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Abstract: Intra and post-operative blood flow monitoring of tissue has been shown to be
effective in the improvement of patient outcomes. Diffuse correlation spectroscopy (DCS) has
been shown to be effective in measuring blood flow at the bedside, and is a useful technique in
measuring cerebral blood flow (CBF) in many clinical settings. However, DCS suffers from
reduced sensitivity to blood flow changes at larger tissue depths, making measurements of CBF
in adults difficult. This issue can be addressed with acousto-optic modulated diffuse correlation
spectroscopy (AOM-DCS), which is a hybrid technique that combines the sensitivity of DCS to
blood flow with ultrasound resolution to allow for improved spatial resolution of the optical signal
based on knowledge of the area which is insonified by ultrasound. We present a quantitative model
for perfusion estimation based on AOM-DCS in the presence of continuous wave ultrasound,
supported by theoretical derivations, Monte Carlo simulations, and phantom and human subject
experiments. Quantification of the influence of individual mechanisms that contribute to the
temporal fluctuations of the optical intensity due to ultrasound is shown to agree with previously
derived results. By using this model, the recovery of blood-flow induced scatterer dynamics
based on ultrasound-modulated light is shown to deviate by less than one percent from the
standard DCS measurement of scatterer dynamics over a range of optical scattering values and
scatterer motion conditions. This work provides an important step towards future implementation
of AOM-DCS setups with more complex spatio-temporal distributions of ultrasound pressure,
which are needed to enhance the DCS spatial resolution.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Hemodynamic monitoring of patients in the intra and post-operative periods has been shown to be
effective in guiding treatment and reducing negative outcomes such as organ failure [1]. Guiding
treatment based on measurements of lactate concentration, central venous oxygen saturation,
and extraction of oxygen were shown to improve patient outcomes. A tool that can allow for
the quantification of these parameters continuously at the bedside could be extremely helpful
in guiding therapeutic interventions. Diffuse optical techniques have been shown to allow for
non-invasive monitoring of tissue at the bedside for these relevant parameters [2–4]. One such
technique is diffuse correlation spectroscopy (DCS). Developed in the 1990’s, DCS is an optical
technique that quantifies the blood flow in tissue through the analysis of the temporal evolution
of speckle intensity [5]. Laser light with a long temporal coherence length is launched into the
tissue, and a speckle pattern is generated at the surface of the skin. The temporal evolution
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of the speckle intensity allows the interrogation of dynamic motion in the tissue through the
analysis of the intensity temporal autocorrelation function, known in the literature as g2(τ). This
function has a characteristic decay that is due to the motion of the scattering particles in the tissue,
dominated by red blood cells (RBC), and allows for the quantification of perfusion in terms of a
blood flow index (BFi) [6]. Hence DCS can quantify the motion of RBCs in the microvasculature,
but as with near-infrared spectroscopy (NIRS) and other optical methods, it loses sensitivity to
RBC motion with increased depth [7]. This limitation is particularly relevant when accurate
measures of cerebral blood flow are desired, where the scalp and skull can have a thickness
of 1 cm or more and changes in brain blood flow are largely masked by concurrent changes in
the superficial tissue blood flow in the scalp, making it difficult to extract meaningful changes
relevant to cerebral physiology. Here, we utilize a multi-modal approach through the combination
of ultrasound tagging and diffuse correlation spectroscopy, known as acousto-optic modulated
DCS (AOM-DCS), in an attempt to overcome this limitation and improve depth sensitivity. Past
work has shown that the combined use of ultrasound and light is useful in the quantification
of cerebral blood flow using a cross-correlation technique of input ultrasound pressure and the
modulation of the measured speckle intensity [8]. This technique is effective in quantifying
relative flow differences at different depths in tissue, though the use of the cross-correlation
allows for only a single correlation parameter to be calculated at each depth, and doesn’t allow
for the extraction of the entire autocorrelation function, g2(τ). Other work combining DCS and
ultrasound has shown quantification of fluid flow in a capillary tube embedded in a scattering
phantom in the transmission geometry [9], as well as the effects of acoustic radiation force on the
diffuse correlation spectroscopy signal [10]. In this work, we extract the entire autocorrelation
function of the tagged light from the modulation present in the intensity autocorrelation function
and apply DCS theory to the analysis of the tagged light signal to quantitatively determine
the scatterer dynamics along the paths of tagged photons. As a first step, we investigate the
interaction between continuous wave ultrasound and the speckle fluctuations in the DCS signals,
through the use of theoretical derivations, Monte Carlo simulations, experiments with tissue
mimicking phantoms, and in vivo pilot experiments. Comparisons to previous derivations of the
influence of different mechanisms of ultrasound modulation of light in a scattering media show
good agreement in the simulation results, and BFi extracted from the ultrasound-modulated light
signal matches the BFi measured by traditional DCS. Though the full benefits of increased spatial
localization given by ultrasound tagging of light are not realized in this work, as continuous
wave ultrasound is used, this work acts as a basis for the future development of the AOM-DCS
setups with more complex ultrasound pressure distributions, like those seen in focused or pulsed
ultrasound.

2. Methods

2.1. DCS theory without an ultrasound field

DCS is a technique that is intrinsically sensitive to alterations in the interference of light, and
it is useful in sensing the motion of optical scatterers, mainly red blood cells, in biological
tissue [11,12]. In DCS, the blood flow is quantified by estimating the blood flow index (BFi)
from the measured temporal autocorrelation of the optical intensity [5]. Equation (1) is used
to estimate the autocorrelation of the electric field (e.g., g1(τ) = 〈E(t)E∗(t + τ)〉) under the
weak-scattering approximation that the optical mean-free path is much greater than the optical
wavelength, in which case the transfer of light can be described by ladder diagrams [13]. By
following the diffusing wave spectroscopy (DWS) approach [14], the following expression for
g1(τ) was obtained under the assumption that only scatterer motion contributes to the temporal
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variation of the electric field [15]:

g1(τ) =
∫ ∞

0
P(s) exp

(
−
1
3
µ′sk

2 〈
∆r2(τ)

〉
s
)

ds (1)

