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Abstract: We demonstrate the use of OCT-based elastography for soft-tissue characterization
using natural frequency oscillations. Sub-micrometer to sub-nanometer oscillations were induced
in tissue phantoms and human cornea in vivo by perpendicular air-pulse stimulation and observed
by common-path OCT imaging (sensitivity: 0.24 nm). Natural frequency and damping ratio
were acquired in temporal and frequency domains using a single degree of freedom method.
The dominant natural frequency was constant for different stimulation pressures (4-32 Pa)
and measured distances (0.3-5.3 mm), and decreased as the sample thickness increased. The
dominant natural frequencies of 0.75-2% agar phantoms were 127-774 Hz (mean coefficient
of variation [CV]: 0.9%), and correlated with the square root of Young’s moduli (16.5-117.8
kPa, mean CV: 5.8%). These preliminary studies show repeatable in vivo corneal natural
frequency measurements (259 Hz, CV: 1.9%). This novel OCE approach can distinguish tissues
and materials with different mechanical properties using the small-amplitude tissue oscillation
features, and is suitable for characterizing delicate tissues in vivo such as the eye.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Soft tissue biomechanical properties (e.g. stiffness or Young’s modulus) are related to tissue
health, and disease progression often changes the biomechanical properties of the affected tissues
[1,2]. In a clinical setting, physical palpation is used to diagnose and locate diseases by feeling the
stiffness changes in tissue. Analogous to palpation, elastography methods use mechanical tissue
stimulation to assess subtle stiffness changes in soft tissues that may be caused by disease, such
as the presence of a tumor [1–3]. Unlike the tactile nature of palpation, elastography relies on
non-invasive high-resolution imaging techniques and can provide results that are both objective
and quantitative.
Optical coherence elastography (OCE) is a recently developed technique that combines a

mechanical loading system to induce tissue displacement and an optical coherence tomography
(OCT) imaging system to detect the resulting tissue deformations. Tissue elastic properties can
be reconstructed based on the relation between the tissue response and stimulation [4]. Recent
advances in elastography methods include a variety of dynamic stimulation methods [5–16]
and more sensitive phase detection methods [17–20] that have enabled the visualization and
analysis of mechanical wave propagation in dynamic OCE [7,21]. The computational methods
required to reconstruct tissue elasticity remains an active research area. Most of the current OCE
analytical models are inherited from ultrasound [22–24] and MRI-based [25,26] elastography,
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including the commonly used shear-wave model to estimate Young’s modulus based on transverse
wave propagation velocity [27]. However, due to the differences in the detection field and
penetration depth, the mechanical models used in ultrasound and MRI methods may not be
appropriate for OCE applications in all tissues [28]. In tissues with complex geometries and
multiple layers, such as cornea and skin, mechanical waves traveling along the surface contain
multiple highly dispersive Rayleigh-Lamb components and become very complex compared
to simple Rayleigh waves [29,30]. In this case, translation of the measured wave propagation
speed into the shear wave model could lead to inaccurate estimation of tissue Young’s modulus
[28]. We recently proposed a modified Rayleigh-Lamb wave model to quantitatively assess the
corneal viscoelasticity [30,31]. This method is limited in a first-order assumption that the cornea
is isotropic, homogenous, and has a flat curvature. The development of robust computational
methods and tissue modeling techniques is important to provide more robust tissue elasticity
estimation from dynamic OCE [21].

Tissue natural frequency is an intrinsic property, and is defined as the frequency at which tissue
tends to oscillate when disturbed [32]. Natural frequency oscillation in response to the excitation
force is closely related to tissue elastic properties. Resonant ultrasound spectroscopy has been
employed for decades to measure the resonant frequencies of samples with known size and mass,
using oscillatory acoustic radiation force [33,34]. They are of considerable interest, but still
limited in detection resolution [35]. A phase-sensitive OCE approach has been recently applied
to detect and analyze the vibrational or resonant responses from samples and tissue with greater
resolution, using a number of different tissue modulating forces including: acoustic radiation
from ultrasound transducers [35], piezoelectric actuators [36] or mechanical wave drivers [37],
magnetic force from embedded nanoparticle transducers [38–40], and sound waves from a speaker
[8] etc. These dynamic OCE methods have demonstrated enhanced frequency-based B-scan
contrast and volumetric imaging at certain excitation frequencies for ex vivo tissues and phantoms
[35–37,40], and high-resolution measurement of resonant natural frequencies by sweeping the
driving frequencies in step [35,36,38–40]. Previous studies have demonstrated that the natural
frequency is linearly related to the square root of Young’s modulus in a simple elastic model
[35,38].
However, the quantification of natural frequency for sensitive tissues (e.g. eye) using OCE

is still constrained by the stimulation method and the sensitivity of OCT detection. The
stimulation methods using any mechanical contact [36,37] or label agents [38–40] are largely
unsafe and unsuitable for in vivo ocular OCE measurement. Most of the OCE methods
sweep sinusoidal excitations over a defined frequency range to achieve the spectroscopy-based
response [35–37,39,40]. Using square-wave tissue modulation [38], or impulse stimulation
functions can provide a wide range of stimulus frequencies simultaneously. The requirement
of frequency sweeping usually takes longer time, and could cause discomfort or harm during
in vivo measurements for the human eye. The sound-induced OCE system was implemented
to observe dominant response frequencies from bovine eyes, ex vivo [8]. These large-scale
tissue vibrations (in the millimeter scale) require a large stimulation force that is potentially
hazardous for ocular tissues in vivo. Instead of the sinusoidal excitation method, a single impulse
stimulation force can provide a wide range of frequency excitation (e.g. 0 to kHz) simultaneously.
A micro-scale air-pulse stimulation method was initially designed for ocular OCE applications
[14], and was recently verified in our in vivo corneal elastography measurement [41]. The use
of this micro-air-pulse stimulator can provide short duration (∼ 1 ms), micrometer-scale tissue
displacements and a period of tissue damping oscillatory motion that ranges from sub-micrometer
to nanometer-scale [42]. In previous work, we developed a relaxation model [12,13,43] to estimate
tissue viscoelasticity by fitting exponential curves to model the tissue’s primary deformation
recovery response. This damped frequency response was limited to the primary deformation



