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a b s t r a c t 

Were southern hemisphere countries right to undertake national lockdown during their summer time? 

Were they right to blindly follow the self-isolation wave that hit European countries in full winter? As a 

southern hemisphere country like South Africa stands now as the most COVID-19 and HIV affected coun- 

try in Africa, we use in this paper, recent COVID-19 data to provide a statistical and comparative analysis 

that may alert southern hemisphere countries entering the winter season. After that, we use a general- 

ized simple mathematical model of HIV-COVID-19 together with graphs, curves and tables to compare the 

pandemic situation in countries that were once the epicenter of the disease, such as China, Italy, Spain, 

United Kingdom (UK) and United States of America (USA). We perform stability and bifurcation analysis 

and show that the model contains a forward and a backward bifurcation under certain conditions. We 

also study different scenarios of stability/unstability equilibria for the model. The fractional (generalized) 

COVID-19 model is solved numerically and a predicted prevalence for the COVID-19 is provided. Recall 

that Brazil and South Africa share number of similar social features like Favellas (Brazil) and Townships 

(South Africa) with issues like promiscuity, poverty, and where social distanciation is almost impossible 

to observe. We can now ask the following question: Knowing its HIV situation, is South Africa the next 

epicenter in weeks to come when winter conditions, proven to be favorable to the spread of the new 

coronavirus are comfily installed? 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

It is in December 2019 that a new pneumonia, today known

s coronavirus disease 2019 or shorlty COVID-19, locally started

ff in the Chinese city of Wuhan. As of 30 May 2020, the world

ecorded almost 5.96 million cases of COVID-19 reported world-

ide in about 188 countries, nations and territories. Among those

eported cases, almost 366,0 0 0 people have succumbed to the dis-

ase ( Figs. 1 and 8 ) but fortunately, almost 2.52 million people

ave recovered. It is only on 11 March 2020 that the World Health

rganization (WHO) declared the COVID-19 a pandemic. Maybe

his unprecedented situation, since the 1918 Spanish flu pandemic

1] , would have been different if the alert call from Li Wenliang

2] was taken into consideration on time by Chinese authorities.

ence, the worldwide epicenter of the disease has since hit sev-

ral countries, from China to USA via Italy, Spain and UK ( Figs. 2–4

nd 6 ). It has now moved to the southern hemisphere country of

razil with the winter season ( Fig. 4 ). 
∗ Corresponding author. 
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Highly contagious, COVID-19 is caused by severe acute respira-

ory syndrome coronavirus 2 (SARS-CoV-2) and has been proven to

pread easily when cold winter conditions are met. In fact, some

esearch made recently [3] have shown that the SARS-CoV-2 can

asily spread in communities that live in places where the temper-

ture is relatively low, around 5 to 11 degrees Celsius, all associ-

ted with low specific, of around 3 to 6 g / kg and absolute humidity

f around 4 to 7 g / m 

3 . As southern hemisphere moves to the win-

er season, there are worries to feel for two particular countries

hose the number of deaths keeps rising: Chile and South Africa

 Figs. 5 and 7 ). More worries for South Africa as the country stands

ot only as the current most COVID-19 affected country in Africa

ut also the most HIV affected country. Moreover, the alarming sit-

ation in Brazil should be a huge concern for South Africa as both

ountries face similar precarious social issues as shown in Table 1 .

ecent statistics [4,5] show that COVID-19 mostly kills people with

re-existing diseases such as diabetes, high blood pressure, tuber-

ulosis and also HIV. Hence, this motivated us to study in this pa-

er, a combined HIV-COVID-19 model is order to start another alert
all for those concerned countries at risk. 

https://doi.org/10.1016/j.chaos.2020.110030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110030&domain=pdf
mailto:dgoufef@unisa.ac.za
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Fig. 1. Illustration of Worldwide COVID-19 daily new cases from 21 January to 31 May 2020 according to the WHO Coronavirus disease (COVID-2019) situation reports [4] . 

We note that the number of infections keep rising meaning that the pandemic is far from being over. 

Fig. 2. Illustration of two former epicenters, China and Italy COVID-19 daily new cases from 21 January to 30 May 2020 according to the WHO Coronavirus disease (COVID- 

2019) situation reports [4] . We note that the number of infections kept rising until the peak was reached before a decrease. The rise in China was quickly contained, around 

16 Feb., before Italy took over the epicenter status until around 21 Mar. 2020. 

Table 1 

Comparison of some factors [3,6,7] favorable to the spread of Covi-19 in Brazil (current epicenter) and 

South Africa (the potential next). 

FAVELLAS TOWNSHIPS 

Country Brazil South Africa 

Approximative population 11 million (6%) 14.7 million (25%) 

( % of the total population ) 

Residents Mainly African descents Mainly Africans 

Characteristics Poverty, sanitation, water, Poverty, infrastructure 

garbage collection problems,water supply problem 

promiscuity densely populated 

COVID-19 state Most affected in Latin America Most affected in Africa 

Feature The country’s president The country’s president 

chose not to go for a chose to easy the lockdown 

hard lockdown despite an despite an increasing 

increasing number of deaths number of deaths 
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Fig. 3. Illustration of two former epicenters, Spain and UK COVID-19 daily new cases from the start of the pandemic (01 march for Spain and 29 March for UK) until 30 May 

2020 according to the WHO Coronavirus disease (COVID-2019) situation reports [4] . We note that the number of infections kept rising until the peak was reached before a 

decrease. The rise in Spain was contained around 1 April 2020, before UK took over the epicenter status around 05 April 2020. 