In Eq. (1), P(s) is the probability density of a light pathlength s, µs’ is the reduced scattering
coefficient, k is the wavenumber of the light in the scattering media, and 〈∆r2(τ)〉 is the mean
squared displacement during the time τ. For an ergodic sample, from the measured intensity,
we can relate the normalized intensity autocorrelation, g2(τ) = 〈I(t)I(t + τ)〉, to the normalized
electric field autocorrelation, g1(τ), using the Siegert relation [16]

g2(τ) = 1 + β|g1(τ)|2. (2)

The term of interest, which generates the temporal decay of the autocorrelation, is the mean
squared displacement, 〈∆r2(τ)〉. Throughout the development of DCS, the most suitable form of
this parameter in tissue has been found to be one resulting from a diffusive motion in a multiple
scattering regime, given by 〈∆r2(τ)〉 = 6αDeffτ, where Deff is the effective scatterer diffusion
coefficient and α is the fraction of scattering events that occur from moving scatterers.[17,18] The
measured g2(τ) is then fit to obtain the blood flow index (BFi) parameter, defined as BFi = αDeff.
The BFi parameter has been found to correlate well with the blood flow measured with ASL-MRI,
Xenon-CT, fluorescent microspheres, PET, and transcranial doppler ultrasound [19–23].

2.2. Ultrasound-induced changes of the optical phase along the photon paths

When a DCS measurement is performed in a scattering media in the presence of ultrasound,
the temporal autocorrelation function of the optical intensity, g2(τ), includes a component
that depends on the ultrasound induced motion of the scatters [24]. Furthermore, as light
travels through the tissue, ultrasound-induced periodic modulation of the index of refraction
causes temporal changes of the optical phase [25]. The combination of these two mechanisms
of ultrasound modulation of the optical waves yields a g2(τ) that carries modulation at the
ultrasound frequency. If the optical scatterers are moving only due to presence of the continuous
ultrasound, the amplitude of the g2(τ) modulation is not expected to change with time. However,
if the optical scatterers in addition to ultrasound-induced oscillation also exhibit diffusive and/or
advective motions, which is expected in the perfused biological tissue, then additional temporal
decorrelation will occur, and both g2(τ) and the amplitude of the g2(τ) modulation by the
ultrasound will decay with time. Due to similar decorrelation mechanisms involved in the decay
of both g2(τ) and its modulation amplitude, it should be possible to use either one of them
to quantify the same stochastic properties of the scatterers motion and make inferences about
the blood flow. However, the quantification of the decay of the g2(τ) modulation may have an
advantage over the standard g2(τ) decay as it can be used to measure the flow based on the ‘tagged
photons’, which are spatially and/or temporally localized to the interaction region between the
light and the ultrasound. Here, our goal is to establish a first step towards developing a DCS setup
that is effective in making quantitative measurements of blood flow enabled by spatially and
temporally heterogenous ultrasound pressure distributions. In order to characterize the effects of
ultrasound on the DCS signal, here we start by first considering the continuous wave ultrasound,
and propose a theory to describe the interaction between ultrasound and light in the context of
DCS measurements. For brevity, an abbreviated derivation will be presented below with a more
complete summary given in the appendix.

The contributions of tagged photons to the modulation present in the autocorrelation function
are reliant on the degree of interaction that they have with the ultrasound pressure. For a
continuous plane wave ultrasound, the ultrasound pressure at a particular position and time is
given by P(r, t) = P0 cos(ωut − ku · r + φ), where P0 is the pressure amplitude of the ultrasound,
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ωu is the angular frequency of the ultrasound, ku is the ultrasound wavevector with magnitude ku,
and φ is the relative phase shift of the ultrasound wave. For simplicity, the ultrasound pressure
attenuation term has been omitted in this derivation, though it is included in the Monte Carlo
simulations. The ultrasound pressure manipulates the position of scattering particles as well as
modulates the index of refraction of the media, which results in phase shifts of the electric field
along the photon paths, given below, respectively for displacement modulation (Eq. (3)) and
index of refraction modulation (Eq. (4)),

∆φd(t) =
N−1∑
i=2

qi · ∆ri(t), (3)

∆φn(t) =
N−1∑
i=1

∫ ri+1

ri

k0∆n(r, t)dr (4)

Where ∆φd and ∆φn are the modulations in phase due to displacement and index of refraction
modulation due to the modulation in position, ∆ri, and index of refraction, ∆n(r, t), respectively,
qi is the momentum transfer at a particular scattering center, and k0 is the wavenumber of the light
in vacuum. Finally, if we assume that blood flow-induced motion of the RBCs can be modeled as
a random walk, the total optical phase increment along the photon path, ∆φT = ∆φUS + ∆φB,
will include the components due to ultrasound, ∆φUS = ∆φd + ∆φn, and the Brownian motion

of the scatterers, ∆φB =
N−1∑
j=2

qj · ∆rB(t) [24,26–28]. A full summary expanding the terms given

above can be found in the appendix.

2.3. Electric field and optical intensity temporal autocorrelation functions in the pres-
ence of both blood flow and ultrasound field

When the phase variation ∆φT (t) along the path is much less than unity, we can simplify the
calculation of g1(τ, s) along the path of length s as [14]

g1(τ, s) = exp
[
−
1
2

Fs(τ)

]
, (5)

where Fs(τ) = 〈∆φ
2
T (t, τ)〉s, ∆φT (t, τ) = ∆φT (t + τ) − ∆φT (t), and averaging 〈 〉s is performed

over time t and all configurations of the pathlength with length s [28,29]. Here, we provide the
simplified solution that assumes isotropic scattering, to which the anisotropic case reduces over
pathlength distances larger than the transport mean free path (ltr) via the similarity relation as
[30]:

Fs(τ) = FUS,s(τ) + FB,s(τ), (6)

where FB,s(τ) = 4n20k
2
0DB

s
ltr τ is the term due to the blood flow and FUS,s(τ) = WUS,ssin2

(ωuτ
2

)
is

the term due to ultrasound modulation. where

WUS,s =

(
2n0k0P0

kuρνu2

)2 s
ltr

[
η2(kultr)2

G
1 − G

+
S2u
3
− 2ηSu cos(φu)

]
. (7)

In Eq. (7), G = arctan(kultr)
kultr , and we assumed that kultr and sl−1tr are much greater than one, such

that higher order terms, not proportional with s
ltr , can be neglected.