Research Article Vol. 11, No. 6 / 1 June 2020 / Biomedical Optics Express 3303

response only. Thus, this method was not a direct measurement of natural frequency, and is
subject to assumptions and approximations.
We have recently introduced an OCE approach based on a higher resolution OCT technique

and a perpendicular air-pulse stimulation method [42]. The newly developed common-path OCT
detection method provides enhanced optical phase stability and detection sensitivity (0.24± 0.07
nm), and provides automatic compensation for polarization and dispersion. The improved low-
force (tens of Pascals) air-pulse tissue stimulation system was developed from an earlier oblique
stimulation geometry [14,43] that now has a stimulation geometry normal to the surface. Loading
normal to the surface improves tissue excitation efficiency, provides better wave propagation
uniformity in radial directions, and simplifies modeling methods which can be used to derive
the mechanical properties from the observed sample response [44]. Displacement amplitudes
generated by this micro-force stimulation can be limited to sub-micrometer or a nanometer scale.
This common-path OCT detection technique has shown better visualization and quantification of
small-magnitude oscillations than conventional OCT [42]. The improved detection sensitivity of
common-path OCT and the perpendicular micro-scale stimulation now enable direct observation
of these small-magnitude damped oscillations [42].
Here we describe a natural frequency quantification method that employs small-magnitude

damped oscillations by using the combination of perpendicular micro-air-pulse stimulation, high
sensitivity common-path OCT detection, and a single degree of freedom (SDOF) model [36,45].
The oscillation features including the dominant natural frequencies, decay coefficients, and the
damping ratios, can be analyzed using the OCE measurement and the SDOF quantification
method. We verify the natural frequency concept using OCE measurements on agar phantoms
at different stimulation pressures, at different measurement positions, and for various phantom
concentrations and different thicknesses. We compare the measurement of natural frequencies
and Young’s moduli using the SDOF method and the elastic wave propagation method. We
also report results form a pilot study using this novel OCE approach for in vivo measurements
of human corneal natural frequency and damping ratios. We show that the small-amplitude
oscillation measurements and the SDOF method can provide robust and precise quantification of
the natural frequencies in biological tissues. It has the potential to be used in the further clinical
applications, such as early disease detection and treatment evaluation.

2. Materials and methods

2.1. Agar phantoms

Tissue-mimicking agar phantoms with different agar concentrations–0.75%, 1%, 1.25%, 1.5%,
and 2% –were prepared following the procedures described previously [42,46,47]. The phantom
densities were calculated as 820 kg/m3, 839 kg/m3, 871 kg/m3, 942 kg/m3, and 985 kg/m3,
respectively, for the 0.75%, 1%, 1.25%, 1.5%, and 2% agar phantoms, based on the measured
weights and volumes. The phantom weights were monitored before and after experiments to
account for any evaporation, dehydration, or environmental effects. Phantoms had diameter of 35
mm, thicknesses from 3 to 8.5 mm, and weights from 2.4 to 6.7 g.

2.2. Human subjects

A pilot study was performed on the left eye of a healthy subject (35 years). He had no ocular
disease or surgical history, except myopia (left eye: -3 D). The intraocular pressure was measured
as 13.1 mmHg using a Goldmann tonometer. The research protocol was reviewed and approved
by the institutional review board (IRB) of the University of Alabama at Birmingham and adhered
to the tenets of the Declaration of Helsinki.
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2.3. Common-path PhS-OCE instrumentation

A common-path OCE system (Fig. 1) was described previously [42]. Briefly, a low-force air-pulse
stimulator [14] was set perpendicular to the tissue or sample surface to provide short duration (≤
1 ms), localized (diameter of 150 µm), and low-pressure (0–60 Pa) stimulation. Each air pulse
provided a range of ∼ 0-1.5 kHz excitation frequency. A common-path phase-sensitive OCT
system was synchronized to the stimulation to detect the subtle displacements in response to the
applied force. The light source of the OCT system was a superluminescent laser diode (SLD,
D-855, Superlum Diodes Ltd.) with a central wavelength of 845 nm, and a waveband of 100 nm.
The common-path design used a shared common optical path for the sample and reference arms
with a reference plane defined as the optical surface of a 5-mm thick acrylic plate, kept proximal
to the sample. A telecentric scan lens (LSM04-BB, Thorlabsc Inc. New Jersey, USA) was
inserted between two-dimensional Galvo scanners (for simplicity, only one scanner is shown in
Fig. 1) and the reference plane. The lens enabled illumination that was parallel to the optical axis
and ensured uniform illumination to the sample during lateral scans. The structural resolution, as
calibrated in air, was ∼3.3 µm in the axial direction and ∼7.8 µm in the lateral direction, and
the maximum imaging depth was ∼6.76 mm. The detection sensitivity for the dynamic tissue
displacements was dependent on phase stability, which was calibrated as ∼0.24 nm in the depth
of 0.33 mm to 6.66 mm using a mirror (signal sensitivity: 102.4 dB to 66.4 dB) [42].