Fig. 4. Illustration of one former epicenter, USA and the actual epicenter Brazil showing their COVID-19 daily new cases from the start of the pandemic (14 March for Brazil 

and 24 March for USA) until 30 May 2020 according to the WHO Coronavirus disease (COVID-2019) situation reports [4] . The USA quickly became the new epicenter of the 

disease around 24 April before starting seing a slight relief around. Though the number of new infections is still high i USA, Brazil has the new epicenter around 27 May 

2020. 
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Fig. 5. Illustration of potential next epicenter: Chile and South Africa COVID-19 daily new cases from the start of the pandemic (16 March for Chile and 18 March for South 

Africa) until 30 May 2020 according to the WHO Coronavirus disease (COVID-2019) situation reports [4] . It shows that the number of new infections keeps rising in both 

countries. 

Fig. 6. Worldwide shifting epicenters from China to Brazil and the approximative time they were epicenters. Is Chile or South Africa the next one as they enter the winter 

season?. 

 

 

 

 

 

 

 

p  

t  

c  

t  

n  

s  

i  

p  

o  

C  

i  
2. A simple COVID-19 model combined to HIV 

2.1. A simple HIV-COVID-19 model formulation and assumptions 

As commonly done in mathematical epidemiology for other

type of diseases [8–15] , we start by formulating the model and

clarifying the assumptions that will be used throughout. In this

section, a simple system modeling the temporal dynamics of the

Corona virus (2019-nCov) combined to HIV within human popu-

lation is described. As we don’t have yet all the answers on the

real dynamics and spread of the new 2019-nCov, we focus on peo-
le who are already COVID-19 infectious (symptomatic or asymp-

omatic individuals). We assume the people population N p to be

onstant and divide it into four different compartments according

o their status with respect to the diseases. Hence, at the t , we de-

ote by S p = S p (t) the fraction of the people population that are

usceptible, by I c = I c (t) the fraction of the people population that

s COVID-19 only infectious, by I h = I h (t) the fraction of the people

opulation that is HIV only infectious, by I hc = I hc (t) the fraction

f the people population that is dually infectious with HIV and

OVID-19. We assume that the COVID-19 infection process orig-

nates from a reservoir or a source of infection (called �) with
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Fig. 7. Comparative illustration of COVID-19 victims as from 1 June 2020 in all past and current epicenters. We note the global numbers are still relatively low in Chile and 

South Africa and up-front alerts need to be heard now before it is too late. 

Fig. 8. Illustration of worldwide COVID-19 daily deaths from 21 January to 28 May 2020 according to the WHO Coronavirus disease (COVID-2019) situation reports [4] . We 

note that the number of deaths has peaked some times around 29 April 2020 but remain significant in around the world, with exactly 4239 reported on 28 May. 
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nimals (pangolin or bats, etc) with a total population of N r = N r (t)

hat can be divided into two different com partments: The suscep-

ible to COVID-19 ( S r = S r (t) ) and COVID-19 infectious ( I r = I r (t) ).

e assume that individuals in the susceptible compartment are

ecruited into the people population at a rate �p which is con-

tant. Infections with COVID-19 of those individuals happen at a

ate of λc due to sufficient contact with infected animals in �, and

hey then move to the compartment of COVID-19 infectious indi-

iduals, I c . Moreover, infections with HIV happen at a rate of λh 

ue to sufficient contact with infected individuals and therefore,

usceptible individuals move to the compartment of HIV infectious

ndividuals, I h . People who are infected with COVID-19 only either

ecover thanks to their own immunity and are moved, at a rate

f γ , into the compartment of susceptible individuals or are in-

ected with HIV due to sufficient contact with infected individuals,

t the fraction rate of ελh , (with ε ∈ (0, 1]. Recall [16] that ε is

aken as such because we expect an eventual drop of sexual inter-

ourse (principal known cause of HIV transmission) of people who

re infected with COVID-19 due to the disease. They then move

nto the compartment I hc of dually infectious with HIV and COVID-

9. The disease COVID-19 kills people at the rate of κc . People who

re infected with HIV only either die due to the disease or get the
nfection with Corona virus, at the rate of θλh , due to sufficient

ontact with infected source. They then move into the compart-

ent I hc of dually infectious with HIV and COVID-19. Here we take

> 1 since people infected with HIV have a lower immune system

nd therefore, are highly susceptible to catch COVID-19. Individuals

ith both HIV and COVID-19 can recover from COVID-19 thanks to

wn immunity and are moved, at a rate of ϖ into the compartment

f individuals infected with HIV only or die from COVID-19 at the

ate of τκc . Here we take τ > 1 because of the high probability

f mortality within the people in I hc , with both HIV and COVID-

9 compared to individuals infected with COVID-19 only. Further-

ore, individuals with both HIV and COVID-19 can also die HIV at

 rate of νκh . Here we take ν ≥ 1 because of the high probability

f mortality within the people in I hc , with both HIV and COVID-

9 compared to individuals infected with HIV only. We denote by

h the rate at which death due natural causes occurs. We assume

hat susceptible animals in �, are recruited into the population N r 

t a rate of �r which is constant. We assume that those animals

an die the rate of μc or can become infected with COVID-19 at

 rate of λr due to sufficient contact with infected animals and

hen move to the compartment of COVID-19 infectious I r . Based

n the above setting, the dynamics of the system is given by the
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Fig. 9. Illustration of the yearly increase of HIV cases worldwide the WHO [5] . 