For a small ultrasound modulation along the path, which is a reasonable assumption in
a low-pressure CW ultrasound field or when using pulsed and focused ultrasound, we can
approximate exp(−FUS,s(τ)/2) as 1 −

FUS,s(τ)
2 . This allows us to express g1(τ, s) as g1(τ, s) =

g1,0(τ, s) + g1,US(τ, s), where g1,0(τ, s) = exp
(
−

FB,s(τ)
2

)
is the electric field autocorrelation
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function for the pathlength s, without ultrasound. The term g1,US(τ, s) = −
FUS,s(τ)g1,0(τ,s)

2 is the
perturbation of g1,US(τ, s) due to ultrasound, obtained by scaling g1,0(τ, s) with the oscillating,
ultrasound-induced term FUS,s(τ)

2 , which causes further decorrelation of g1(τ, s). We show that
this approximation is valid for the low-pressure CW ultrasound that is explored in this work in
Fig. 6 (appendix).
By adding the contributions from all pathlengths s, g1(τ) in the presence of ultrasound can

also be expressed as a sum of two components: g1(τ) = g1,0(τ) + g1,US(τ), where g1,0(τ) is given
by Eq. (1) and it represents the electric field autocorrelation function due to blood flow-induced
scatterer motion only. The g1,US(τ) is perturbation due to ultrasound, given by

g1,US(τ) = −

∫ ∞

0

[
P(s)

1
2

FUS,S(τ)

]
g1,0(τ, s)ds (8)

Since FUS,s(τ) = WUS,ssin2
(ωuτ

2
)
, we can further simplify the expression for g1(τ) if we write

g1,US(τ) = g1,US(τ)[cos(ωuτ) − 1], where g1,US(τ) =
∞

∫
0

[
P(s)WUS,s

4

]
g1,0(τ, s)ds. This allows us to

better group g1(τ) terms into oscillating and non-oscillating components as

g1(τ) = g1,0(τ) + g1,US(τ) cos(ωuτ), (9)

where for the small ultrasound modulation we assumed that g1,0(τ) � g1,US(τ) and g1,0(τ) −
g1,US(τ) ≈ g1,0(τ). Please note that because ultrasound modulation WUS,s is larger along the
longer pathlengths (Eq. (9)), the weight of longer pathlengths in expression for g1,US(τ) is greater
and g1,US(τ) decorrelates faster with τ than g1,0(τ).

In order to obtain the expression for the intensity autocorrelation function g2(τ) in the presence
of both blood flow and ultrasound, we apply the Siegert relation to the g1(τ) given by Eq. (9) and
obtain

g2(τ) = g2,0(τ) +M0(τ) cos(ωuτ), (10)

where g2,0(τ) = 1 + β |g1,0(τ)|2 is the intensity autocorrelation function due to blood flow-
induced scatterer motion only. The ultrasound modulation of g2(τ) is given by the term
M(τ) = M0(τ) cos(ωuτ), where modulation amplitude (sometimes also referred to as modulation
depth) M0(τ) is expressed as

M0(τ) = 2βg1,US(τ)g1,0(τ). (11)

Please note that in order to obtain Eqs. (10) and (11), we neglected small terms that are both
non-oscillating and oscillating at two times the ultrasound frequency. A full treatment of the
modulation can be found in the appendix, though fitting with only the dominant term is sufficient
to accurately resolve blood flow. It is also important to note that modulation amplitude M0(τ)
can be obtained experimentally, and it carries the information about the blood perfusion within
the space region localized by the ultrasound. However, M0(τ) decays with τ faster than g2,0(τ)
because g1,US(τ) decorrelates faster with τ than g1,0(τ), which may need to be taken into account
when fitting M0(τ) for BFi.

In the theoretical derivation, we assumed that all optical scatterers along the photon path
are exhibiting motion due to both the ultrasound and blood flow, which is the case when the
blood perfusion and the plane ultrasound wave are present in the entire media. In typical DCS
experiments, only a fraction of scattering events is from the RBCs and the ultrasound is confined
to a fraction of the tissue volume. This means that only some portion of the photon paths may
be associated with the ultrasound and/or Brownian motion-induced optical phase increments.
Fortunately, dealing with such complexity of interactions may be relatively straightforward by
using Monte Carlo simulations.



Research Article Vol. 11, No. 6 / 1 June 2020 / Biomedical Optics Express 3076

2.4. Monte Carlo simulation

Monte Carlo simulations were performed using the open source photon simulation software
MCX.[31] A semi-infinite, homogenous media with optical scattering properties similar to what
might be measured in vivo, µ′s = 3.0 − 9.0 cm−1, µa = 0.05 cm−1, n = 1.34, was simulated. Each
simulation consisted of 108 launched photons. Ultrasound pressure attenuation of the media was
given as 0.8 dB cm−1 MHz−1 for all simulated optical scattering properties [32]. Photon packets
were collected at a source-detector separation of 1.8 cm, and the positions of scattering events
along the paths of the detected photons were saved. Ultrasound induced phase modulation along
each photon path was computed using Eqs. (3) and (15).
In Monte Carlo simulations, we can simulate the optical phase modulation along each path,

and build up the electric field autocorrelation function as a sum of the individual autocorrelation
functions along different paths as

g1(τ) =
∑

all paths, i
wig1,i(τ), (12)

where wi is the photon weight for a path i through the tissue and g1,i(τ) is the electric field
autocorrelation function for the same photon path. Similar to expression in Eq. (5), g1,i(τ)
in MC is calculated as g1,i(τ) = exp(−Fi(τ)/2), where Fi(τ) = 〈∆φ

2
T ,i(t, τ)〉 and averaging is

performed over time t. Fi(τ) can be further expressed as a sum of two components: one due to
the Brownian motion, FB,i(τ), and the other one due to the ultrasound modulation, FUS,i(τ) =
〈∆φ2US,i(t, τ)〉. For a small ultrasound modulation along the path, g1,0(τ) and g1,US(τ) can be

simulated as g1,0(τ) =
∑
i

wi exp
(
−

FB,i(τ)
2

)
and g1,US(τ) = 1

4
∑
i

wiWUS,i exp
(
−

FB,i(τ)
2

)
, similar to

expressions for the same parameters in Eqs. (8) and (9). In order to better understand the effect
of ultrasound-modulation on g1,US(τ), before summation over all simulated photon paths i, we
regrouped the data based on the photon pathlength s to estimate P(s), WUS,s, and FB,s(τ). This
enabled us to obtain the values of g1,US(τ), g1,US(τ), and g1,0(τ) based on Eqs. (1) and (8), and
to analyze how the difference between the decorrelation rates of g1,0(τ) and g1,US(τ) is affected
by the WUS,s dependence on the pathlength. We subsequently computed the values of g2,0(τ),
M0(τ), and g2(τ) based on Eqs. (10) and (11).