Fig. 1. Common-path PhS-OCE combines an air pulse stimulator to inducemicrometer-scale
tissue deformation and a high-sensitivity common-path PhS-OCT to detect tissue response
(sensitivity 0.24 nm) [42]. In common-path OCT, the interference signal is produced by
combing returned light from the sample and a reference plane adjacent to the sample.

2.4. Dynamics of single degree of freedom spring-mass-damper system

We used a single degree of freedom (SDOF) model [36] to quantify the tissue oscillation dynamics.
Figure 2(a) demonstrates an ideal SDOF spring-mass-damper system [45], where k is the spring
stiffness coefficient, c is the viscous damping coefficient, and m is a mass.

Tissue natural frequency (fn) is an intrinsic property that is determined by the tissue stiffness,
mass, boundary conditions, thickness, shapes etc. In this SDOF model, the natural frequency fn
can be calculated based on the spring stiffness k and the mass m, as

fn =
√

k/m
2π

. (1)

The damping ratio is defined as
ε =

c
4πmfn

. (2)

Based on the values of ε, the response oscillation can be described as three different oscillation
regimes: critical-damping (damping ration ε = 1), under-damping (0 ≤ ε < 1), and over-damping
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Fig. 2. Dynamic responses of a single degree of freedom (SDOF) spring-mass-damper
system. (a) Schematic of a SDOF spring-mass-damper system. m: mass; k: spring stiffness
coefficient; c: viscous damping coefficient. (b) The logarithmic decay oscillation response
in an under-damping situation (0 ≤ ε &lt; 1). fn: natural frequency, fd: damped natural
frequency; ε: damping ratio; A: original oscillation amplitude; B: decay coefficient.

(ε > 1) [12,13,43]. Figure 2(b) demonstrates a decaying SDOF response of the spring-mass-
damper system in an under-damped condition (ε <1). The equation of motion to describe the
free response of a SDOF system is:

ÜyA(t) + 4πεfn ÛyA(t) + (2πfn)2yA(t) = 0, (3)

where yA(t) is a displacement of the center of mass. The solution of this equation is:

yA(t) = AeBt sin[2πfn
√
1 − ε2t + φ], (4)

yE(t) = AeBt, (5)

where yE(t) is the envelope function, A is the maximum amplitude, B is the decay coefficient, and
φ is a phase value:

B = −2πfnε. (6)

The natural frequency fn can be deduced based on the damped natural frequency fd and the
damping ratio ε as

fn =
fd

√
1 − ε2

. (7)

When the damping ratio ε is small, the damped natural frequency fd is nearly equal to the
undamped natural frequency fn. Figures 3(a) and (b) show the estimated damping ratio ε and
the difference between the fn and fd based on Eqs. (6),(7). When the natural frequency fn is in
the range of 50-1000 Hz, and the decay coefficient B is in the range from -100 to -10 s−1, the
damping ratio is smaller than 0.3 and the difference between the fn and fd is smaller than 3 Hz. In
this situation, we can assume that the acquired damped natural frequency fd equal to the natural
frequency fn.

2.5. Oscillation characterization using SDOF method

In PhS-OCE, the axial surface tissue displacement
a

z(tJ-t0) of a point on an air/sample interface
at time tj, relative to time t0 is given by [48]:

∆z(tJ − t0) =
λ0
4πn
× φz(tJ − t0), (8)

where ϕz(tJ-t0) is the phase change, λ0 is the center wavelength and n is the refractive index
(n= 1 in air). A typical air-pulse induced displacement on the sample surface is demonstrated in
Fig. 4(a), which was acquired from a 2% agar phantom (weight: 6.7 g, thickness: 7.1 mm) by
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Fig. 3. Estimation of damping ratio ε (a) and the difference between the natural frequency
fn and the damped natural frequency fd (b).

common-path OCE with an applied pressure of 4 Pa. The figure shows a baseline period (0 ∼
11.5 ms) followed by an initial surface displacement that is driven by the excitation force (primary
deformation with amplitude A0; 11.5 ms ∼ 13.1 ms). Then follows a recovery response period
where the displacement amplitude returns from A0 to zero for the first time (13.1 ms ∼ 14.6 ms),
and a period of damped oscillations (14.6 ms ∼ 90 ms).

Fig. 4. Demonstration of the tissue oscillation characterization using the SDOF method.
These representative data were acquired from a 2% agar phantom (weight: 6.7 g, thickness:
7.1 mm) by common-path OCE, with an applied pressure of 4 Pa. (a) Typical surface
displacement dynamics of one point include a force-driven primary deformation and recovery
period, and a period of damped oscillatory motion. The damping envelope was fit to a decay
function. A1 is the decay amplitude and B is the decay coefficient (for this data, A1 =−0.125
µm, B=−37.5 s−1, and R2 = 0.98). (b) FFT of the tissue damping oscillations. The damped
natural frequencies were in the range of 300-1500 Hz. The dominant natural frequency fn
was equal to the dominant damped natural frequency fd as 776 Hz, since ε was small (0.008).
(c) Comparison between the damping oscillation data and the SDOF fitting data based on
Eq. (4) when fn = 776 Hz.
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The decay feature and the oscillation frequencies can be calculated from the damped oscillations
depicted in the red-dashedwindow area (20ms to 90ms). Based on Eq. (5), the decay envelope can
be described as yE(t) = A1eB(t - t1). A1 is the decay amplitude, defined as the maximum negative
displacement amplitude in the red-dashed window area, t1 is the time when the maximum negative
displacement A1 occurs, and B is the decay coefficient (defined in Eq. (6)). A1 corresponds to
the general scale of the damping amplitudes and B corresponds to the damping speed of the
oscillation amplitudes. In the representative oscillations shown in Fig. 4(a), the values for the
exponential decay curve were A1 =−0.123 µm, B=−37.5 s−1, and R2 = 0.98.