Fig. 10. Flowdiagram of the HIV-COVID-19 transmission between people and in the reservoir. 
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transfer diagram as depicted in Fig. 10 and expressed by the fol-

lowing differential equations: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S p 

dt 
= �p + γ I c − (λc + λh + μh ) S p , 

I c 

dt 
= λc S p − (ελh + μh + κc + γ ) I c , 

I h 
dt 

= λh S p + � I hc − (θλc + μh + κh ) I h , 

I hc 

dt 
= ελh I c + θλc I h − (μh + τκc + νκh + � ) I hc , 

S r 

dt 
= �r − (μc + λr ) S r 

I r 

dt 
= λr S r − μc I r , 

(1)

where λc , λh and λr are respectively the forces of infection reading

as 

λc = 

βc σ I r 

N p 
, 

λh = 

βh (I h + ξhc I hc ) 

N p 
, 

λr = 

βr σ I r 

N r 
, 

with βh representing the HIV infection effective contact rate,

ξ ≥ 1 representing the regularization parameter modeling the
hc 
elative infectiousness of people with both HIV and COVID-19 ( I hc )

ompared to individuals infected with HIV only ( I h ). For the new

orona virus (2019-nCov), σ is the per capita vector-to-host contact

ate of the animals in the reservoir. βc is the parameter accounting

or the people transmission probability per vector-to-host contact

hile βr accounts for the same probability but for animals. 

. Sub-model’s analysis: Well-posedness, feasibility region and 

tability 

In this section we start by analyzing the two sub-models (HIV

nly and COVID-19 only) contained in the model (1) . 

. Sub-model: HIV only 

We establish the HIV only sub-model from model (1) by putting

 c = 0 , I hc = 0 , S r = 0 , I r = 0 which yields 
 

 

 

 

 

S p 

dt 
= �p − (λh + μh ) S p , 

I h 
dt 

= λh S p − (μh + κh ) I h , 

(2)

ith the force of infection λh reading as 

h = 

βh I h 
N p 

, 

here N p = S p + I h . In order analyze the HIV only system (2) of

uman population, we consider the region of biological feasibility
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iven by. 

h = 

{
(S p (t) , I h (t)) ∈ R 

2 : 0 ≤ N p = S p + I h ≤
�p 

μh 

}
. 

e have the following results 

roposition 4.1. 

1. Any solution ( S p ( t ), I h ( t )) of the HIV only system (2) remains non-

negative for all time t > 0 if the corresponding initial condition is

non-negative. 

2. the region �h is positively invariant for the HIV only system

(2) when non-negative initial conditions are taken from R 

2 . In fact

it is an attracting and absorbing compact set for the system (2) . 

3. Moreover, we have 

lim 

t→∞ 

N p (t) ≤ �p 

μh 

. 

and N p (t) ≤ �p 

μh 
for all t > 0 if N p (0) ≤ �p 

μh 
. 

roof. The sum of both equations of (2) gives 

dN p (t) 

dt 
= 

dS p (t) 

dt 
+ 

dI h (t) 

dt 

= �p − μh (S p (t) + I h (t)) − κh I h 

≤ �p − μh N p (t) (3) 

roceeding with standard comparison and integration give 

 p (t) ≤ N p (0) e −μh t − �p 

μh 

e −μh t 

≤
(

N h (0) − �p 

μh 

)
e −μh t + 

�p 

μh 

ence we have N p (t) ≤ �p 

μh 
for all time t ≥ 0 , if N p (0) − �p 

μh 
≤ 0 (or

 p (0) ≤ �p 

μh 
). This conclusion also shows the attractiveness and ab-

orbing results for �. �

The HIV only system (2) can therefore be treated as dynamical

ystem in � in which it is well-posed. 

.1. The basic reproduction number R h 

The disease-free equilibrium (or the DFE) of the HIV only sys-

em (2) reads as 

 

0 = (S 0 p , I 
0 
h ) with 

(
S 0 p = 

�p 

μh 

, I 0 h = 0 

)
. 

xploiting the next generation operator F V −1 as detailed in

17] leads to the HIV only system (2) written into the matrix form
˙ 
 = F(X ) − V(X ) where the matrices F and V are respectively

iven by 

(X ) = 

(
0 

λh (t ) S p (t ) 

)
nd 

(X ) = 

(−�p + λh (t ) S p (t ) + μh S p (t) 

μh I h (t) + κh I h (t) 

)
valuated at the DFE E 0 , the Jacobian of those matrices yields 

 = 

[
∂F i 

∂x j 
(E 0 ) 

]
= (βh ) 

nd 

 = 

[
∂V i 
∂x j 

(E 0 ) 

]
= (μh + κh ) . 

ence the basic reproduction number R h is the spectral radius 

 h = ρ(F V 

−1 ) = 

βh 
. 
μh + κh 
λ

.2. Stability of the DFE E 0 

Using the linearization of the HIV only system (2) around the

FE E 0 we obtain the Jacobian matrix reading as 

 | E 0 = 

(−μh −βh 

0 βh − μh − κh 

)
. (4) 

e easily obtain the eigenvalues J | E 0 that reads as: λ1 = −μh 

hich is negative and λ2 = βh − μh − κh . In terms of R h , we have

2 = (μh + κh )(R h − 1) . Hence λ2 < 0 ⇐⇒ R h < 1 . Thus, we

ave proven the following result 

roposition 4.2. The DFE E 0 of the model (2) is locally-

symptotically stable if R h < 1 , and unstable if R h > 1 . 

