful for diagnosis [68]. The investigation of histological samples at these wavelengths
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should be performed with unstained samples and with HS/MS cameras in the NIR spectral range.
In summary, to explore the possibilities of this promising technology, more research should be
performed in order to determine the potential clinical usage of HSI/MSI for such applications.

6. Immunohistochemistry and Immunofluorescence

Our extensive literature review located 59 research articles that present two commercially available
MSmicroscope systems that are predominantly applied in the literature for immunohistochemistry
and immunofluorescence (IF). These MS microscopes are clinically useful because they allow
quantitative analysis of multiple molecular biomarkers in multi-label tissue specimens, both in
bright-field and fluorescence modes. The Nuance CRi Multispectral Imaging System (Cambridge
Research and Instrumentation, Woburn, MA; PerkinElmer, Inc., Hopkinton, MA) is available in
three versions (VX, FX, and EX), which capture MS images in the wavelength ranges of 420 to
720 nm (VX and FX) and 450 to 950 nm (EX). A LCTF acquisition system is used for spectral
imaging with spectral bandwidths of 20 or 40 nm for the EX/FX versions and 7, 10, or 20 nm for
the VX version. The more recent Vectra Quantitative Pathology Imaging System (PerkinElmer,
Inc., Hopkinton, MA) performs MS imaging and automated whole-slide scanning, available in 6
slides and 200 slides versions, using both the same camera. The Vectra captures MS images from
440 to 720 nm and uses a LCTF to capture MS images with a 10 or 20 nm spectral bandwidth.
As summarized in Table 1, the MS microscopy has been used to study both IHC and IF in a
variety of diseases, but it has been predominantly used to identify and quantify cancer biomarkers
in human patients using the Nuance MS system, [69–94] and the Vectra MS system [95–123].
The IHC and IF studies reported below cover both human and animal subjects across all organ
systems [69–128]. The detection of IHC biomarkers using MS microscopy is usually carried out
by performing spectral unmixing of the samples, identifying the spectra of biomarkers that are
similar to the spectra previously recorded in spectral libraries. An example of MSI for spectral
unmixing of IHC stains for detecting biomarkers of follicular lymphoma is shown in Fig. 3.

Fig. 3. Multiple IHC markers in one tissue specimen of follicular lymphoma. MS images
acquired using the Vectra system and software for spectrally unmix each IHC stain component.
(a) Triplex IHC composite image. (b-d) Spectral-unmixed grayscale images of IHC for
CD3, FOXP3, and CD69, respectively. Reproduced from [107]; Creative Commons BY 4.0;
published by Nature (2015).

The advantages of MSI are arguably most prominent for IHC, specifically regarding clinical
translation. Firstly, with respect to the equipment needed, relatively small bands with ability for
high-throughput slide scanning has been somewhat standardized and is commercially available
in Vectra and Nuance. This is important because in much of HSI/MSI research, the technology is
still research-grade, meaning that it is customized, developmental, and potentially cumbersome
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Table 1. HS histopathological dataset summary

IHC/IF Study Feature No. (%) Relevant Research Article References

MS Microscope

Nuance MS System 27 (46%) [69–94]

Vectra MS System 28 (47%) [95–123]

Other/ Unspecified 2 (5%) [124–128]

Molecular Markers

IHC [69–84,86–115,117–125,127]

IF [85,116,126]

IHC and IF [69–72,76,78,86,94,97–100,102,103,109,112–115,117,118,121–125,128]

to deploy. Secondly, there is a clearly defined clinical need: the interpretation of IHC staining
can be variable, user dependent, and often with an ill-defined threshold of immunopositivity
[129]. Next, the data analysis techniques needed to solve the problem are quite rudimentary, with
spectral-unmixing as straightforward and effective algorithms for identifying immunopositivity
in the literature. Finally, there is the added ability of detection and quantification of multiple IHC
stains and antigens in single specimens with some preliminary success.

On the contrary, however, pathology and laboratory medicine departments have not yet widely
adopted standard RGB digital pathology. Therefore, it is unlikely that even more advanced
digitization equipment, whose prohibitive cost has been already described above, would be
widely adopted without convincing merit. The approach would have to be tested in multiple
institutions with all types of stains, imaging parameters, and acquisition systems before it would
ever be able to be clinically utilized and relied upon for routine diagnosis of immunopositivity in
specimens. Therefore, though it is promising, there are numerous and substantial hurdles to the
clinical translation of even this most plausible application of MSI technology.

7. Fluorescence and autofluorescence spectral imaging

Histological specimens can be excited by a specific, narrow band of light, and longer wavelengths
can be imaged with MS or HS microscopy to observe the characteristic emission from the tissue.
AF uses label-free specimens, allowing only endogenous fluorophores to create the measured
signal, but both AF and dye-based fluorescence, such as green fluorescent protein (GFP), can be
used for detecting pathologies. In the work performed by Pantalone et al., lymph node sections
(5 microns thick) from unstained, frozen-section specimens were imaged with 365 nm excitation
light and 375 to 750 nm emission. Lymph nodes with metastatic gastric or colon cancer showed
differences from normal lymph nodes, which was reproducibly validated with multiple observers
[130]. On the other hand, Constantinou et al. implemented a fluorescent slide scanner to image
sections of a human colonic adenocarcinoma xenograft with excitation light of 488 nm that had
detectable AF from elastin and flavin adenine dinucleotide (FAD) despite staining with a relevant
antibody [131–133]. Similarly, Duong et al. developed a MS light-emitting diode (LED) array
used to photo-irradiate tissue specimens, reducing artifactual AF. The appearance of artificial AF
from formalin fixation degrades the ability to detect fluorescent signatures of interest. Therefore,
fixed slices of mammalian brains were treated with the LED array with emissions from UV to IR,
and successful and reproducible removal of artifact AF was observed. Treated IHC-stained slides
were imaged using excitation/emission of 495 nm and 520 to 700 nm, and visible reduction of
artificial AF were observed [134]. Ellingsen et al. demonstrated that using laser excitation of 800
nm, which produces 2-photon absorption at 400 nm, and capturing AF HS images with confocal
microscopy allow the detection of amyloid plaque in cryo-sections of mouse brain [135,136].
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Another study performed by Leavesley et al. employed HS imaging to capture data from
cryo-sections of lung tissue for resolving the fluorescence of GFP [137,138]. Additionally,
Dolloff et al. explored the application of spectral signatures of GFP in tissues for measuring
autophagy [139]. The Leavesley et al. group also developed an excitation-scanning AF HS
microscope imaging system for acquiring microscopic images of thin ex-vivo tissues (<1 mm),
applied to rat organs [140] and human colon cancer [141,142]. Moreover, as shown in Fig. 4,
this group applied the same technique to calculate the properties of FAD, nicotinamide adenine
dinucleotide (NADH), elastin, and collagen from human colonic cancer tissues [143,144]. In
ocular diseases, Dey et al. implemented a tensor decomposition approach to detect age-related
macular generation using AF with a range of excitation and emission wavelengths [145,146].
Additionally, Habibalahi et al. used MS AF imaging to detect ocular squamous neoplasia in
unstained, cover-slipped slides with multiple excitation and emission wavelengths [147].