We used zero padding method to expand the displacement data from 90 ms detection period to
0.5 s, the stimulation interval between adjacent measurements. We then employed fast Fourier
transform (FFT) method to analyze the oscillation frequencies with a frequency resolution of 2 Hz.
In the frequency components (Fig. 4(b)), the ∼ 20 Hz low frequency was identified previously as
the phase noise caused by environmental factors such as vibration [42], the damped frequencies
were in the range of 340-1230 Hz, and the dominant damped frequency fd was 776 Hz. Based on
this dominant fd (776 Hz), and the fitted A1 (−0.123 µm) and B (−37.5 s−1) values, we estimated
the damping ratio ε as 0.008 based on Eqs. (6),(7). Since ε is very small, the natural frequency
fn equals to the damped natural frequency fd. In Fig. 4(c) the original damping oscillation data is
compared with the SDOF fitting data (Eq. (2)). Both the original data and the SDOF fitting data
had the similar oscillation frequency and decay trend (R2 = 0.81). The residual mismatch (root
mean squared error: 0.01 µm) between the original data and the fitting data was because SDOF
was a simplified method that discarded other frequency components. The residual errors can be
reduced if more frequency components were used to describe the damping oscillation data using
a multi degree of freedom (MDOF) method [38,45].

3. Phantom measurement

Natural frequency is an intrinsic property of tissues, determined by factors such as spring stiffness
and mass (Eq. (1)), and is not determined by the stimulation force. For an ideal homogenous
material, the natural frequency should be the same, regardless of the stimulation force and the
measurement location. We verified the natural frequency concept using OCE measurements on
agar phantoms at different stimulation pressures (Section 3.1), at different measurement positions
(Section 3.2), and for various phantom concentrations and different thicknesses (Section 3.3).
We also compared the measurements of natural frequencies and Young’s moduli using the SDOF
method and the elastic wave propagation method in Section 3.4. The A-line measurement speed
was 70 kHz. Displacement profiles were obtained from 6000 A-lines (90 ms). The stimulation
interval between sequential measurements was 500 ms for all the phantoms tested.

3.1. Oscillation frequency for different stimulation forces

The measurements were performed at the same location on the surface of 2% agar phantom,
0.3 mm from the excitation point. The air-pulse pressure was increased from 4 Pa to 32 Pa in
step of 4 Pa, and five measurements were made for each pressure in M-mode (repeated A-scan
acquisitions over time at the same location).

Figure 5(a) shows the surface displacements for each pressure as well as the oscillation features
in response the range of stimulation pressures tested (4 Pa to 32 Pa). As the stimulation pressure
was increased, the primary displacement amplitude A0 increased, but the damping oscillation
behavior remained similar. Figure 5(b) shows that the primary displacement amplitudes A0
ranged from -0.2 µm to -4.0 µm (mean coefficient of variation (CV) 1.87%), and fit linearly in
response to the applied force (y=−0.144x+ 0.638, R2= 0.983). Figure 5(c) shows the FFT for
each stimulation force. The dominant damped frequency fd for all of the measurements was
776 Hz. Figure 5(d) and 5(e) show the results of fitting the damped oscillations. The decay
amplitudes A1 ranged from -0.12 µm to -0.17 µm (mean CV 3.7%) and varied as the force
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changed. There was no observable relation between the decay features (A1 and B) and the primary
displacement amplitudes A0. The decay coefficients B and the damping ratio ε were not sensitive
to the applied force. The mean value of the B and ε for all the measurements were -37.6 s−1 and
0.008 (CV: 7.7%), respectively. We assumed that the dominant natural frequency fn was close to
the dominant damped natural frequency fd as 776 Hz since ε is small.

Fig. 5. Oscillation behavior observed from a 2% agar phantom (weight: 6.7 g, thickness:
7.1 mm) at 8 different stimulation pressures (4Pa (top) to 32 Pa (bottom), 5 measurements
for each stimulation force). Displacements were measured from the same position, 0.3 mm
from the excitation point. (a) The primary displacement amplitude (A0) and the damped
oscillations. (b) Quantification of A0. (c) FFT of the damped oscillations for all the forces.
The dominant frequency was found to be 776Hz for all forces. (d) Decay amplitude A1 and
(e) decay coefficient B in response to the applied forces.

3.2. Oscillation frequency for different measurement positions

The measurements were designed to assess the effect of sample position on oscillatory motions.
The measurements ranged between 0.3 mm to 5.3 mm from the stimulation point; the air-pulse
stimulation was fixed at 20 Pa and the measurements were repeated 5 times for each position.
Figure 6(a) shows the surface displacements for each position and the enlarged area shows

oscillation features with 0.3 mm at the bottom and 5.3 mm at the top for the windowed area. As
the measurement distance was increased, the primary displacement amplitude (A0) decreased,
the tissue oscillation behavior remained similar, and the time when displacements occurred were
delayed. These observed time-shifts and the measurement positions were used to calculate the
wave propagation speed and Young’s modulus [27]. Figure 6(b) shows that as the measurement
distance increased, A0 decreased in absolute value from -1.86 µm to -0.04 µm (mean CV 5.4%).
Employing a previously reported method [49], the decrease in primary deformation with position
was fitted to an attenuation curve as y= aeb(x−0.3), where a is the amplitude, b is the damping
coefficient, and the scales for x and y are millimeter and micrometer, respectively. Here, a= -1.86
µm, b= -1.05mm−1, and R2 = 0.999. In Fig. 6(c), the dominant frequency was calculated to be
778± 1Hz. Figure 6(d) and (e) show the decay fitting results for the damped oscillations. The
decay amplitudes A1 were from -0.08 µm to -0.19 µm (mean CV: 6.4%). There was no observable
relation between the decay features (A1 and B) and the primary displacement amplitudes A0. The
decay coefficients B were from -31.2 s−1 to -63.3 s−1 and the damping ratios ε were from 0.006
to 0.013 (mean CV: 6.7% for all measurement positions).
Figures 5 and 6 showed that the tissue phantom oscillated at the same dominant frequency