For the establishment of global asymptotical stability of the DFE

 

0 , we can use the method of Lyapunov-LaSalle by considering a

yapunov function L (S p , I h ) = (μh + κh ) I h . Then its time-derivative

long a solution ( S p ( t ), I h ( t )) reads as 

dL 

dt 
= (μh + κh ) 

dI h 
dt 

= (μh + κh )(λh S p − (μh + κh ) I h ) 

= 

(
βh S h 

N p (μh + κh ) 
− 1 

)
λh (μ

2 
h 

+ κ2 
h 

+ 2 μh κh ) N p 

βh 

≤
(

βh 

(μh + κh ) 
− 1 

)
λh (μ

2 
h 

+ κ2 
h 

+ 2 μh κh ) N p 

βh 

≤ ( R h − 1 ) 
λh (μ

2 
h 

+ κ2 
h 

+ 2 μh κh ) N p 

βh 

, 

here we have used the fact that 
S h 
N p 

≤ 1 . Hence, knowing that

he system parameters are all non-negative, dL 
dt 

≤ 0 when R h ≤ 1 .

oreover, it happens that dL 
dt 

= 0 ⇐⇒ I h = 0 . 

Therefore, L is a Lyapunov function on �h and LaSalle’s In-

ariance Principle [18] implies that all limit points of solutions

o the model (2) belong to the largest compact invariance set in

 (S p (t) , I h (t)) ∈ �h : 
dL 
dt 

= 0 } . In that set, I h = 0 and 

dS p 
dt 

= �p −
h S p and thus S p −→ 

�p 

μh 
as t −→ ∞ . Thus, Therefore, every solu-

ion ( S p ( t ), I h ( t )), taking its initial conditions in �h , approaches the

FE E 0 = ( 
�p 

μh 
, 0) as t −→ ∞ when R h ≤ 1 . Henceforth, we have

roven the following result: 

roposition 4.3. The DFE E 0 of the model (2) is globally-

symptotically stable whenever R h ≤ 1 . 

.3. Endemic equilibrium 

From (2) the endemic equilibrium E ∗ = (S ∗p , I ∗h ) is obtained by

olving 

0 = �p − (λ∗
h 

+ μh ) S 
∗
p , 

0 = λ∗
h 
S ∗p − (μh + κh ) I 

∗
h 
, 

(5) 

hich yields 

 

∗
p = 

�p 

μh + λ∗
h 

, I ∗h = 

�p λ∗
h 

(μh + κh )(μh + λ∗
h 
) 

(6) 

ith the force of infection 

∗
h = 

βh I 
∗
h 

(S ∗p + I ∗
h 
) 
. (7) 

imple transformation of (6) and (7) leads to following polynomial

n λ∗
h 

: 

∗
h 

(
λ∗

h + (1 − R h )(μh + κh ) 
)

= 0 . (8) 
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Hence we have λ∗
h 

= −(1 − R h )(μh + κh ) which has a biological

meaning only if the force of infection λ∗
h 

is non negative, meaning

that (1 − R h )(μh + κh ) < 0 ⇐⇒ R h > 1 . Furthermore, in terms

of R h , (6) gives 

S ∗p = 

�p 

κh (R h − 1) + μh R h 

, I ∗h = 

(R h − 1)�p 

κh (R h − 1) + μh R h 

. (9)

We have then shown the results 

Lemma 4.4. The model (2) of HIV has a unique endemic equilibrium

if and only if R h > 1 . Moreover, that unique endemic equilibrium lo-

cally asymptotically stable if R h > 1 . 

5. Sub-model: COVID-19 only 

We establish the COVID-19 only sub-model from model (1) by

putting I h = 0 , I hc = 0 which yields ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S p 

dt 
= �p + γ I c − (λc + μh ) S p , 

I c 

dt 
= λc S p − (μh + κc + γ ) I c , 

S r 

dt 
= �r − (μc + λr ) S r 

I r 

dt 
= λr S r − μc I r , 

(10)

with the force of infection λc and λr reading respectively as 

λc = 

βc σ I r 

N p 
, 

and 

λr = 

βr σ I r 

N r 
, 

5.1. Basic reproduction number 

The disease-free equilibrium (or the DFE) of the COVID-19 only

system (10) reads as 

E 0 = 

(
�p 

μh 

, 0 , 
�r 

μc 
, 0 

)
Exploiting the next generation operator F V −1 as detailed in

[17] leads to the COVID-19 only system (10) written into the ma-

trix form 

˙ X = F(X ) − V(X ) where the matrices F and V are re-

spectively given by 

F(X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

βc σ I r (t ) S p (t ) 

I c (t) + S p (t) 

βr σ I r (t) S r (t) 

I r (t) + S r (t) 

0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and 

V(X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−(μh + κc + γ ) I c (t) 

−μc I r 

�p + γ I c −
(

μh + 

βc σ I r (t) 

I c (t) + S p (t) 

)
S p (t) 

�r −
(

μc + 

βr σ I r (t) 

I r (t) + S r (t) 

)
S r (t) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

Evaluated at the DFE E 0 , the Jacobian of those matrices yields 

F = 

[
∂F i 

∂x j 
(E 0 ) 

]
= 

⎛ 

⎝ 

0 βc σ

0 βr σ
�2 

p μ
2 
c 

μ2 �2 
r 

⎞ 

⎠ 
h 
nd 

 = 

[
∂V i 
∂x j 

(E 0 ) 

]
= 

(
μh + κc + γ 0 

0 μc 

)
. 

ence the basic reproduction number R c is the spectral radius 

 c = ρ(F V 

−1 ) = βr σ

(
�p 

μh 

)2 
μc 

�2 
r 

. 