Fig. 4. Multiple IHC markers in one tissue specimen of follicular lymphoma. MS images
acquired using the Vectra system and software for spectrally unmix each IHC stain component.
(a) Triplex IHC composite image. (b-d) Spectral-unmixed grayscale images of IHC for
CD3, FOXP3, and CD69, respectively. Reproduced from [87]; Creative Commons BY 4.0;
published by Nature (2015).

In summary, there are various advantages and disadvantages of autofluorescence and fluores-
cence spectral imaging methods. The main advantage is that spectral autofluorescence can sense
the concentrations of endogenous molecules in specimens using precise excitation and emission
[143,144]. For example, it can be used to assess the concentration of NAD, FAD, collagen, and
keratin, which have well-known excitation and emission signatures. One major attraction of this
technique is that it works with unstained tissue specimens, so no time is lost by applying different
histochemical stains, which supposes a loss of information. However, there are certain drawbacks
of fluorescent spectral imaging for histopathology. Mainly, the equipment is not standardized,
and most experiments are conducted with research-grade, custom-fitted microscopes that can be
complex and expensive. As most tissues are comprised of numerous endogenous fluorophores,
it is still unknown what wavelengths are best for excitation/emission for certain applications.
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Additionally, the fluorescence signals can be difficult to discern, especially if a stain or label is
also used [148]. Therefore, while spectral autofluorescence imaging may seem promising, there
are many challenges which currently hinder its widespread adoption.

8. Trends in diagnostic research for clinical routine practice

In this section, we summarize the research performed for clinical diagnosis of histological
samples using HSI/MSI. A total of 84 research articles have been analyzed, and the systematic
review of these manuscripts has been sorted according to the different fields within medical
diagnosis, namely hematology, breast, central nervous system, gastrointestinal, genitourinary,
head and neck, and skin. To conclude, we provide a summary table where the main characteristics
of these researches are synthesized.

8.1. Central nervous system

HSI and MSI have been applied for aiding central nervous system (CNS) diagnosis and
characterization, where these technologies have been investigated for the study of brain, nerves,
and some indicators of different diseases. To investigate the normal histology of brain specimens,
Bouzid et al. developed a customized MS microscopic system based on tunable light sources
[149]. Cell nuclei segmentation was performed on a stained rat brain sample, and the results
obtained were compared across 3 to 10 band MS images within the visual range. Ortega et al.
investigated the use of HSI for detection of high-grade brain tumors in H&E stained slides using
a customized push-broom VNIR microscopic system. Their results suggest that the differences in
the spectral signatures of normal and tumor areas within the slides are sufficient to automatically
provide a prediction of the diagnosis using supervised classifiers, such as SVM or NN [150,151].
Nerves are also a significant constituent of the CNS. The automatic identification and

quantitative morphometry of nerve fibers can complement the clinical and histopathological
evaluations of injured nerves in humans. Li et al. proposed an automatic segmentation of
unstained nerve fiber specimens using HSI, and relying on RGB images of stained samples as
ground truth. They found HSI successfully provided morphological parameters in unstained
nerves, such as myelin thickness and area [152]. Additionally, the fiber diameter, perimeter,
area, and myelin thickness and area were extracted in a later study, showing agreement with the
manually labeled ground truth [153]. The conclusions of these studies suggest that HSI may be a
promising analysis tool for unstained nerve sections, making possible a rapid characterization
of nerve fibers compared to traditional techniques. On the other hand, in order to investigate
pathological nerve samples, spinal cord tissue samples from mice were microscopically analyzed
by Vazgiouraki et al. using MSI to develop a tool for diagnosis of spinal cord myelin loss
associated with multiple sclerosis. The MS microscopic system used a custom-made rotating
filter wheel, and the authors concluded that the maximum difference observable between normal
and demyelinated lesion areas was at 500 nm [154]. Additionally, Kopriva et al. demonstrated
the contrast enhancement within an unstained sample of sciatic nerve fibers from a mouse using
nonlinear unsupervised segmentation [155].

The study of samples from CNS constituents can reveal the presence or progression of different
diseases. In such context, More et al. studied the use of HSI as a potential tool for early detection
of amyloidopathy in Alzheimer’s disease through statistical analysis of the spectral signatures
from histological mouse retina and brain samples obtained with a push-broom VNIR microscopic
system [156]. Diabetes can cause degeneration of the blood vessels in the eye, specifically in
the retina, which can lead to blindness. To investigate this, Li et al. performed studies with
control group, untreated, and treated diabetic rats to study HS analysis techniques of retina
sections. The spectral signatures showed relevant differences in the range of 636 to 722 nm
between the three groups, which motivates the quantitative study of the spectral differences
for the evaluation of the therapeutic efficacy of drugs [157–160]. Finally, to investigate the
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detection of the Newcastle disease virus infection, which produces a neurological condition
known as spongiosis, Abeysekera et al. obtained infected specimens from poultry [161]. In this
work, a processing framework combined a customized feature extraction technique based on
statistical indicators obtained from the MS data and supervised classifiers, SVM and LDA (Linear
Discriminant Analysis), and the results demonstrated that MS data outperformed RGB data.