regardless of the external applied forces (4 Pa to 32 Pa) or the distances between stimulation
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Fig. 6. Oscillation behavior observed from a 2% agar phantom (weight: 6.7 g, thickness: 7.1
mm) at different measured distances (0.3 mm to 5.3 mm: color series) from the stimulation
point. The stimulation force was 20 Pa and 5 measurements were taken at each position. (a)
The primary displacement amplitude (A0) decreased dramatically, while tissue oscillation
behavior remained similar from 0.3 mm to 5.3 mm. (b) A0 was fit to an exponential decay
curve (y= aeb(x−0.3), a= -1.86 µm, b= -1.05 mm−1, R2 = 0.999) [49]. (c) FFT results for all
the measured positions. The dominant frequency was 778.1± 0.98 Hz for all positions. (d)
and (e) are the quantifications of decay amplitude (A1) and decay coefficient (B).

location and the points of measurements (0.3 mm to 5.3 mm). Because the measured damping
ratio ε is small (less than 0.013), the damped natural frequency is nearly equal to the undamped
natural frequency. Therefore, the SDOF model is an effective analytical model to determine the
dominant natural frequency from the induced oscillation process.

3.3. Oscillation features for various sample concentrations and thicknesses

As demonstrated in Eq. (1), natural frequency is determined by spring stiffness and mass. We
evaluated the oscillation features (fn, B, and ε) using SDOF method for agar phantoms with
various concentrations (1%, 1.5%, and 2%) and different thicknesses (3 mm and 6 mm). The
weights of the agar phantoms were 2.4-2.8 g for 3 mm thickness phantoms, and were 4.9-5.7 g for
6 mm thickness phantoms. The stimulation force was 20 Pa. The measurements were performed
at five surface positions (0.3-1.3 mm from stimulation force, increment: 0.25 mm), and were
repeated 6 times for each position. The data was selected based on the fitting R2 for the decay
coefficient B (≥ 0.9).

Figure 7(a) shows the natural frequency values computed using the FFT method. For the 3 mm
thickness phantoms, the measured natural frequencies and standard deviations (STDs) for 1%,
1.5% and 2% agar phantoms were 591 Hz± 2 Hz (n= 14), 1166 Hz± 6 Hz (n= 27), and 1328
Hz± 8 Hz (n= 20). For the 6 mm thickness phantoms, the measurement natural frequencies and
the STDs for 1%, 1.5% and 2% agar phantoms were 363 Hz± 2 Hz (n= 19), 724 Hz± 14 Hz
(n= 9), and 907 Hz± 4 Hz (n= 23). The natural frequencies quantified from FFT method (mean
CV: 0.7%) were observed to be increased with phantom stiffness and decreased with phantom
thickness.
Figure 7(b) shows the decay coefficient computed using the curve fitting method and Eq. (5).

For the 3 mm thickness phantoms, the calculated decay coefficients and the STDs for 1%, 1.5%
and 2% agar phantoms were -62.0 s−1 ± 9.1 s−1, -62.6 s−1 ± 7.3 s−1, and -76.8 s−1 ± 16.7 s−1.
For the 6 mm thickness phantoms, the calculated decay coefficients and the STDs for 1%, 1.5%
and 2% agar phantoms were -35.8 s−1 ± 3.7 s−1, -56.4 s−1 ± 7.6 s−1, and -68.1 s−1 ± 13.8 s−1.
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Fig. 7. Comparison between the measured natural frequencies and decay coefficients for
agar phantoms with various concentrations (1%, 1.5%, and 2%) and thicknesses (3mm and
6mm). Stimulation force: 20 Pa. Measurement position: 0.3mm to 1.3mm (increment:
0.25mm) from the stimulation point. (a) The natural frequencies (mean CV: 0.7%) and (b)
the absolute values of decay coefficients (mean CV: 15.4%) were increased with phantom
concentrations and decreased with phantom thicknesses. (c) The damping ratios were
decreased with phantom concentrations, and were not sensitive to phantom thicknesses.
(d) The absolute values of decay coefficients were increased with higher observed natural
frequencies (R2 = 0.32, P&lt; 0.01). (e) There was no obvious relation between natural
frequency and the dapping ratios.

The observed absolute values of the decay coefficient (mean CV: 15.4%) were also observed
to increase with phantom concentrations and decrease with phantom thickness. However, the
measurement errors were so large that the 1% and 1.5% agar phantoms with 3 mm thickness
were not distinguishable.

Figure 7(c) shows the calculated damping ratio ε based on Eq. (6). For the 3 mm thickness
phantoms, the calculated damping ratios and the STDs for 1%, 1.5% and 2% agar phantoms
were 0.017± 0.002, 0.009± 0.002, and 0.009± 0.002. For the 6 mm thickness phantoms, the
calculated damping ratios and the STDs for 1%, 1.5% and 2% agar phantoms were 0.016± 0.002,
0.013± 0.002, and 0.011± 0.003. The calculated damping ratios decreased with phantom
concentrations increased, and do not change obviously as the phantom thickness changes.