Following the same approach as in Proposition 4.2 , we easily

how that 

roposition 5.1. The DFE E 0 = ( 
�p 

μh 
, 0 , �r 

μc 
, 0) of the COVID-19 only

ub-model (10) is locally-asymptotically stable if R c < 1 , and unstable

f R c > 1 . 

. Possibility of backward bifurcation for the COVID-19 

ub-model 

Our aim here in this section is to look at the conditions under

hich there exists a backward bifurcation for the model (10) . Re-

all that this type of bifurcation happens when a stable DFE and

 stable endemic equilibrium exist together for some values of the

asic reproduction number R c less than one. Hence, we have to

nd conditions for which endemic equilibrium E ∗ = (S ∗p , I ∗c , S ∗r , I ∗r ) .
e pose 
 

 

 

 

 

 

 

 

 

0 = �p + γ I c − (λc + μh ) S p , 

0 = λc S p − (μh + κc + γ ) I c , 

0 = �r − (μc + λr ) S r 

0 = λr S r − μc I r , 

hich yields 

 

∗
p = 

�p (μh + κc + γ ) 

λ∗
c (μh + κc ) + μh (μh + κc + γ ) 

 

∗
c = 

�p λ∗
c 

λ∗
c (μh + κc ) + μh (μh + κc + γ ) 

(11)

 

∗
r = 

�r 

λ∗
r + μc 

 

∗
r = 

�r λ∗
r 

μc (λ∗
r + μc ) 

ith the forces of infection 

∗
c = 

βc σ I ∗r 
(S ∗p + I ∗c ) 

, λ∗
r = 

βr σ I ∗r 
(S ∗r + I ∗r ) 

(12)

imple transformation of (11) and (12) leads to following polyno-

ial in λ∗
c : 

∗
c 

(
Q 1 (λ

∗
c ) 

2 + Q 2 λ
∗
c + Q 3 

)
= 0 . (13)

here 

 1 = �p μc (μc + βr σ ) , 

 2 = (T − R c ) 
�p μ2 

c (μh + κc + γ )(μh + κc ) 

μh 

, 

 3 = (1 − R c )�p μ
2 
c (μh + κc + γ ) 2 
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
W

P  

m  

u

P  

n  

s  

b  

D⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w

y

y

A

y

y

t⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
nd 

 = 

(2 μc + βr σ ) μh 

μc (μh + κc ) 

e have here many endemic equilibrium points (solutions λ∗
c ) to

 1 (λ
∗
c ) 

2 + Q 2 λ
∗
c + Q 3 (14)

nd the solution ( λ∗
c = 0 ) that is related to the DEF. Let 

˜ = 

(κc − μh ) μc 

βr μh 

hen clearly 

 > 1 ⇐⇒ σ > ˜ σ . (15)

e have the following results 

roposition 6.1. 

The necessary condition for the existence of backward (subcritical)

bifurcation for the model (10) is σ < ˜ σ . Furthermore, there is

0 < 

˜ R c < 1 so that: 

- Model (10) has one and only one endemic equilibrium point if
˜ R c = R c . 

- Model (10) has two endemic equilibrium points if R c ∈ ( ̃  R c , 1) . 

- Model (10) has one endemic equilibrium point if R c ≥ 1 . 

- Model (10) has no endemic equilibrium point if R c < 

˜ R c . 

The necessary condition for the existence of transcritical bifurca-

tion for the model (10) is σ ≥ ˜ σ . 

roof. To prove this, we use the equivalence relation (13) - (15)

here it is obvious to see that Q 1 > 0. Moreover, Q 2 > 0 if T > R c 

nd Q 2 < 0 if T < R c . Also Q 3 > 0 if R c < 1 and Q 3 < 0 if R c > 1 . 

From (15) we have T < 1 when σ < ˜ σ . Hence, when R c ≥ 1 , we

ave Q 2 ≤ 0 meaning R c ≥ 1 > T and Q 3 ≤ 0, and Eq. (14) has one

nd only one positive root. However, Eq. (14) has no positive root

hen R c ≤ T < 1 meaning Q 2 ≥ 0 and Q 3 > 0. 