8.2. Head and neck

Cancer of the head and neck (H&N) can be diverse due to the anatomical diversity of this region.
In the oral cavity and upperaerodigestive tract, approximately 90% of cancers are squamous cell
carcinoma (SCC) [162]. Ou-Yang et al. combined transmission and fluorescence based HSI
using a push-broom system with hundreds of VNIR spectral bands for detection of oral SCC
in 34 patient samples. The cell nuclei were identified in the basal-cell layer manually and a
five-fold method combined spectral and morphological features to yield good performance on the
testing patients [163]. In order to investigate the detection of SCC after metastasizes, Akbari et al.
used SVM supervised classification for identifying human oropharyngeal SCC cancer cell line
xenograft that metastasized into lung and lymph node tissues in mice [164]. The SCC detection
was performed macroscopically within H&E slides without a microscope.

The thyroid gland rests in front of the trachea in the neck, and masses can often be visually
observed by the patient. To assess if a thyroid mass is benign or malignant, a fine needle aspiration
(FNA) biopsy is performed and microscopically investigated, and HSI/MSI may be able to
increase diagnostic ability. Mansoor et al. used MS histology for detecting non-cancerous thyroid
and parathyroid adenomas in FNA, using 8 cases of follicular adenoma and 7 cases of parathyroid
adenoma. Papanicolaou-stained cells were manually annotated, and cell-based classification was
performed with a basic neural network [165]. Thyroid cancer biopsies were also studied by Hahn
et al. using 100 cases of papillary thyroid carcinoma (PTC) and benign goiter (BG), developing
a classifier to segment MS images and classify each region as background, PTC, or BG with
successful results [166], as shown in Fig. 5. Additionally, the experiments were performed
with different number of training cases, from 10 to 40 cases, without observing significant
improvements in the classification results. However, the authors concluded that nuclear features
offer improvement over nuclear and cytoplasmic regions when developing a classifier [166].
Finally, He et al. incorporated Muller matrix polarization HSI to distinguish papillary thyroid
carcinoma tissues in unstained histological sections [167].

Regarding the detection of thyroid nodules in FNA smears, several works performed by Shah et
al. investigated MSI analysis techniques. After manually labeling the target cells to be detected,
the authors performed a watershed image segmentation of the cells [168], finding that MSI
yielded significantly fewer false positives compared to conventional image analysis. Furthermore,
Wu et al. performed a minimally supervised band selection and reduction method of thyroid
FNA to increase contrast of RBCs using histogram-based local descriptors evaluated by three
distinct metrics [169]. On the other hand, Gabriel et al. used unsupervised k-means clustering
for classification of cells in FNA thyroid lesion smears suspicious for cancer [170]. Lastly, Wu et
al. also presented a conditional random field model segmentation scheme for classification of
different thyroid nodules. Hyperplastic nodules, PTC, and follicular neoplasm were segmented
successfully, and it was concluded that MS features offered increased accuracy compared to
conventional image analysis [171–174].

8.3. Breast

Several approaches have been proposed in the literature for breast cancer identification in
histological slides using HSI/MSI. Boucheron et al. performed a benign versus malignant
nuclei classification using MSI, and compared the results with the ones obtained using 3
different synthetic RGB images generated from the MS images [175]. The authors did not
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Fig. 5. Thyroid FNA biopsies with Papanicolaou stain in RGB (left) and classification
results with MSI spectral unmixing (right). (a,b) case of PTC. (c,d) case of benign goiter.
Background (yellow), PTC (red), benign goiter (green), out-of-focus or crowded areas (blue).
Reproduced from [166]; Creative Commons BY 4.0; published by ACS (2012).

find a significant boost on the classification using MSI compared to conventional RGB image
processing. Nevertheless, Qi et al. also explored the utility of MSI for histological breast
cancer diagnosis, finding an improvement in MSI data exploitation compared to RGB [176,177].
Although the instrumentation of both approaches was similar, there were some differences in
the experimental procedures, especially in the type of staining, the magnification and the image
analysis approaches. While Boucheron et al. used H&E stained samples acquired with 40×
magnifications, Qi et al. employed hematoxylin-only specimens acquired with 10×magnification.
Even if the contradictory conclusions can be caused by the differences in magnification or
stain, the image analysis frameworks present several differences. Both studies used supervised
classifier approaches, but while Boucheron et al. used the raw spectral bands of the MS image as
features for classification, Qi et al. used the features, extracted from the MS image, that were
supposed to maximize the underlying differences between normal and tumor tissue samples.
More experimentation should be performed in this research line to provide a more relevant
discussion about the importance of the staining, magnification, and the processing framework for
these applications.
Beyond the discrimination between normal and tumor tissue, more specific approaches have

been recently proposed to identify ductal carcinoma in situ (DCIS) or mitotic cells within breast
histological slides. In one approach, Khouj et al. proposed the detection of DCIS with HSI using
two types of specimen preparations of breast biopsies: unstained and H&E-stained [178]. Using
as inputs some pixels manually annotated by pathologists, a semi-supervised k-means approach
was applied to both types of images, suggesting a good discrimination between normal and tumor
regions even in unstained samples. In Fig. 6, the spectral signatures of DCIS and normal tissue
samples are depicted. Additionally, mitotic cells counting is an important indicator in breast
cancer grading. Roux et al. proposed a contest for detecting mitotic cells within H&E stained
breast cancer specimens. In this contest, three types of datasets were released: two of them
composed of conventional RGB images, and a single dataset composed of MS images. In this
challenge, the detection of mitotic cells was suggested to be superior to conventional imaging
approaches [179]. Nevertheless, some authors have kept working in this dataset. Malon et al.
proposed a CNN framework for mitotic cell detection, but the authors claimed that more images
were necessary to successfully train deep learning models [180]. Furthermore, by using different
band selection methods and different supervised classifiers, such as SVM, MLP (Multilayer
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Perceptron), LDA, Irshad et al. [181,182] and Lu et al. [183] were able to outperform the
classification performance on this dataset stated by previous groups. Irshad et al. also found
improvements in performance when exploiting the MS information compared to only the RGB
information.

Fig. 6. Spectral signatures of normal breast tissue (blue) and DCIS (red). Reproduced from
[178]; Creative Commons BY 4.0; published by Frontiers (2018).