Figures 7(d) and (e) summarize the relation among the natural frequencies, decay coefficients,
and damping ratios of the agar phantoms. The decay coefficients correlate with the natural
frequencies (y= -0.03x - 34.7, R2 = 0.32, p< 0.01), as predicted by Eq. (7). There was no obvious
correlation between the measured natural frequencies and the damping ratios.

3.4. Relation between the natural frequency and the Young’s modulus

Young’s modulus is a measure of how easily a material deforms, and is defined as the ratio of the
stress and strain [32]. Our previous studies have shown that Young’s modulus can be estimated
from the elastic surface wave propagation velocity [46,47,50]. Previous results have also shown
good agreements between this OCE-based method and the gold standard—mechanical testing
methods [46,47]. Here we compared the measurement of natural frequencies and Young’s moduli
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using the SDOF method and the elastic wave propagation method. The measured agar phantoms
had various concentrations from 0.75% to 2% (weight: 6.7g; thickness: from 7.1 mm to 8.5 mm).
The stimulation pressure was 20 Pa.

Natural frequencies, decay coefficients, and damping ratios were measured using the SDOF
method. The measurement positions were from 0.3 mm to 1.3 mm (step: 0.25 mm), relative
to the stimulation points. Figures 8(a) and (b) show the representative normalized tissue
damping oscillations for 0.75% - 2% agar phantoms and the corresponding frequency components
calculated using the FFT method. Figure 8(c) shows the natural frequency values, that ranged
from 127 Hz to 774 Hz (mean CV: 0.9%) for the agar phantoms with a frequency resolution

Fig. 8. Measurement of the natural frequencies and damping ratios using the SDOF method,
and the Young’s moduli from elastic wave propagation process on 0.75% to 2% agar phantoms
(weight: 6.7g). The stimulation force was 20 Pa. (a) Representative normalized tissue
damping oscillations for 0.75-2% agar phantoms. (b) Representative frequency components
from the FFT analysis of tissue oscillations. The dominant frequencies (from 127 Hz to 774
Hz) were considered as the natural frequencies for the agar phantoms. Panels (c-d) show the
quantifications (mean± STD) of natural frequencies and damping ratios. Panel (e) shows the
Young’s moduli (mean±STD). (f) The natural frequencies (mean± frequency resolution)
derived from the induced agar phantom tissue oscillations were linearly correlated to the
square roots of the elastic modulus (mean± standard deviation). The error bars in the x
direction (mean STD:± 2 Hz) were too small to be observed.
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of± 2 Hz. Figure 8(d) shows the calculated damping ratios, that ranged from 0.022 to 0.008.
The measurement CVs ranged from 53.9% (0.75% agar phantom) to 14.9% (2% agar phantom)
with the mean CV of 27.9%.

In an isotropic homogeneous elastic material, Young’s modulus E can be estimated from the
speed c of elastic surface wave propagation, as follows [27]:

E =
2ρ(1 + ν)3

(0.87 + 1.12ν)2
C2

g, (9)

where ρ is the material density and ν is the Poisson’s ratio. The densities (ρ) were 820 kg/m3,
839 kg/m3, 871 kg/m3, 942 kg/m3, and 985 kg/m3, respectively, for the 0.75%, 1%, 1.25%, 1.5%,
and 2% agar phantoms. The Poisson’s ratio ν can be assumed as 0.5 [42,46]. The group velocity
of the elastic surface wave is Cg = d/t, where d and t are the distance and time delay of the primary
surface displacement between measurement points [46]. The elastic waves were measured at 0.3
mm to 5.3 mm away from the stimulation point, in increment of 1 mm. The measurements were
repeated at least five times at each location. The measured elastic wave propagation speeds in
0.75%, 1%, 1.25%, 1.5%, and 2% agar phantoms were 2.47 m/s, 2.78 m/s, 3.05 m/s, 3.93 m/s,
and 6.02 m/s (mean CV: 2.9%), respectively; and the corresponding Young’s moduli were 16.5
kPa, 21.4 kPa, 26.7 kPa, 48.0 kPa, and 117.8 kPa (mean CV: 5.8%), respectively, as shown in
Fig. 8(e).

The natural frequencies and the Young’s moduli increased, while the damping ratios decreased
as the agar concentration increased. The measurement repeatability for natural frequency (mean
CV: 0.9%) and Young’s modulus (mean CV: 5.8%) was high, but the measurement precision for
the damping ratio was limited due to the low measurement precision of the decay coefficients
(mean CV: 27.9%).

Figure 8(f) summarizes the measurements of Young’s moduli and natural frequencies of the
agar phantoms. The natural frequencies closely correlated with the square root of the Young’s
moduli (y= 0.01x+ 2.60, R2 = 0.998, p< 0.01). The linear relationship between the natural
frequency and the square root of the Young’s modulus of a viscoelastic material was demonstrated
previously in the experiments on silicone phantoms [35,38]. Our research was consistent with the
results of previous studies, and confirmed that the natural frequency could be used to distinguish
tissues and materials with different stiffness.