Now in the case where 1 ≥ R c > T we also have Q 2 < 0 and

 3 ≥ 0. If � := F (R c ) = Q 

2 
2 

− 4 Q 1 Q 3 denotes the discriminant of

14) and a functional of R c then 

 

′ (R c ) = −2(T − R c ) 
2 �p μ2 

c (μh + κc + γ )(μh + κc ) 

μh 

+ 4 Q 1 �p μ
2 
c (μh + κc + γ ) 2 > 0 

or R c ∈ (T , 1) . F is strictly increasing in ( T , 1) and F (T ) =
4 Q 1 Q 3 < 0 and F (1) = Q 

2 
2 

> 0 . Therefore, there is ˜ R c ∈ (T , 1) so

hat F ( ̃  R c ) = 0 with F < 0 in (T , ˜ R c ) and F > 0 in ( ̃  R c , 1) . Hence, -

hen R c ∈ ( ̃  R c , 1) ., Eq. (14) has two real and positive roots (since

 2 < 0 and Q 3 > 0). That leads to model (10) having also two en-

emic equilibrium points. Similarly, - Eq. (14) has one positive root

hen R c = 

˜ R c , - Eq. (14) has no positive root when if T < R c < 

˜ R c ,

hich concludes the proof. �

Now that we have a conditions on existence of a subcritical

ifurcation for the COVID-19 model let us have a look at the full

odel. Note that according to the definition of the σ and βc it is

lear that δ = σβc represents the COVID-19 transmission rate per

ector-to-host contact per unit time. 
. The full HIV and COVID-19 combined model (1) 

.1. Stability of the DFE 

Rewrite the model (1) as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S p 

dt 
= �p + γ I c −

(
βc σ I r 

N p 
+ 

βh (I h + ξhc I hc ) 

N p 
+ μh 

)
S p , 

I c 

dt 
= 

βc σ I r 

N p 
S p −

(
ε 
βh (I h + ξhc I hc ) 

N p 
+ μh + κc + γ

)
I c , 

I h 
dt 

= 

βh (I h + ξhc I hc ) 

N p 
S p + � I hc −

(
θ

(
βc σ I r 

N p 

)
+ μh + κh 

)
I h , 

I hc 

dt 
= ε 

βh (I h + ξhc I hc ) 

N p 
I c + θ

(
βc σ I r 

N p 

)
I h − (μh + τκc + νκh + � ) I hc , 

S r 

dt 
= �r −

(
μc + 

βr σ I r 

N r 

)
S r 

I r 

dt 
= 

βr σ I r 

N r 
S r − μc I r . 

(16) 

e can state the following result 

roposition 7.1. The DFE E 0 of the combined HIV and COVID-19

odel (1) is locally-asymptotically stable if max {R h , R c } < 1 , and

nstable if max {R h , R c } > 1 . 

roof. Let R 0 = max {R h , R c } and let E 0 = (S 0 p , I 
0 
c , I 

0 
h 
, I 0 

hc 
, S 0 r , I 

0 
r ) de-

otes the disease-free equilibrium point. We can investigate the

tability of the DFE E 0 by analyzing the eigenvalues of the Jaco-

ian matrix J | E 0 evaluated at E 0 . Linearizing the model (16) at the

FE E 0 yields 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 1 
dt 

= −μh y 1 + γ y 2 − βh y 3 − βh ξhc y 4 − βc σy 6 , 

y 2 
dt 

= −(μh + κc + γ ) y 2 + βc σy 6 , 

y 3 
dt 

= (βh − μh − κc ) y 3 + (βh ξhc + � ) y 4 , 

y 4 
dt 

= −(μh + τκc + νκh + � ) y 4 , 

y 5 
dt 

= −�r βr σμh 

�p μc 
y 2 − μc y 5 , 

y 6 
dt 

= 

�r βr σμh 

�p μc 
y 2 − μc y 6 , 

(17) 

here we have set 

 1 (t) = S p (t) − S 0 p , y 2 (t) = I c (t) − I 0 c , y 3 (t) = I h (t) − I 0 h 

 4 (t) = I hc (t) − I 0 hc , y 5 (t) = S r (t) − S 0 r , y 6 (t) = I r (t) − I 0 r . 

ssuming that solutions to (17) can take the exponential from 

 1 (t) = c 1 e 
λt , y 2 (t) = c 2 e 

λt , y 3 (t) = c 3 e 
λt 

 4 (t) = c 4 e 
λt , y 5 (t) = c 5 e 

λt , y 6 (t) = c 6 e 
λt , 

he substitution into (17) and canceling the term e λt yields 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 = (λ + μh ) c 1 − γ c 2 + βh c 3 + βh ξhc c 4 + βc σ c 6 , 

0 = (λ + μh + κc + γ ) c 2 − βc σ c 6 , 

0 = (λ − βh + μh + κc ) c 3 − (βh ξhc + � ) c 4 , 

0 = (λ + μh + τκc + νκh + � ) c 4 , 

0 = 

�r βr σμh 

�p μc 
c 2 + (λ + μc ) c 5 , 

0 = −�r βr σμh 

�p μc 
c 2 + (λ + μc ) c 6 . 

(18) 
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Fig. 11. Illustration of the forward bifurcation process from I h versus δ = σβc for the COVID-19 system (10) with βr = 0 . 03 and also with �p = 10 0 0 , �r = 250 0 , μh = 

0 . 0131 , μc = 0 . 035 and κc = 199 × 10 −4 . 
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o⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

 

w  

s

λ

λ  
This system has a characteristic equation given by ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μh + λ −γ βh 