8.4. Gastrointestinal

The use of HSI/MSI has been also employed for gastrointestinal disease detection, where
colorectal cancer is the most prominent application. In colorectal cancer diagnosis, an appropriate
identification of different tissue constituents within pathological slides can help in tracking
disease progression and improve the selection of an optimal treatment.
The preliminary studies for colorectal cancer detection using HSI/MSI were limited to

discrimination between benign adenoma and malignant carcinoma tissues within H&E stained
colon histological slides. To this end, Masood et al. employed spatial features extracted with
local binary patterns, and then colonic specimens were classified using a SVM classifier [184].
Another approach, proposed by Maggioni et al., consisted of an initial segmentation of the MS
images into nuclei, cytoplasm and background, and subsequently, nuclei were later classified
into benign or malignant using a partial least squares (PLS) classifier based on morphological
features [185]. A similar processing framework was followed by Rajpoot et al. and Masood et al.,
consisting of an initial segmentation of colon cell images into nuclei, cytoplasm, lumina propria
and lumen, followed by the extraction of multiscale morphological features and supervised
classification. Using this common framework, Rajpoot et al. employed a SVM classifier [186],
while Masood et al. employed PCA (Principal Component Analysis) and LDA algorithms [187].

Beyond binary classification between benign and malignant colon tissues, a more detailed
tissue identification scheme was followed by several authors, aiming to detect different types of
cancer cells within colon samples: carcinoma, intraepithelial neoplasia, and benign hyperplasia.
The results from Chaddad et al. suggested the utility of texture features of MS images for
classification [188–190]. An example of this technique is demonstrated in Fig. 7. Using the same
dataset, Peyret et al. demonstrated that exploiting morphological features in MSI improves the
performance of panchromatic images in colon tissue classification [191,192]. Using a hybrid
method which combines unsupervised clustering and supervised method using PCA and logistic
regression, Nakaya et al. detected four stages of colon cancer progression from patients with
ulcerative colitis, namely cancer, non-cancer, low grade dysplasia and high grade dysplasia [193].
In addition, Lao et al. used MS histology to directly quantify the optical signal obtained from
in-situ hybridization (ISH) of colorectal adenocarcinoma tissues and counter-stained nuclei with
methyl green. For the ISH, a small segment of microRNA was used to target cancer differentially,
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compared to low-grade and high-grade neoplasia and normal tissues [194]. In a later work,
Chaddad et al. also revealed that the quantification of the spatial heterogeneity of the pathological
tissues can help to detect the progression from benign cell proliferation to malignant lesions
[195]. Also, Haj-Hassan et al. performed comparative research that demonstrated the boost in
classification performance when using CNNs instead of feature-based approaches [196].

Fig. 7. Segmentation of four types of tissue within colon pathological slides. (a) Stroma (b)
Benign hyperplasia, (c) Intraepithelial neoplasia, (d) carcinoma. Reproduced from [190];
Creative Commons BY 4.0; published by Frontiers (2018).

Recently, Awan et al. improved the research in colorectal cancer detection within H&E
pathological slides with two relevant innovations: a large patient dataset (n= 151) and the
exploitation of information within near-infrared spectral bands (beyond 1,000 nm). The authors
performed the classification in two different schemes: a two-class classification (normal versus
tumor) and a four-class classification (normal, tumor, hyperplastic polyp and tubular adenoma
with low-grade dysplasia). Using different types of feature extraction, band selection methods
and SVM classification, the authors found that the use of a greater number of spectral bands
significantly improves the discrimination of the different classes. Furthermore, they found that
the use of near-infrared spectral bands improved the classification [197].

Extending beyond detection of primary colon cancers, Kopriva et al. applied MS histology for
the detection of colorectal adenocarcinoma metastasis in the liver. Although the application is
quite novel and the classification result was assessed with IHC staining as ground truth, the study
was limited to a single patient, thus the results cannot be considered conclusive [198].

In addition to colorectal cancer detection, only pancreas, liver, spleen, and esophagus have been
explored by means of HS/MS histological analysis. The first computer-aided tool for pancreas
diagnosis was motivated by the drawbacks of conventional techniques for the identification of
elastic and collagen fibers within pathological slides, which usually requires the use of Verhoef’s
Van Gieson (EVG) staining, which is a more complex and expensive procedure compared to
standard H&E staining. To deal with such limitations, Septiana et al. successfully exploited the
spectral information within pancreatic ductal carcinoma H&E stained slides, showing a good
capability of this technology to identify collagen and elastic fibers samples [199]. Similarly,
motivated by the difficulty of distinguishing fibers and cytoplasm in H&E slides, Hashimoto et
al. used a pixel-wise bag of features classification method over H&E stained liver samples by
employing simultaneously spatial and spectral features for detecting five liver tissue components:
nucleus, sinusoid, lymphocytes, fibers and cytoplasm. In this context, HSI was shown to
outperform conventional RGB imagery [200]. Beyond the segmentation of tissue constituents,
Wang et al. evaluated the ability of microscopic HSI to early detect bile duct carcinoma within
H&E stained rat liver samples [201]. In this research, the authors were able to quantitatively
measure the tumor areas in the biopsies at different time points through the analysis of the HS data
with a feature extraction method based on the morphological watershed algorithm followed by
SVM classification. On the other hand, Kopriva et al. applied a contrast enhancement technique,
previously mentioned with application on sciatic nerves, for the evaluation of unstained spleen
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specimens [155]. Finally, Bautista et al. implemented MSI of an H&E stained slide from
esophagus tissue to enhance the visualization of eosinophilic esophagitis [202]. The nuclei of
eosinophils were automatically detected using spectral transmission PCA and a thresholding
method. The authors concluded that this approach allowed tissue classification despite the nearby
staining attributes, which facilitates a better specimen analysis compared to conventional RGB
imagery.

8.5. Genitourinary

The genitourinary section comprises the organs of the urinary system, such as kidney and bladder,
and both male and female reproductive organ systems. Prostate cancer is the second leading
cause of cancer deaths for men [203]. It has been proposed in recent literature that histology
using MS spectral analysis may improve the diagnosis of genitourinary cancers, such as cervical,
prostate, ovarian, and bladder cancers.