To compare the relative effects of the two mechanisms of ultrasound modulation (e.g., due
to motion of the scatterers and due to changes in the index of refraction), autocorrelations
were simulated for the following cases: i) no ultrasound modulation, ii) individual mechanisms
of ultrasound modulation, and iii) combination of both mechanisms. The spatial distribution
of ultrasound was also varied in MC simulations. When comparing between just simulation
results, a plane wave ultrasound geometry filling the half-space was used. When comparing
MC simulations to experimental results, the insonified region was modified to resemble the
distribution that would be generated using the real probe, as seen below in Fig. 1(a), where only
the area beneath the piezoelectric ring would experience modulation.

The spatial sensitivity of standard DCS to changes in flow is characterized by the difference in
the measured change in flow from g2,0(τ) for a known flow perturbation at a given location. Due
to the differences in the weighting of the pathlengths as predicted by Eq. (7), it might be expected
that AOM-DCS has a different spatial sensitivity profile than standard DCS. To compare the
spatial sensitivities of g2,0(τ) and M0(τ), spatial sensitivity maps were generated for the plane
directly beneath the source and detector. In the MC simulations, 1 mm3 cubic voxels were given
flow perturbations individually, and g2,0(τ) and M0(τ) curves were generated. To quantify spatial
sensitivity, sensitivity for a particular voxel was defined as S(r) = ∆BFi/∆BFi,r, where ∆BFi is
the measured change in BFi and ∆BFi,r is the simulated change in BFi in the voxel at position r.
Spatial sensitivity is compared between the full planar maps for g2,0(τ) and M0(τ), as well as the
sensitivity with respect to depth.
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Fig. 1. (a) The AOM-DCS setup. A long coherence length laser is coupled to the tissue
through a multi-mode fiber in the center of the piezoelectric transducer and the multiply
scattered light is collected by single mode fibers and sent to single photon avalanche
diodes (SPADs) for detection. (b) Simulated g2(τ) curves with different combinations of
Brownian motion and mechanisms of ultrasound modulation of light. (c) The extracted
M0(τ) from the g2(τ) curves presented in (b), showing the relative amplitudes of the
different modulation mechanisms. (d) Min-max normalized g2(τ) and M0(τ) for the different
modulation mechanisms, showing the differences in their rates of decorrelation.

In order to validate the BFi measurement based on tagged photons, we compared BFi values
estimated from M0(τ) to the BFi values obtained by a standard DCS without ultrasound. In
addition, to evaluate the significance of applying a proper theoretical model when fitting M0(τ)
for BFi, we fit the modulation depth for BFi, in two different ways: i) by using a proper expression
for M0(τ) (Eq. (11); please also see Eq. (24)), and ii) ‘naively’, as though M0(τ) was the standard
g2,0(τ) intensity autocorrelation function without ultrasound.

2.5. Phantom experiments

Experimental comparisons to the Monte Carlo simulations were made with a custom-built
AOM-DCS system. Though these experiments are usually done with liquid phantoms, here, to
reduce the ultrasound induced drive flow, semi-solid phantoms were chosen. Semi-solid, gelatin
phantoms were mixed with 20% intralipid to obtain reduced scattering coefficients ranging from
3.0 to 9.0 cm−1. Distilled water was mixed with gelatin powder (Knox) and heated to 80 °C
for 1 hour with continuous stirring. The mixture was allowed to cool to room temperature, and
20% intralipid was added to reach the desired scattering properties. Following mixing, the
phantoms were refrigerated for 12 hours before measurements were taken. Light from a 785 nm
long coherence length laser [DL785-100-S, Crystalaser] was delivered to the phantoms using
a 62.5 µm GRIN multimode fiber and collected with four 5 µm single mode fibers at a source
detector separation of 1.8 cm. Light from the detection fibers was sent to four single photon



Research Article Vol. 11, No. 6 / 1 June 2020 / Biomedical Optics Express 3078

counting detectors [SPCM-AQRH14, Excelitas], and arrival times of the photons were collected
and transmitted for later analysis. The source fiber was placed in the center of a piezoelectric ring
transducer [SMR28D9T1111, STEMINC] and the detector fibers were placed at the edge, as seen
in Fig. 1(a). The piezoelectric transducer had an inner diameter of 9 mm, an outer diameter of 29
mm, and a fundamental frequency of 2.08 MHz. The piezoelectric transducer was connected to a
power amplifier [325LA, ENI], which amplified a continuous wave, sinusoidal waveform at 2
MHz from a function generator [SDG 5162, Siglent]. For all in vitro and in vivo experiments, the
pressure generated by the ultrasound was measured to be 40 kPa by a hydrophone [HGL0085,
Onda] in a water bath. Autocorrelation functions were calculated from the collected photon
arrival timestamps, and the modulation depth was computed as the envelope of the modulation of
the autocorrelation function.

2.6. In vivo experiments

For in vivo measurements, institutional ethical approval was obtained and three human subjects
were measured using the AOM-DCS system. To ensure the safety of the subjects, the laser
power was limited to 28 mW (ANSI limit for a laser sport size > 3 mm2 at 785 nm). The
ultrasound pressure generated by the probe was verified to be well below the mechanical index
(MI) threshold for safety (MI= 1.9). As measured by a hydrophone in a water bath, the pressure
was 40 kPa, giving an MI value of 0.0283 at 2 MHz. The AOM-DCS probe was placed on the
subject’s forearm, and a blood pressure cuff was applied to the upper arm. To measure a range of
BFi values, the cuff was inflated in a step wise manner while measurements were being taken.
Pressure remained constant for 1 minute at each level, and the ultrasound was turned ON and
OFF every 10 seconds, giving three periods of 10 seconds of ultrasound ON and OFF at each
pressure value. The results were quantified in the same manner as given above, and BFi was fit
from both the autocorrelation curve and the modulation depth.