4. In vivo human cornea measurement

We performed a natural frequency measurement on the human cornea in vivo using OCE imaging
and the SDOF method. During the corneal elastography imaging, the subject sat in a chair, placed
his chin on a chin rest and forehead against a headband, and focused the eye on a fixation target.
The stimulation pressure was 13 Pa, which was less than our previous work (20-60 Pa) [41]. The
duration of the air force was 1 ms, and the time between two successive excitations was 100 ms.
Corneal surface oscillations were recorded with an A-scan sampling rate of 20 kHz, and a total
of 600 A-lines (30 ms) for each measurement position. The measurement points were scanned
from 0.25 mm to 2.75 mm away from the stimulation point with the increment of 0.1 mm in the
horizontal direction on corneal surface. Each set of measurements for the 2.5 mm distance took
2.6 s. Five measurements were repeated to assess measurement precision and repeatability.
Figure 9(a) demonstrates selected corneal surface displacement profiles at 6 measurement

locations. As wave-traveling distance increased, the primary displacement amplitude was
decreased while the oscillation behavior (windowed area) remained similar. This was consistent
with the phantom measurement results in Fig. 6. Corneal natural frequencies and damping ratios
of each measurement position were acquired using the SDOF method for the windowed area.
Figure 9(b) shows the fast Fourier Transform (FFT) analysis results in the frequency domain
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from 0-1200 Hz. Regardless of measurement positions, the corneal surface oscillated at similar
damping frequencies (in the range of ∼ 0-600 Hz). Although we report only the damping ratios
(ε) here, it is possible to derive the decay coefficients (B) using Eq. (6). The dominant damped
frequencies (fd) were converted to natural frequencies (fn) based on Eq. (7). Figure 9(c) and
Fig. 9(d) show the means and standard deviations (SDs) for the measured natural frequencies (fn)
and damping ratios (ε), respectively, for each measurement position (n= 5 repeat measurements).
The overall values for fn and ε were (mean±SD) 259± 5 Hz and 0.084± 0.026, respectively.

Fig. 9. Characterization of the in vivo human corneal natural frequency and damping ratio
(ε) when the corneal surface wave traveled in a distance of 2.5 mm (increment: 0.1 mm,
n= 5 repeat measurements). (a) Selected corneal surface displacement profiles for different
measurement distances (increment: 0.5 mm). The red-dash window is for the SDOF analysis.
(b) Frequency components via FFT method. (c) and (d) show the mean± STD of the corneal
natural frequency (fn) and damping ratio (ε) along the wave traveling path.

5. Discussion

The improved detection sensitivity of common-path OCT and the perpendicular micro-scale
air-pulse stimulation enable direct observation of small-magnitude damped oscillations [42]
and a more precise natural frequency quantification that was possible to observe in vivo for the
cornea. The low pressure (< 60 Pa), short duration (≤1 ms) perpendicular air-pulse stimulation
can provide a range of ∼ 0-1.5 kHz excitation frequency, and induce oscillations that gradually
decreases from sub-micrometer scale to sub-nanometer scale to zero. The common-path detection
technique has enhanced optical phase stability (0.24± 0.07 nm) that make the small-magnitude
oscillation behavior detectable [42]. In this study, we have characterized these small-magnitude
oscillations, and computed the natural frequencies and damping ratios of agar phantoms and in
vivo human cornea using a simple single degree of freedom (SDOF) method [36,45].

The dominant damped natural frequency fd and the decay coefficient B acquired from oscillation
process are used in this SDOF method to calculate the natural frequency fn and the damping
ratio ε (Eqs. (1)–(7)). We have demonstrated that the phantom oscillates at the same dominant
frequency, regardless of the applied forces and stimulation distances (Figs. 5 and 6). Thereby, this
SDOF method is effective to measure the dominant damped and undamped natural frequencies
(fd and fn) from the induced oscillation process. We have also demonstrated that the natural
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frequencies were larger in the agar phantoms with higher stiffness, and were lower in the agar
phantoms with less weights/thicknesses (Fig. 7). This was consistent with the Eq. (1).
We measured the natural frequencies and Young’s moduli for 0.75%, 1.0%, 1.25%, 1.5%,

and 2.0% agar phantoms. The natural frequencies correlated to the square roots of the elastic
modulus (Fig. 8). This result was consistent with previous publications on silicone phantoms
[35,38]. We also confirmed that the natural frequency can be used to distinguish tissues and
materials of different stiffness. The elastic wave propagation speeds in soft tissues are in the
range of several meters per seconds. In this study, the propagation speeds were approximately
2.5–6.0 m/s for agar phantoms of concentrations between 0.75% and 2.0%. Most OCE systems
are not fast enough to track the propagation of the elastic wave using one stimulation. The typical
method to track the wave speed, also used in this study, is to use multiple stimulations and to
measure data at different positions in the sample. Tissue motion, especially in the lateral direction,
affects measurement repeatability and precision. Since natural frequency is not determined by
the measurement position, it is not as sensitive to sample motions as the measurement of wave
speed. Consequently, the measurement of natural frequency may be useful to determine the
elastic properties of live tissues in vivo.

The damping ratios (ε) for all the measured agar phantoms (concentration: 0.75% to 2%) are
very small, approximately from 0.01 to 0.04. Thereby, the damped natural frequency fd is close
to the undamped natural frequency fn based on Eq. (7). We have shown that the damping ratio
decreases as the agar concentration increases (Fig. 7(c) and Fig. 8(d)). In addition, the damping
ratio is independent of phantom thickness (Fig. 7(c)), and there is no obvious correlation between
the measured natural frequencies and the damping ratios (Fig. 7(e)).
In Fig. 8(d), the measurement CV of ε for 0.75% agar phantom is as large as 53.9%. The