Distinguishing between normal and cancerous cervical cells under Papanicolau stain requires
the examination of texture, size, shape and contextual information of cells. For this reason, Zhang
et al. proposed a method for the automatic segmentation of cervical cell nuclei that can automate
the identification of the relevant cells to be examined carefully among other types of cells that
are present in the specimens [204]. Another approach for identifying abnormal cervical cells that
may be malignant in Papanicolau smears was implemented using cosine correlation analysis to
exploit the differences of spectral signatures [205]. For the detection of cervical cancer cells in
Pap smears, a segmentation method was applied to MSI based on a Gaussian mixture model
(GMM) for unsupervised nuclear segmentation, and a similarity distance measurement was
developed to quantity the similarity between the segmentation results and the original data, which
were able to reveal intra-spectrum information achieving high nuclear segmentation accuracy
despite wavelength reduction [206]. Another cervical cancer study that employed HSI for the
discrimination of normal, precancerous, and cancerous cells demonstrated that it is possible to
correctly classify high-grade precancerous cells, as shown in Fig. 8, but low-grade precancerous
cells are more difficult to automatically distinguish from normal cervical cells [207]. The Mueller
matrix provides a comprehensive characterization of the polarization properties of specimens,
and contains information regarding optical properties of biological tissues that can be used for
diagnosis. Using this principle, He et al. successfully analyzed the Muller matrix to distinguish
cervical carcinoma tissues within unstained histological sections [167].
There is only a single research study in the literature that deals with HSI applied to ovarian

cancer. After the extraction of a dataset carefully annotated by pathologist attending to cell
morphology, Nakaya et al. suggested HSI as a suitable technology to differentiate between
normal and cancer cells by using both supervised and unsupervised techniques [193].

For prostate cancer detection, several groups have implemented MSI for H&E stained prostate
cancer pathological samples. Tahir et al. successfully performed a round-robin Tabu search
algorithm along with a nearest neighbor classification method for classifying prostate cancer,
benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and normal stroma in MS
histological images of H&E stained prostate specimens from nearly 600 cases [192,208–210].
Additionally, Khelifi et al. worked in the same task for performing a spatial-spectral feature
extraction approach and SVM classification for the same four types of prostate H&E MS images
[211]. Akbari et al. used spectral feature based SVM for detection of human prostate cancer
in H&E slides imaged macroscopically [212]. On the other hand, for automated detection of
glandular structures and nuclei in prostate cancer H&E slides using MSI, Zarei et al. proposed a
method combining the PCA algorithm, to generate an artificial RGB image, and the k-means
unsupervised segmentation [213].

With the goal of early detection of bladder cancers, MS examination of urine samples could lead
to improved diagnosis and follow-up. Angeletti et al. proposed a genetic algorithm combining
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Fig. 8. (a) Spectral plots of Papanicolaou-stained cells from cervical Pap smear: normal,
low-grade (LG), high-grade (HG) and squamous cell carcinoma (SCC). (b-d) Classified HS
images of normal (green), LG (yellow), and HG/SCC (red) cells. (e-f) RGB image with
annotation of cervical SCC (e) and HS results of the automatically extracted and classified
HG/SCC nuclei (f). Reproduced from [207]; Creative Commons BY 4.0; published by ACS
(2008).

spatial features and MS spectral analysis of Papanicolau-stained cells in urine specimens with
promising sensitivity and specificity values for detecting bladder cancer cells in urine specimens
[214].

8.6. Hematology

For the diagnosis of a wide variety of diseases, blood sample examinations are usually performed
by skilled hematologists through microscopic analysis and evaluation of blood smears. Although
automatic hematological analyzers are available to perform this task, pure optical technologies
and imaging processing tools are shown as cost-effective alternatives to this end. Furthermore,
hematological analyzers are not able to consider information about cell morphology. To aid
researchers and physicians in the analysis of blood samples, HS/MS technologies are proposed as
an alternative to conventional RGB imagery, whose main limitations are the low capabilities to
handle both the uneven staining of samples and the differences in the instrumentation used to
digitize the samples [51].
In the field of RBC analysis, Li et al. evaluated the feasibility of exploiting HSI for RBC

counting. After conducting the RBC counting using uniquely spatial or spectral features of blood
cells, the authors found an improvement in the under-counting and over-counting rates when they
performed the image analysis using both types of features together [215,216]. Some authors
have also proposed HSI as a promising technology for white blood cells (WBCs) segmentation.
After the careful annotation of nucleus, cytoplasm, erythrocytes and background within blood
smears specimens by pathologists, different authors have demonstrated a successful differentiation
between the aforementioned cell parts based only in their spectral profiles. While Guo et al.
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employed the SVM classifier [217], Guan et al. performed the same task with SID (Spectral
Information Divergence), k-means and SAM (Spectral Angle Mapper) algorithms [218]. Besides
the identification of blood cells, morphological characterization is further important for diagnosis,
especially in WBCs, which present a complex taxonomy with more than 20 subtypes. For
this reason, Li et al. proposed a method to automatically extract morphological features of
leukocytes from blood smear samples by using HSI. After leukocyte segmentation, morphological
parameters such as cytoplasm area, nuclear area, perimeter, nuclear ratio, form factor, and solidity
were extracted from the segmented images [219]. Additionally, due to the complexity of contents
of bone marrow smears, the identification of WBCs is even more challenging in such type of
samples. Wu et al. presented an approach to identify WBCs within bone marrow samples,
showing the capabilities of this technology to identify WBCs in both high and low magnifications
(100× and 10×) [220]. Finally, another interesting approach in the context of blood cell detection
was proposed by Verebes et al., who proposed an approach to analyze blood samples without
prior sample preparation, i.e. with no requirement of stains. The authors suggest the capability
of darkfield HS microscopy to identify different types of red blood cells (ordinary RBCs, stacked
erythrocytes), WBCs, and neutrophils within unstained samples [221], which can lead in a
reduction in the cost and time required for blood sample preparations.
In addition to identification and examination of RBCs and WBCs, HS/MS analysis of blood

samples has been also used for the identification of diseases. In leukemia analysis, Li et al. were
able to identify leukemic cells in blood smears based only on their spectral differences from
RBCs [222]. Additionally, Wang et al. proposed a method to differentiate between lymphoblasts
and lymphocytes, which is an important task in diagnosis of acute lymphoblastic leukemia (ALL)
[223]. Due to the high similarity between lymphoblasts and lymphocytes, the examination of
these samples is challenging by both visual examination and RGB analysis. The authors employed
a neural network for classification, using three types of inputs: spatial features, spectral features
and spatial-spectral features. The results of this study suggest that the exploitation of both the
spatial and the spectral features significantly improves the quality of the classification. Fig. 9
shows some RGB images of lymphoblasts and lymphocytes, and the classification maps extracted
from this study.