3. Results

3.1. Comparing simulated g2,0(τ) and M0(τ) for different ultrasound modulation mecha-
nisms

The examples of the g2(τ) curves generated by the MC simulations using an ultrasound pressure
of 25 kPa at a frequency of 2 MHz for a reduced scattering coefficient of 6 cm−1, BFi of 1.48
*10−9 cm2/s, and a source-detector separation of 1.8 cm are presented in Fig. 1(b). The extracted
modulation depths from simulated g2(τ) curves for different combinations of Brownian motion
and individual ultrasound modulation mechanisms are presented in Fig. 1(c). In addition, the
min-max normalized g2,0(τ) and M0(τ) curves are presented in Fig. 1(d), showing the differences
in their decay rates. These differences in decay rates are quantified by fitting g2,0(τ) and M0(τ) for
BFi using the correlation diffusion equation based on Eqs. (1) and (2), i.e., ignoring the effects of
ultrasound modulation. A comparison of the simulated results as a function of reduced scattering
coefficient is presented in Fig. 2(a).

The BFi estimated by naively fitting M0(τ) exceeds the BFi from the g2,0(τ) by more than 18%
in all simulated conditions. As derived in Eqs. (8)–(11), the degree to which the ultrasound
interacts with the photons of different pathlengths is driving the difference between the decay rates
of M0(τ) and g2,0(τ). In addition, contribution of different ultrasound modulation mechanisms to
M0(τ) decay rate is also different for each pathlength s. The pathlength distributions and the mean
squared optical phase accumulation WUS,s for individual and combined ultrasound modulation
mechanisms are compared in Figs. 2(b) and 2(c), respectively. The increased rate of decorrelation
of M0(τ) in comparison to g2,0(τ) as well as the difference between the decorrelation rates of
M0(τ) when including the influence from the ultrasound induced displacement of scatterers or
index of refraction modulation or both, can be simply explained by considering the pathlength
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Fig. 2. (a) Comparison of the BFi values extracted from the simulated intensity auto-
correlations and their modulation depths, using the correlation diffusion equation for a
range of reduced scattering that could be seen in vivo. (b) Pathlength distributions of
the autocorrelation and modulation depths of individual mechanisms, the increased BFi
measured from the modulation depth can be explained by the increased influence of longer
pathlengths for both ultrasound mechanisms for modulation. (c) Comparison of the mean
squared phase accumulation as a function of pathlength for both mechanisms of ultrasound
modulation showing index of refraction modulation contributing to a larger degree than that
of ultrasound scatterer displacement. (d) Comparison of the ratio of the modulation depth
from each mechanism at zero lag compared to previously derived results as a function of
scattering property.
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distributions P(s) weighted by the ultrasound modulation term WUS,s. In both mechanisms,
generally, longer pathlengths have a greater phase modulation due to ultrasound (Eq. (7)), and
so are weighted more strongly in the adjusted pathlength distribution P(s)WUS,s. The increased
contribution of the longer paths to g1,US(τ) causes the faster M0(τ) decay with τ (Eqs. (8)–(11)).
When fitting M0(τ) for BFi, if weighting the photon pathlength distribution in g1,US(τ) by WUS,s
is ignored and assumed to be a pathlength distribution predicted only by light propagation (i.e., if
g1,US(τ) is considered equal to g1,0(τ)), the fitted BFi values will be higher, reflecting the faster
than expected decay. This is important to note, as the naively fitted BFi from M0(τ) is ∼20%
greater than expected, which is a large error. Though when ultrasound modulation contribution
to g1,US(τ) is properly accounted for, accurate BFi estimates can be extracted from the M0(τ)
(Fig. 2(a); MC fit).

The increased ultrasound modulation due to the index of refraction changes for shorter
pathlengths (Fig. 2(c)) can be attributed to photons that travel largely superficially, parallel with
the tissue surface and perpendicular to the ultrasound propagation direction. Because these
photon paths are confined to a single or a few spatial periods of ultrasound, the modulation of
optical phase along those paths is large. This effect is not captured by theoretical derivations
(Eq. (7)), which assume diffusive light propagation, and it illustrates the importance of using
MC simulations to properly model complex experimental geometries. The relative amplitudes of
the two ultrasound modulation mechanisms are also important to consider when fitting for the
BFi. Theoretical derivation of the relative contributions of the two mechanisms were given in
Sakadzic et al. [26] as a function of the ultrasound wavenumber multiplied by the reduced mean
free path. The ratio of the peak modulation due to each of the modulation mechanisms for a range
of simulated µ′s shows a good agreement with the theoretical derivation [23] (Fig. 2(d)). From
these results and previous derivations, it can be concluded that the modulation due to the index
of refraction changes represents the dominant effect for this implementation of AOM-DCS with
relatively low ultrasound frequencies (1-5 MHz) and for scattering coefficients representative of
soft tissue at NIR wavelengths.

3.2. Comparing the spatial sensitivity of DCS and AOM-DCS derived from Monte Carlo
simulation

As seen in the previous section, the use of ultrasound gives an increased sensitivity to photons
with longer pathlengths. To quantify the effects of the changes in the weighting of the pathlengths
on spatial sensitivity, maps were derived from the simulated standard autocorrelation function,
g2,0(τ), and modulation, M0(τ), fitted with their respective proper theories, and can be seen in
Fig. 3(a) and 3(b). Both maps are presented in log scale, and isolines are drawn at labeled values
of the sensitivity for comparison. To quantify the depth sensitivity, the maps were averaged in the
direction parallel to the source and detector, and the percent difference of the depth sensitivity
was calculated, and can be seen in Fig. 3(c). From both presentations of the data, two regimes of
differences can be identified, 1) the reduction in sensitivity of AOM-DCS at shallower depths
relative to standard DCS and 2) the monotonic increase in AOM-DCS sensitivity relative to
standard DCS as the depth of the change increases. This comparison connects the observed
increase in sensitivity to photons with longer pathlengths to the possible benefits of utilizing
ultrasound modulation for increased sensitivity to cerebral blood flow in vivo, even in the case of
CW ultrasound modulation.