0 (μh + κc + γ ) + λ 0 

0 0 (μh + κh − βh ) + λ −βh

0 0 0 (μh + τκc +

0 

βr σμh �r 

�p μc 
0 

0 −βr σμh �r 

�p μc 
0 

equivalently 

Z 1 (R h ) Z 2 (R c )(μh + λ)(μc + λ)((μh + τκc + νκh + � ) + λ) = 0 

(20)

with 

Z 1 (R h ) = (1 − R h )(μh + κh ) + λ

Z 2 (R c ) = (1 − R c )(μh + κc + γ ) μc + λ(μh + κc + γ + μc ) + λ2 

Hence, from (18) some of the eigenvalues J | E 0 are given by 

λ1 = −μh , λ2 = −μc , λ3 = −(μh + τκc + νκh + � ) 

which are all negative. The fourth eigenvalue is the root of

Z 1 (R h ) = 0 and reads as λ4 = −(1 − R h )(μh + κh ) . Obviously,

λ4 < 0 when R h < 1 and λ4 > 0 when R h > 1 . From the previ-

ous section where the DEF of the COVID-19 only model was ana-

lyzed, Z 2 (R c ) = 0 refers to the corresponding characteristic equa-

tions. Hence, we showed ( Proposition 5.1 ) that Z 2 (R c ) = 0 has

roots all with negative real parts for R c < 1 . Moreover, Z 2 (R c ) = 0

has at least a root with a positive real part when R c > 1 . Fi-

nally, for R 0 = max {R h , R c } < 1 Eq. (20) has roots all with neg-

ative real parts and has at least a root with a positive real part

when R 0 > 1 . �

The bifurcation analysis are depicted in Figs. 11 and 12 show-

ing condition for the model to have forward and backward bifur-

cations respectively. and show that the model contains a backward

bifurcation under certain conditions. We also study different sce-

narios of stability and unstability state of equilibrium points (the

DFE E 0 = (762224 . 14 , 0 , 70711 . 11 , 0) and the endemic equilibrium

point) as shown in Figs. 13–15 . The globally stable DFE E 0 is il-

lustrated in Fig. 13 while a stable endemic equilibrium, namely
 

0 βc σ

0 −βc σ

� 0 0 

h + � ) + λ 0 0 

0 0 

0 μc + λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 , (1

 2 = (1938 . 62 , 657 . 11 , 34941 . 36 , 36511 . 93) , and an unstable en-

emic equilibrium E 1 = (13687 . 91 , 412 . 38 , 61442 . 11 , 8992 . 32) are

hown in Fig. 12 when βr = 0 . 07 , σ = 0 . 155 (R c = 0 . 50167) .

ig. 15 shows that there exists a globally stable endemic equilib-

ium E ∗ = (96211 . 13 , 413 . 18 , 68644 . 21 , 6513 . 13) for the COVID-19

ystem (10) and an unstable DFE E 0 , when βr = 1 . 60 , σ = 6 . 33 ×
0 −13 (R c = 1 . 07121) . 

. Endemic equilibria’s existence for combined HIV and 

OVID-19 model (1) 

The endemic equilibrium, denoted by E ∗ = (S ∗p , I ∗c , I ∗h , I 
∗
hc 

, S ∗r , I ∗r ) is
btained by solving 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 = �p + γ I ∗c − (λ∗
c + λ∗

h 
+ μh ) S 

∗
p , 

0 = λ∗
c S 

∗
p − (ελ∗

h 
+ μh + κc + γ ) I ∗c , 

0 = λ∗
h 
S ∗p + � I ∗

hc 
− (θλ∗

c + μh + κh ) I 
∗
h 
, 

0 = ελ∗
h 
I ∗c + θλ∗

c I 
∗
h 

− (μh + τκc + νκh + � ) I ∗
hc 

, 

0 = �r − (μc + λ∗
r ) S 

∗
r 

0 = λ∗
r S 

∗
r − μc I 

∗
r , 

(21)

here λ∗
c , λ∗

h 
and λ∗

r are respectively the forces of infection a

teady-state reading as 

∗
c = 

βc σ I ∗r 
N 

∗
p 

, N 

∗
p = S ∗p + I ∗c + I ∗h + I ∗hc 

∗
h = 

βh (I ∗
h 

+ ξhc I 
∗
hc 

) 

N 

∗
p 

, (22)
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Fig. 12. Illustration of the backward bifurcation process from I h versus δ = σβc for the COVID-19 system (10) with βr = 0 . 05 , and also with �p = 10 0 0 , �r = 250 0 , μh = 

0 . 0131 , μc = 0 . 035 and κc = 199 × 10 −4 . 

Fig. 13. Existence of a globally stable disease-free equilibrium E 0 = (762224 . 14 , 0 , 70711 . 11 , 0) for the COVID-19 system (10) when βr = 0 . 05 , σ = 0 . 217 (R c = 0 . 33379) . 

λ
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K
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s

 

b  
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R0  
∗
r = 

βr σ I ∗r 
N 

∗
r 

, N 

∗
r = S ∗r + I ∗r . 

ence after solving (21) , we obtain 

 

∗
p = 

�p (μh + κc + γ + ελ∗
h 
) 

λ∗
c (μh + κc + ελ∗

h 
) + (λ∗

c + μh )(μh + κc + γ + ελ∗
h 
) 

 

∗
c = 

�p λ∗
c 

λ∗
c (μh + κc + ελ∗

h 
) + (λ∗

c + μh )(μh + κc + γ + ελ∗
h 
) 

(23) 

 

∗
h = 

�p λ∗
h 
((μh + τκc + νκh + � )(μh + κc + γ + ελ∗

h 
) + � ελ∗

c ) 

A 1 (γ (λ∗
h 

+ μh ) + (μh + κc + ελ∗
h 
)(λ∗

h 
+ λ∗

c + μh )) 

 

∗
hc = 

�p λ∗
h 
λ∗

c (ε(μh + κc + ελ∗
h 
) + θ (μh + κc + γ + ελ∗

h 
)) 