Fig. 9. Differentiation between lymphoblast and lymphocytes. Top: conventional mi-
croscope images. Bottom: Identification of lymphoblast (red) and lymphocytes (green).
Reproduced from [223]; Creative Commons BY 4.0; published by OSA (2017).

In another application, some authors proposed the use of MSI to identify malaria in blood smear
samples by using a multi-mode LED illuminated microscope. These authors performed a PCA
transformation of normal blood smears and their counterpart infected by malaria. Their findings
indicate that the parasite presents differences in spectra compared to normal blood samples in
the spectral range from 590 to 700 nm, making the identification of malaria possible using such
information. The use of MSI can save time in malaria detection compared to traditional methods
[224–227].
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Finally, the use of HS/MS analysis of blood samples is not limited to cell examination. Qian
et al. presented a proof-of-concept system for the visualization enhancement of vessels within
histological slides, which consisted in the application of a spectral correction technique to the MS
image [228]. This pre-processing algorithm showed a reduction in the variance of the spectral
signatures of the specimen, and it was shown as a promising method to be applied prior to
subsequent segmentation and classification of the cells within histological samples.

8.7. Skin

Mammalian skin is comprised of epithelial cells forming a stratified squamous epithelium
above an inner layer that contains connective tissue, glands, and vessels. Normal histological
skin samples from rats were studied by Li et al. to enhance the visualization of different
microanatomical skin structures. Different combinations of wavelengths were used to generate
false color images for visual inspection, and 3D surface views of skin sections were generated
by combining spectral and textural information from HS data [229]. Normal skin also contains
melanin to protect from UV exposure, and its quantification can be of clinical utility. Melanin
identification was performed in H&E sections directly using MSI by Kalleberg et al., comparing
the results obtained with the traditional gold standard Fontana Masson (FM) silver-staining,
which directly targets melanin [230]. It was discovered that spectral unmixing of MSI can
identify melanin in H&E sections directly and more accurately, without the need of an additional
FM staining. Additionally, spectrally separated MSI of FM stains allowed even more sensitive
identification of melanin, which led the authors to conclude that FM staining was not required
and that MSI would yield faster and more accurate results [230]. The ability of HSI for melanin
detection was further illustrated by Wilson et al. in unstained specimens of melanocytic lesions in
the skin (cutaneous) and the eye (conjunctival) using PCA and false-color representations [231].
Melanoma is a malignant form of skin cancer arising in melanin-producing melanocytes. In

this field, Gaudi et al. used a HS push-broom microscope to evaluate over 100 H&E sections
from different patients with melanocytic lesions. A clustering method using spectral Euclidean
distance classified the data into 12 clinically-relevant spectral classes that were correlated with
benign and malignant melanocytic lesions [232]. Melanocytic skin cancer has been studied using
HSI microscopic systems to capture H&E pathological samples for the detection of normal skin,
benign nevus, and malignant melanoma samples, taking into account the minimum correlation
coefficient between their spectra [233]. This study also found that the use of higher magnifications
can reveal more spectral differences between the diverse samples than lower magnifications, due
to the ability to observe intracellular and extracellular components. On a cellular level, Wang et
al. proposed a custom spatial-spectral SVM classification method for the analysis of H&E skin
samples to detect malignant melanoma cells from normal melanocytes with high specificity and
sensitivity [234].

8.8. Summary table

In Table 2, we show a summary of the main applications of HSI/MSI for diagnostic research
targeting clinical histological practice, which is intended to provide readers with a quick
overview of the current usage of HSI/MSI in histopathological diagnosis assessment. The
table is organized by different fields, following the same structure previously presented for
this section. The information of the table is related to the number of patients involved in the
study, the magnification used for specimen’s acquisition, the type of staining and the details
on the instrumentation, and the image processing techniques used for the analysis of data.
Specifically, the instrumentation details consist of the type of technology of the HS/MS camera,
the spectral range, the spatial resolution, and the number of bands. As can be observed, not every
field in the table was available for every article. For this reason, and following the PRISMA
recommendations, we emailed every author whose information was missing. In the cases that we
got a reply with the information, the table was updated.
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8.9. Concluding remarks

In this section, we summarize the current status of the usage of HSI/MSI technologies for
histopathological analysis and diagnosis. According to the results depicted in the analyzed
research articles, it can be concluded that HSI/MSI technologies are able to succeed in histological
disease detection. The range of applications whichmake use of HSI/MSI diagnosis researchwithin
pathological slides is wide, and mostly focused in the detection of cancer. There are some positive
outcomes on the use of HSI/MSI technologies for histological analysis. First, researchers have
found differences in spectral information between diseased and normal tissue to be discriminant
enough to detect some illnesses (e.g. [150,151,156] or [217], among others). These results
suggest that the spectral signatures of tissues can be a complementary source of information for
disease detection in histopathology, where the disease identification is commonly based on the
morphological analysis of tissue components. Second, the advantages of HSI/MSI compared to
conventional RGB digitized slides have been reported in various clinical research applications
[161,176,177,183,200,202]. Nevertheless, in the computational pathology community, there is
a need to further quantify such improvements in disease detection compared to conventional
RGB digitized slides. Additionally, most investigations on the use of HSI/MSI technologies
were performed in applications where conventional RGB digital pathology has been proven to
be successful. In order to really prove the utility of HSI/MSI, future investigations should be
highly focused in diseases in which current diagnostic procedures are not effective, thus allowing
the benefit of HSI/MSI to be demonstrated. Third, some researchers suggest the utility of the
analysis of unstained samples [155,167,178,224–227,231]. In most current state-of-art research
using HSI/MSI, histological dyes are used for the observation of samples. Such dyes modify
the spectral response of tissue to light, and thus transform the spectral information of the tissue.
For this reason, the future HSI/MSI analysis should also be focused in the exploitation of the
spectral information of tissues with no external dyes. Finally, the real capabilities of HSI/MSI in
diagnostic detection are likely hidden by the broad options for image processing information
retrieval techniques. In most of the research carried out at this moment, different processing
techniques are used with successful results.
There may be some challenges to the adoption of MSI/HSI for digital pathology in a clinical