3.3. BFi measurements in the gelatin phantoms having different scattering coefficient
and temperature

To validate the M0(τ) fitting for BFi in vitro, the same range of µ′s values explored in MC
simulations was used in the semi-solid gelatin phantoms. The measurements were performed
using the experimental setup shown in Fig. 1(a). The examples of measured g2(τ), g2,0(τ), and
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Fig. 3. For an MC simulation with µa = 0.05 cm−1, µs’= 6.00 cm−1, and a source-detector
separation of 1.8 cm, (a) the corresponding spatial sensitivity maps for standard DCS and
AOM-DCS. Averaging the percent difference in the X direction between the two maps gives
the results seen in (b), which indicates that AOM-DCS is less sensitive to changes in the
more superficial layers and more sensitive to changes in the deeper layers than is standard
DCS. The errorbars represent the standard deviation of the percent difference along the X
direction.

M0(τ) are shown in Fig. 4(a). Signal to noise ratio (SNR) of g2,0(τ) and M0(τ) were verified
to be sufficiently high in each measurement to ensure accurate fitting. An example of the
SNR of the curves is presented in Fig. 4(d). The SNR of g2,0(τ) and M0(τ) were quantified as
SNRg2,0(τ) = (g2,0(τ) − 1)/σg2,0(τ) and SNRM0(τ) = M0(τ)/σM0(τ), respectively, where σ(τ) is
the standard deviation of the curve at a lag time τ. The SNR of M0(τ) is seen to be highly sensitive
to the pressure used, even for small changes in the pressure magnitude. This is beneficial, as the
SNR can be increased through slight increases in the pressure, while maintaining the assumption
that ultrasound induced phase modulation is small. As predicted by both theoretical derivations
and MC simulations, the faster decay rate of M0(τ) in comparison to g2,0(τ) was observed for
each µ′s (data not shown). In order to accurately extract the BFi, the fitting of the M0(τ) depth was
performed using Eqs. (8)–(11), which properly accounts for the ultrasound tagging of light. The
contributions of individual photon pathlengths were quantified by the Monte Carlo simulations,
taking into account both the optical properties of the phantoms and the experimental geometry. A
good agreement between BFi values based on g2,0(τ) and M0(τ) was observed for all µ′s (Fig. 4(b)).
Similarly accurate measurements of BFi was obtained when gelatin phantom temperature was
changed from 4 to 16 °C, which increased scatterer diffusivity while keeping the µ′s constant at 6
cm−1 (Fig. 4(c)). Although comparison to the Stokes-Einstein equation would have been ideal
over the temperature range measured, this comparison is complicated by the use of polydisperse
scatterer size, and the gel-like nature of the phantom, so a linear trend line is used to estimate the
temperature dependence. Note that the variation in the actual BFi of the phantoms at different
scattering values (Fig. 4(b)) is simply due to variations in the phantom fabrication procedure and
does not relate to the change in scattering.
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Fig. 4. (a) Experimental measurement of g2(τ), g2,0(τ), and M0(τ) in a gelatin phantom for
µa = 0.05 cm−1 and µs’= 6.00 cm−1 at a source-detector separation of 1.8 cm (b) Comparison
of the BFi estimates from the g2,0(τ) and M0(τ) measurements in the gelatin phantoms
with different scattering properties (b) and at different phantom temperatures (c). The black
dotted line represents a linear fit of the BFi estimated based on g2,0(τ) measurements. (d)
Comparison of the SNR of the g2,0(τ) and M0(τ) as a function of lag time. SNR of M0(τ) is
also calculated for different ultrasound pressures to show the dependence of SNR on the
ultrasound pressure used.
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3.4. In vivo demonstration of AOM-DCS

To validate the proposed AOM-DCS theory and experimental setup in vivo, the BFi was measured
in the forearm of 3 human subjects over a range of perfusion values created by inflating a blood
pressure cuff with different pressures. The BFi estimated from the g2,0(τ) was compared to the
BFi estimated from the M0(τ) using both the naïve and the proper fitting, shown in Figs. 5(a) and
5(b), respectively. These results are demonstrating that BFi can be measured accurately based
on the ultrasound-tagged light. In addition, the use of the proper theoretical model results in a
more accurate BFi measurements. Though the difference between naïve and proper fitting may
be slight in this case, in a more optically heterogeneous area in the body, such as the head, with a
more complex spatio-temporal ultrasound distribution and higher blood flow, the differences in
the fits could become more significant, and the use of proper theoretical method may allow for
more accurate quantification of BFi.

Fig. 5. (a) Comparison between the autocorrelation BFi fit and the naïvely fit BFi from the
modulation depth, showing an-average overestimation of the BFi from the modulation depth,
(b) though when the ultrasound influence on the pathlength distribution is taken into account
the fit of the modulation depth on-average is equal to that of the autocorrelation BFi.

4. Discussion

In the MC simulations, by separating the ultrasound modulation mechanisms, the influence of
each mechanism on the modulation depth was assessed. We confirmed previous observations
that the index of refraction modulation is a dominant mechanism under simulated conditions,
selected to match conditions that would be seen in vivo. Dependence of the modulation depth
was also assessed as a function of optical scattering to determine the influence of different
scattering conditions, with dependencies being found in the relative intensities of the two
mechanisms, as was predicted by previous theory [26], as well as the rate at which each method
drove decorrelation. While the index of refraction modulated signal was found to come to a
steady state of decorrelation rate as a function of scattering, at low scattering, the displacement
modulation was found to decorrelate faster, indicating that a certain number of scattering events
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are most likely required to reach a steady state of measured decorrelation rate. Fortunately, in
the lower scattering case, the relative weighting of the displacement modulation component is
low compared to the index of refraction modulation, and the changes to the overall decorrelation
rate are minimal. This finding is important in understanding the relative contributions of the
different mechanisms and their effects of the measured modulation. The observation that the
modulation depth decorrelates faster than g2,0(τ) is also an important one, indicating that accurate
quantification of perfusion from ultrasound modulated DCS requires considering the difference
in the mechanisms driving modulation depth decay vs. intensity auto-correlation decay in the
absence of ultrasound. The derivations presented provide a framework with which to analyze the
modulated signals, and the concordant BFi measurement results of standard DCS and AOM-DCS
techniques provide evidence that, for the particular conditions these measurements were taken
under, namely a small degree of ultrasound modulation of the optical phase, the assumptions
presented to allow for separation of the modulated and unmodulated components of g2(τ) are
valid. Analysis of the relative weighting of pathlengths provides a reasonable explanation, that
longer pathlengths are tagged preferentially relative to shorter ones, which was confirmed in
simulation and phantom experiments. The relatively increased weighting of longer pathlengths
could potentially provide a mechanism to probe dynamics deeper in tissue, which can be helpful
for sensing the blood flow in the brain, even in the case of CW ultrasound tagging.