estimation of the damping ratio ε is limited by the measurement repeatability of the damping
coefficient B (Eq. (6) and Eq. (7)). The absolute value of the coefficient B is larger in phantoms
with higher agar concentration and smaller in thicker phantoms (Fig. 7(b)), as well as, correlates
with the natural frequencies (Fig. 7(c)). However, the measurement repeatability of B (CV:
15% ∼ 54%) are much worse than that of the natural frequency (CV: 0.3% ∼ 1.6%). The large
measurement variation of B may limit its use for distinguishing tissues with different mechanical
properties. The 1% and 1.5% agar phantoms with 3 mm thickness are not distinguishable based
on the decay coefficients (Fig. 7(b)) due to the large measurement error, but can be clearly
distinguished based on the natural frequencies (Fig. 7(a)). The large variation of the decay
features in the homogeneous tissue phantoms might be caused by the limited fitting points for the
decay envelop fitting (shown in Fig. 4(a)) as well as the superposition of waves propagating along
the surface, inside the phantom, or reflected by phantom boundaries. This wave-superposition
would be more complicated in biological tissues, where there are multiple layers or boundaries, or
with illness that changes the local stiffness and induces boundaries. The analysis of the variation
of the decay features or the wave-superposition patterns might be used to get information about
the tissue boundaries. Future work will include development of new analytical models and use of
finite element analysis method, to further explore the mechanisms of wave propagation and wave
superposition in tissues with complex boundary conditions.
Previous OCE methods have successfully shown the high-resolution resonant frequency

measurement [35,36,38–40] and have demonstrated that the natural frequency is linearly related
to the square root of Young’s modulus in a simple elastic model [35,38]. Our results are in
agreement with these previous observations and have advantages over previous approaches. Here,
we applied a non-contact air pulse stimulation method that provided a wide range of frequency
excitation (e.g. 0 to kHz) simultaneously. We also used a high-sensitivity OCE system to detect
the small-amplitude (sub-nanometer to sub-micrometer scale) damped oscillations with high
resolution (0.24 nm). This air-pulse stimulation generated free oscillations after the primary
deformation (Fig. 4). In this case, Eq. (3) described a SDOF method for the free oscillation
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response, which is slightly different from the forced oscillation response described in previous
studies [36,37]. In Fig. 6, we have demonstrated that the free oscillation feature is independent
of the measurement distance over a range of several millimeters. Therefore, there are potential
benefits to use the tissue natural frequency to determine a global estimation of tissue properties.
In addition, if the diseased tissue area is not easily accessible or it would be too invasive if
measured directly, natural frequency measurements could provide an alternative way to assess
tissue stiffness. In Fig. 5, we have demonstrated that the free oscillation feature is not dependent
upon the stimulation force amplitude. Therefore, we can use very small stimulation forces to
stimulate delicate tissues, such as the eye.
We have demonstrated in vivo measurements of human corneal natural frequency (fn) and

damping ratio (ε) in Fig. 9. In this pilot study, we applied a much lower air pressure (13 Pa)
to stimulate, observe, and quantify the corneal oscillation features, compared to our previous
work (20-60 Pa) [41]. We have shown good measurement precision and repeatability for the
measurement of human corneal natural frequencies (mean±SD: 259± 5 Hz, CV: 1.9%). The
natural frequency value of the measured human cornea was very near to the 1.25% agar phantom,
which was 261± 2 Hz (CV: 0.8%). The damping ratio (0.084± 0.026, CV: 31%) was much larger
than that of 1.25% agar phantom (0.014± 0.005, CV: 34%).

It should be noted that the SDOF method used here is only an approximation and simplification
method that describes the dominant oscillation frequencies and ignore other frequencies. As
demonstrated in Fig. 4(b), the measured damped natural frequencies for a 2% agar phantom
sample are in the range of 300-1500 Hz, but we only use the dominant damped natural frequency
(776 Hz) in the SDOF model. This leads to some residual matching errors between the original
damping oscillation data and the SDOF fitting data as shown in Fig. 4(c). The multi degree of
freedom (MDOF) method can be used to describe a more complex motion system that the general
vibration of the system consists of a sum of all the vibration modes and each vibration mode
vibrates at its own frequency [45]. At this stage, we will focus on the use the dominant natural
frequency in the SDOF model; in the near further we will also use the MDOF method for more
detailed and more precise characterization of tissue biomechanics.

It should also be noted that the use of OCE in the measurement of natural frequency from the
sub-micrometer to sub-nanometer tissue oscillations is only a preliminary study, and we still lack
enough knowledge on tissue biomechanical property characterization using natural frequency
values. First, it is not clear how the natural frequency spatially distributes in heterogeneous
tissues of complex geometries with multiple tissue/liquid (or other) interfaces and thin-layers.
Second, we do not know whether the natural frequency values can represent local variations
of tissue biomechanical properties due to disease progression. Third, there is no direct model
to determine Young’s modulus from the observed natural frequency. In addition, we are still
not sure whether this method is sensitive enough to distinguish changes in tissue biomechanical
properties caused by tissue heterogeneities, as well as the resolution or repeatability of this
approach in natural tissues. These are questions that should be investigated in future studies.

6. Conclusions

We have performed non-contact non-invasive natural frequency measurements on agar phantoms
and in vivo human corneal imaging using an air-pulse based common-path OCE system and a
single degree of freedom (SDOF) method. Small-amplitude (sub-nanometer to sub-micrometer
scale) damped oscillations were induced by perpendicular air-pulse stimulation, and were directly
observed using the common-path OCT with displacement resolution of 0.24. Tissue dominant
natural frequency and damping ratio were obtained by a SDOF method in both the frequency
and temporal domains using fast the Fourier transform (FFT) and curve-fitting methods. The
tissue phantoms oscillated at the same dominant frequency, regardless of the applied forces and
stimulation distances, showing that this oscillation frequency is the dominant natural frequency
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of the sample. By measuring the elastic properties of agar phantoms (0.75% to 2.0%), we also
demonstrated that the dominant natural frequency correlated with the square root of Young’s
moduli and can be used to distinguish tissues and materials of different stiffness. Preliminary
OCE imaging on the in vivo human cornea has shown good precision and repeatability for natural
frequency measurement (259 Hz, CV: 1.9%) within a measurement distance of 2.5 mm from the
point of stimulation on corneal surface.
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