setting. Firstly, the spectral acquisition equipment is unstandardized, complex, research-grade,
and expensive. The imaging technology is inconsistent between research groups. It is impossible
at the moment to know which imaging parameters, wavelengths, or spectral resolution are best for
each application. The experimental results reported in the literature are difficult to compare since
each of them are usually performed using a single HS camera with data from a single institution.
Additionally, the CAD and analysis algorithms are often different. Most CAD methods also use
custom software, which is not suitable for easy clinical deployment. It is difficult to determine
if experiments are performed objectively or contain bias. Additionally, publication bias may
be present in the literature, which yields only positive results, and the negative results remain
unpublished. Moreover, it is extremely difficult to extrapolate the results obtained in one particular
diagnostic application in one specific organ system to another application/organ, mainly due to
the heterogeneity of the spectral properties of the different tissues. In this sense, to generalize and
standardize a methodology capable of achieving accurate results for several different frameworks,
more research is required, exploring several organ systems and applications, performed in large
experiments, employing a wide spectral range HS system. Finally, one major challenge that
cannot be ignored is that storage size of data is greater than RGB digital pathology, which
is already a challenge with no straightforward solution. The use of HSI/MSI for digital and
computational pathology is promising and is still in its infancy, requiring more investigation and
creative solutions to the problems listed above for clinical translation.
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9. Discussion

In this manuscript, the most relevant aspects of HSI/MSI for the analysis of histopathological
specimens have been systematically reviewed. To this end, we employed the PRISMA guidelines
for systematic reviews to provide a rationale about the motivations of performing this review and
details about how the review process was performed. We have analyzed the manuscripts selected
for this review in four major categories: digital staining and color correction, autofluorescence,
IHC, and histology clinical diagnostic research. Additionally, papers related to the development
of HSI/MSI instrumentation targeting the acquisition of histological samples were also selected.
We considered such research out of the main scope of this manuscript, and we only provided
a brief overview of this topic. The main goal of this manuscript is to provide readers with the
current context of the applications of HSI/MSI in this field and to illustrate the main limitations
and challenges for future research.

We have shown the current status of color correction and digital staining of histological samples
using HSI/MSI. First, together with image analysis techniques, HSI and MSI have demonstrated
to be able to correct the variations on the digitized slides among different laboratories. Such
differences are mainly caused by the differences in the instrumentation and in the histopathological
process, e.g., differences in the staining conditions. For these reasons, MSI and HSI are presented
as a suitable technology to deal with inter-laboratories variability of digitized slides, which is
one of the main challenges in computational pathology. Nevertheless, as stated before, HSI/MSI
instrumentation is expensive and not standardized. Therefore, more research should be done
to determine the cost-benefit trade-off on the use of HSI/MSI for improving intra-laboratory
variability or for digital staining. Second, HSI/MSI has been also applied to perform digital
staining of samples. In this field, one trend consists of applying image processing techniques
to standard H&E samples to highlight tissue structures that are barely visualized using such
staining. The other trend is to directly use image processing techniques for synthetic staining
of unstained samples, avoiding the physical staining. Although the research regarding digital
staining is promising, the number of works in this field is still limited and more research should
be conducted.
Autofluorescence using HSI techniques was demonstrated for measuring emission signals

from intrinsically fluorescent tissue components. This technique was utilized for applications
such as measuring concentrations of molecules within tissue and differentiating strong emission
signals of exogenous fluorophores, such as GFP, from more subtle, intrinsic autofluorophores.

In the field of IHC, MSI is a well-established research technology, where both the instrumenta-
tion and the imaging processing techniques have been commercially standardized. The main
goal of MSI in this field is the identification of different biomarkers within a specimen, which
has been achieved, even in cases of multiple staining in a single specimen, by applying spectral
unmixing techniques. Commercial instrumentation and analysis software are available for IHC
applications. However, multi-institutional, large patient studies should be performed.
Finally, the main focus of this manuscript details clinical diagnosis research applications of

HSI/MSI in histopathology. Given the research works summarized, we conclude that HSI/MSI is
useful for the identification of diverse diseases and tissues, where cancer detection is the most
common application. The instrumentation strongly varies among different studies. It is not clear
which instrumentation parameters are more appropriate for HSI/MSI histological analysis. The
most important challenge is to determine which spectral range is more informative. Regarding the
spectral range, most of the studies covered in this systematic review are restricted to wavelengths
below 1,000 nm. The exception is the research performed by Awan et al., whose results suggest
an improvement in performance of the classification of colon cancer tissues when information
from NIR bands was also incorporated [197]. Thus, the exploration of the performance of the
spectral range beyond 1,000 nm is a challenge in HSI/MSI. Additionally, for the full exploitation
of the spectral range, it should be taken into account how different stains limit the spectral range
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of the sample [235]. Furthermore, there are substantial differences among data analysis methods
across the different studies. Most approaches target automated classification of different types of
tissues or diseases using machine learning techniques, and others deal with image visualization
enhancement of different tissue constituents. In order to reach an agreement about an adequate
common framework for HSI/MSI data processing for histopathological applications, there is a
need for publically available datasets, where a fair comparison across different methods could
be performed. In this context, to allow a fair comparison between different studies, we strongly
recommend future authors in this field to report in their manuscripts the details regarding the
number of patients involved in the study, the type of staining, the magnification, and details of
the instrumentation, namely spectral range, spectral resolution, and number of bands. Most
importantly, the experimental design of the papers should minimize bias, especially in machine
learning approaches, i.e. performing data partitions with independent patient data for testing.