5. Conclusion

Here we have developed an analytical model to use the ultrasound modulated light for estimation
of BFi in DCS. The model was validated using Monte Carlo simulation for different values
of the reduced scattering coefficient, and experimentally in solid gelatin phantoms and three
human subjects using a novel AOM-DCS system. This work provides a basis by which to move
forward in the development of a spatially resolved, acousto-optic modulated diffuse correlation
spectroscopy system to measure blood flow in tissue.

A. Appendix

Ultrasound-induced changes of the optical phase along the photon paths

Here we detail the full derivation of the ultrasound induced, optical phase modulation. The
displacement of a scattering particle, ∆rs(t) = rs(t) − rs, in the media due to ultrasound, where rs
is the unperturbed location of the scatterer, can be expressed as

∆rs(t) =
P0Su

kuρν
2
u

sin(ωut − ku · rs + φ − φu)Ω̂u (13)

where Su and ϕu are the amplitude and phase deviations of the particle from the media moving
around it, Ω̂u is the unit vector in the ultrasound propagation direction, ρ is the density of the
media, and νu is the ultrasound speed in the media [26,27]. The optical phase increment that is due
to the scatterer i motion induced by the ultrasound is given by the dot product of the momentum
transfer, qi = ki − ki+1, with the scatterer displacement, ∆ri(t), induced by the ultrasound.
The phase increment generated along the path due to ultrasound-induced displacements of the
scatterers is then given by the sum of the phase increments over all scattering events along the
path, given by Eq. (3) in the main text, where r1 and rN are the positions of the source and
detector respectively, and ri for i= 2,. . . ,N-1, are the positions of all the scatterers along the path.

The phase accumulated along a path is also affected by the refractive index grating created by
the ultrasonic wave. For modest ultrasound pressures, the alterations to the refractive index can
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be considered as a small perturbation of the unperturbed index of refraction, n0, and expressed as

n(r, t) = n0
[
1 +

η

ρν2u
P(r, t)

]
. (14)

Where η is the elasto-optic coefficient of the media, equal to η = ρ ∂n
∂ρ , which for water is

approximately equal to 0.32 [26]. The ultrasound-induced optical phase increment along the free
path between two scattering particles ri and ri+1 is given as ∆φi(t) =

∫ ri+1
ri

k0∆n(r, t)dr, where
∆n(r, t) = n0 η

ρν2u
P(r, t). For an entire photon pathlength through tissue, the phase modulation due

to index of refraction modulation can be given as an expanded form of Eq. (4),

∆φn(t) = k0n0
ηP0

ρv2u

N−1∑
i=1

∫ ri+1

ri

cos (ωut − ku · r + φ) dr (15)

Combining and expanding the expressions given in Eqs. (3) and (15) for the individual mechanisms
of ultrasound modulation gives the entire phase modulation along the path by ultrasound, referred
to as ∆φUS(t), and is given by

∆φUS(t) = k0n0 ηP0
ρν2u

N−1∑
i=1

ri+1∫
ri

cos(φP(t, r))dr

+
P0Su

kuρνu2

N−1∑
j=2

qj · Ω̂u sin(φP(t, r) − φu),
(16)

where φP(t, r), the phase term for the ultrasound pressure, is given by φP(t, r) = ωut − ku · r + φ.
For the case of CW ultrasound insonification in the full half space, the solution to the integral for
each free path is solved and the terms deriving from the motion of the particles are expanded
to properly include geometry of the path. If we assume that amplitude and phase of scatterers
oscillation due to ultrasound are equal to those of the surrounding media, the ∆φUS(t) can be
expressed as:

∆φUS(t) =
k0n0P0

kuρν
2
u


ηku

N−1∑
i=1

li cos
(
ωut − ku(zi+1+zi)

2

)
× sinc

(
ku(zi+1−zi)

2

)
+

N−1∑
j=2

qz,j
k0n0 sin(ωut − kuzj)

 (17)

Further expanding the momentum term gives the change in phase accumulation just in terms
of scatterer position, and simplifies the phase calculation for the Monte Carlo (MC) simulation:

∆φUS(t) =
k0n0P0

kuρν
2
u


ηku

N−1∑
i=1

li cos
(
ωut − ku(zi+1+zi)

2

)
× sinc

(
ku(zi+1−zi)

2

)
+

N−1∑
j=2

(
zj−zj−1

lj−1 −
zj+1−zj

lj

)
sin(ωut − kuzj)

 . (18)

Combining Eq. (18) with the term describing phase accumulation due to Brownian motion
gives the total change in optical phase along a path as a function of a lag time τ, ∆φT (t, τ) =
∆φT (t + τ) − ∆φT (t) as

∆φT (t, τ) = k0n0P0
kuρν

2
u


2ηku

N−1∑
i=1

lisinc
(

ku(zi+1−zi)
2

)
sin

(ωuτ
2

)
× sin

(
ωut + ωuτ

2 −
ku(zi+1+zi)

2

)
+2

N−1∑
j=2

(
zj+1−zj

lj −
zj−zj−1

lj−1

)
cos

(
ωut + ωuτ

2 − kuzj
)
sin

(ωuτ
2

)


+
N−1∑
j=2

qj · ∆rB(τ).