Although promising results have been obtained using HSI/MSI technology for histopathological
diagnosis, there are still challenges to be investigated. There are several studies that point out that
HSI/MSI are able to outperform standard RGB for disease detection [161,176,177,183,200,202].
However, HSI/MSI technologies are associated with unique challenges, such as large data storage,
expensive processing requirements, and whole-slide-imaging acquisition. These problems are
already solved in conventional RGB digitize slides, where obstacles related to WSI and image
processing are well-established. For this reason, to state if HSI/MSI has a future in computational
pathology, more performance comparisons should be carried out to definitively demonstrate the
suggested superiority of HSI/MSI for disease detection.

Finally, one of the most promising fields for future research in HSI/MSI for histopathological
applications is the exploitation of unstained samples. The use of unstained samples is mainly
motivated by the fact that the stains usually employed for the manual sample examination reduce
the spectral range of the samples [235]. In the case of H&E, this staining limits the spectral
response of the specimens to the visible spectral range, i.e. to wavelengths between 400 and
750 nm. With unstained specimens, there is the possibility to exploit information in a wider
spectral range, which may provide more information about some tissue constituents. For example,
spectral information about collagen or lipids are more evident beyond 800 nm, and cell fuel
sources that are upregulated in certain diseases states, such as FAD and NAD, have spectral
responses from 300 to 500 nm [4,144]. Theoretically, these signals would still be present in
stained specimens, but they may have been washed out by the strong visible signals from stains.
In this systematic review, we found some successful diagnosis applications using unstained
samples [152,153,155,167,178,221,224–227]; however, the influence of staining on the spectral
response of tissue should be further quantified in the future.
In this manuscript, we have focused on the current status of HSI/MSI for histopathological

applications. However, as stated in the introduction, there are other spectral imaging techniques,
such as RS, FTIR spectroscopy or fluorescence spectroscopy techniques, which can be used
for similar clinical purposes. The main differences between those technologies are in the
instrumentation and sample preparation. On the one hand, the instrumentation used in RS, FTIR
spectroscopy, and HSI/MSI is not standardized and is usually expensive, which makes their
integration difficult in clinical environments. HSI/MSI requires less time for data collection,
and the spatial resolution is higher. On the contrary, the molecular detection in RS and FTIR
seems to be more accurate. Also, the processing framework on RS and FTIR spectroscopy seems
to be more straightforward, and focused in the biomarker identification, while the processing
frameworks in HSI/MSI are usually based on empirical machine learning approaches. On the
other hand, fluorescence spectroscopy techniques require both specialized instrumentation and
additional sample preparation. There is a tradeoff between advantages and disadvantages of
different spectral imaging modalities for histological applications, and also for generic biomedical
applications. However, there is no current research about comparisons between different spectral
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imaging technologies, and which ones are more suitable for clinical environments. This problem
is still valid for applications beyond the clinical context, where only a few researchers have
focused their work in comparing the performance of different spectral imaging technologies
[236,237]. There is a current need for the spectral imaging community in the biomedical field
to perform a methodological comparative study of different imaging modalities for diagnostic
applications. After such investigations, the community will be able to make a more informed
decision about which spectral technology is more appropriate for the clinical environment, taking
into account both cost-efficiency and the benefits for clinical diagnosis.

In conclusion, this paper analyzed the current status of HSI/MSI for histopathological analysis
of biomedical samples. On the one hand, in the field of IHC research, the use of MSI is currently
established as a technology demonstrated to be useful for evaluation of biomarkers. On the
other hand, the results pointed out by researchers for autoflorescense and for histopathology
diagnostic research were demonstrated to be promising, but these technologies still present
several challenges. In the field of color correction, HSI/MSI is presented as a suitable technology
for dealing with the inter-laboratory variability of digitized slides. Finally, digital staining of
samples is presented as one of the most promising future trends for HSI/MSI in histological
analysis, either for the analysis samples with no requirement of physical stain, or to digitally
improve the visualization of tissue structures within stained slides that are difficult to identify
with conventional stains. HSI/MSI should be further investigated to be proven as an effective and
accurate alternative to conventional technologies for digital and computational pathology.
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Appendix 1

Table 3. Acronyms

AF Autofluorescence LED Light-emitting diode

ALL Acute lymphoblastic leukemia LR Logistic regression

AOTF Acousto-optic tunable filters MED Minimum euclidean distance

BG Benign goiter ML Maximum likelihood

cGAN Conditional generative adversarial network MLP Multilayer perceptron

CNN Convolutional neural network mRMR Minimum redundancy maximum relevance

CNS Central nervous system MSI Multispectral imaging

DCIS Ductal carcinoma in situ MT Masson’s trichrome stain

DT Decision trees NADH Nicotinamide aenine dinucleotide

EM Electromagnetic NCBI National Center for Biotechnology Information

EVG Verhoef’s Van Gieson staining NIH National Institutes of Health

FAD Flavin adenine dinucleotide NIR Near-infrared

FCM Fuzzy c-means NN Neural networks

FE Feature extraction PCA Principal component analysis

FLDA Fisher linear discriminant analysis PICOS
Participants, interventions, comparisons,
outcomes and study design

FM Fontana Masson silver-staining PLS Partial least squares

FNA Fine needle aspiration PRISMA
Preferred reporting items for systematic
reviews and meta-analyses

FTIR Fourier-transform infrared spectroscopy PTC Papillary thyroid carcinoma

GA Genetic algorithm RBC Red blood cell

GFP Green fluorescent protein RF Random forests

GMM Gaussian mixture model RGB Red, Green, and Blue

H&E Hematoxylin and eosin RS Raman spectroscopy

H&N Head and neck SAM Spectral angle mapper

HSI Hyperspectral imaging SCC Squamous cell carcinoma

ICA Independent component analysis SFDI Spatial frequency domain imaging

IF Immunofluorescence SID Spectral information divergence

IHC Inmunohistochemistry SVM Support vector machine

ISH In-situ hybridization SWIR Short-wavelength infrared

kNN K-nearest neighbors VNIR Visible and near-infrared

LBP Local binary pattern WBC White blood cells

LCTF Liquid crystal tunable filters WSI Whole-slide imaging

LDA Linear discriminant analysis
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