(19)
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This expression can be used for each of the optical paths to generate the change in phase at any
lag time, τ. In the main text, we assume that ∆φT(t, τ) is much less than unity for the regime of
dynamic scattering that we are measuring, allowing for the approximation given in Eq. (7) to
be valid. Here we show a comparison of the electric field temporal autocorrelation functions
calculated with the approximation and calculated directly as G1(τ, s) = 〈Ei(t)E∗i (t + τ)〉, for
Ei(t) = exp

(
−
µa
2 si

)
exp(−j(k0n0si + ∆φT (t))) for photon paths selected from the MC simulation,

shown below in Fig. 6 to demonstrate the similarity of the autocorrelation curves and to validate
the use of the approximation.

Fig. 6. Electric field temporal autocorrelation function computed directly from the phase
of the electric field (solid lines) for three photon pathlengths compared to the electric field
temporal autocorrelation function computed as given in Eq. (5) in the main text (circles),
with the inset showing the initial portion of the g1(τ) decay. The correspondence between
the two over the large majority of g1(τ) indicates that this approximation should allow for
accurate characterization of the ultrasound induced phase using this model.

Deriving the expression for the modulation depth (M(τ)) from the summation of path-
lengths

An abbreviated derivation of the modulation depth from the intensity autocorrelation function
(g2(τ)) is given in the main text, and will be elaborated on here. As given in Eq. (1), the
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electric field autocorrelation function (g1(τ)) can be described as an integral over the pathlength
distribution of autocorrelations for individual pathlengths, recapitulated here in Eq. (20).

g1(τ) =
∞∫

0

P(s)g1,s(τ)ds (20)

Applying the approximation for ∆φT (t) much less than unity, we can express Eq. (20) in terms
of the mean squared phase accumulation from the Brownian motion and ultrasound modulation,
as is expressed in Eq. (8). For small ultrasound phase modulation, we can approximate the
electric field autocorrelation as

g1(τ) =
∞∫

0

P(s)
(
1 −

1
2

FUS,s(τ)

)
exp

(
−
1
2

FB,s(τ)

)
ds. (21)

This integral can be seen to be a sum of the unperturbed g1(τ), referred to in the main text as
g1,0(τ), and a tagged g1(τ), which is weighted by the influence of the ultrasound for a pathlength
s. Separating the integrals and expressing FUS,s as WUS,ssin2

(ωuτ
2

)
followed by the separation of

oscillating and non-oscillating terms gives

g1(τ) =
∞∫
0

P(s) exp
(
− 1

2FB,s(τ)
)

ds

− 1
2

∞∫
0

P(s)WUS,s(τ)sin2
(
1
2ωuτ

)
exp

(
− 1

2FB,s(τ)
)

ds.
(22)

g1(τ) =
∞∫
0

P(s) exp
(
− 1

2FB,s(τ)
)

ds −
∞∫
0

P(s)WUS,s(τ)
4 exp

(
− 1

2FB,s(τ)
)

ds

+
∞∫
0

P(s)WUS,s(τ)
4 cos(ωuτ) exp

(
− 1

2FB,s(τ)
)

ds
(23)

The second term in Eq. (23) is what is called g1,US(τ) in the main text. To express the
experimentally measured quantity, g2(τ), we apply the Siegert relation and substitute in both
g1,0(τ) and g1,US(τ) to give

g2(τ) = 1 + β(g1,0(τ) − g1,US(τ))
2 + 2β cos(ωuτ)g1,US(τ)(g1,0(τ) − g1,US(τ))

+βcos2(ωτ)(g1,US(τ))
2

(24)

As was done in the main text, we assume that g1,0(τ) � g1,US(τ), so g1,0(τ) − g1,US(τ) ≈ g1,0(τ)
and the component oscillating at two times the ultrasound frequency is found to be small compared
to the component oscillating at the ultrasound frequency. Simplifying Eq. (24) with these two
steps gives Eqs. (10) and (11), which are used to fit the ultrasonically tagged autocorrelation
function.

Computing the modulation of phase in Monte Carlo and using the results to fit the
measured modulation of the autocorrelation function (M0(τ))

In the MC simulations, ultrasound phase accumulations at each scattering center and along the
free paths between scattering centers are computed based on Eqs. (3) and (15). Contributions from
each mechanism were computed, and mean squared phase increment differences were calculated
for each photon path, i, and given as 〈∆φ2US,d,i(t, τ)〉, 〈∆φ

2
US,n,i(t, τ)〉, and 〈∆φ2US,d+n,i(t, τ)〉.
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To compute the results presented in Figs. 2(b) and 2(c), the mean squared phase increment
differences were binned along the photon pathlengths s, into bins such that

〈∆φ2US(sk ≤ s<sk+1)〉 =
1
N

N∑
i=1
〈∆φ2US,i(t, τ)〉, (25)

where 〈∆φ2US(sk ≤ s<sk+1)〉 is the averagedmean squared phasemodulation by ultrasound between
two pathlength bin edges sk and sk+1. Multiplying each mean squared phase term, 〈∆φ2US(s)〉,
by the pathlength distribution, P(s), results in the modified pathlength distributions given in
Fig. 2(b). The modulation of the autocorrelation function was fit using these weighted pathlength
distributions with the expression given in Eq. (11) in the main text. Estimates of the ultrasound
tagged electric field autocorrelation, �g1,US(τ), were calculated using an expression similar to
Eq. (12) in the main text, where the weighting term is given by w(s) = P(s) ∆φ2US(s), and the
individual path electric field autocorrelation function is given as g1,s(τ) = exp

(
− 1

3 µ
′
sk2∆r2(τ)s

)
.

The estimate of the unperturbed, electric field autocorrelation, ĝ1,0 (τ), was calculated using
Eq. (1) in the main text, and the product of the two was used to generate the estimate of
the modulation depth, M̂0(τ) = A∗�g1,US(τ)∗ĝ1,0 (τ), for a given Brownian, mean squared
displacement, 〈∆r2(τ)〉 = 6Dbτ, and modulation amplitude, A. The estimated modulation, M̂0(τ),
was compared to the measured modulation, and the sum squared error,

∑
(M0(τ) − M̂0(τ))

2, was
minimized by changing the estimated diffusion coefficient, Db, and the modulation amplitude, A,
to quantify the flow measured from the modulation decay.
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