A 1 (γ (λ∗
h 

+ μh ) + (μh + κc + ελ∗
h 
)(λ∗

h 
+ λ∗

c + μh )) 

 

∗
r = 

�r 

λ∗
r + μc 

 

∗
r = 

�r λ∗
r 

μc (λ∗ + μc ) 
r 
ith 

 1 = � (μh + κh ) + (κh + θλ∗
c + μh )(τκc + μh + νκh ) . 

fter some transformations using the later system and the forces

f infection (22) , we obtain characteristic equations with the fol-

owing roots: λ∗
h 

= 0 , λ∗
c = 0 plus the roots of 

 1 (λ
∗
h , λ

∗
c ) = 0 

nd 

 2 (λ
∗
h , λ

∗
c ) = 0 

here K 1 and K 2 are respectively complex polynomials of order

wo in λ∗
c and order four in λ∗

h 
with coefficients which are also

omplex polynomials of order two in λ∗
h 

and order four in λ∗
c re-

pectively. 

Hence the later results show that there are some values for

oth reproduction numbers R c and R h and therefore R 0 for which

he only obvious equilibrium point is the DFE. Similarly there some

alues for both reproduction numbers R c and R h and therefore

 for which the full combined HIV and COVID-19 model (16) has
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Fig. 14. Existence for the COVID-19 system (10) , of two stable equilibrium points: The DFE E 0 , a stable endemic equilibrium E 2 = (1938 . 62 , 657 . 11 , 34941 . 36 , 36511 . 93) , and 

an unstable endemic equilibrium E 1 = (13687 . 91 , 412 . 38 , 61442 . 11 , 8992 . 32) when βr = 0 . 07 , σ = 0 . 155 (R c = 0 . 50167) . 

Fig. 15. Existence of a globally stable endemic equilibrium E ∗ = (96211 . 13 , 413 . 18 , 68644 . 21 , 6513 . 13) for the COVID-19 system (10) and an unstable DFE E 0 , when βr = 

1 . 60 , σ = 6 . 33 × 10 −13 (R c = 1 . 07121) . 
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λ
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λ
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either a HIV equilibrium point or a COVID-19 equilibrium point.

Lastly, there some values for both reproduction numbers R c and

R h and therefore R 0 for which the combined HIV and COVID-19

model (16) a has a co-infection equilibrium point. Let us now study

the COVID-19 global picture by numerically investigate the gener-

alized version of the model (16) . 

9. Generalised COVID-19 model 

we generalize the COVID-19 model (10) as ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

C D 

α
t ( S p (t) ) = �p + γ I c − (λc + μh ) S p , 

C D 

α
t ( I c (t) ) = λc S p − (μh + κc + γ ) I c , 

C D 

α
t ( S r (t) ) = �r − (μc + λr ) S r 

C D 

α
t ( I r (t) ) = λr S r − μc I r , 

(24)
ith the force of infection λc and λr reading respectively as 

c = 

βc σ I r 

N p 
, 

nd 

r = 

βr σ I r 

N r 
, 

nd where C D 

α
t is the classical Caputo fractional derivative that, for

he order α, and for any t > 0, is defined as 

 D 

α
t S(t) = I 1 −α d 

dt 
S(t) , 0 < α ≤ 1 , (25)

here −∞ ≤ a < t, b > a and S : (a, b) −→ R is a real and locally

ntegrable function and 

 

αS(t) = 

1 

�( α) 

∫ t 

a 

S ( τ ) 

( t − τ ) 
1 −α

dτ, (26)
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Fig. 16. Some predicted COVID-19 prevalence using the generalized model (24) for certain values of α over 500 days using Table 2 and (a) when μc = 0 . 059 and R c = 0 . 64103 

and (b) when μc = 0 . 019 and R c = 5 . 70103 . 
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H  

k  

f  

l

s the fractional integral of order α associated to C D 

α
t . 

In order to conveniently solve the combined fractional and frac-

al system (24) , it is important to associate it with the following

nitial conditions: 

 p (0) = 

˜ S p (S p ) , I c (0) = 

˜ I c (I c ) , S r (0) = 

˜ S r (S r ) , I r (0) = 

˜ I r (I r ) . (27)

We now transform the system (24) - (27) so that it takes a

ompact form of the Legendre wavelets approach as described in

19,20] . So consider 
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t ( S p (t) ) = 

T M 

1 
m 

�m 

(t) , 

C D 

α
t ( I c (t) ) = 

T M 

2 
m 

�m 

(t) , 

C D 

α
t ( S r (t) ) = 

T M 

3 
m 

�m 

(t) 

C D 

α
t ( I r (t) ) = 

T M 

4 
m 

�m 

(t) . 

(28) 

ere �m 

( t ) is the matrix whose elements define the Legendre

avelets given as 

 nm 

(t) = 

{ 

2 

k/ 2 
√ 

2 m + 1 L ∗m 

(2 

k t − n )) , if t ∈ 

[ 
n 
2 k 

, 
n + 1 

2 

k 

] 
;

0 , elsewhere . 

(29) 

ith L ∗m 

the shifted Legendre polynomial defined on [0, 1] as

 

∗
m 

(t) = L m 

(2 t − 1) , (L m 

(2 t − 1)) m 

being the family 

 0 = 1 , L 1 = x, L m +1 (x ) = 

1 + 2 m 

m + 1 

xL m 

(x ) − m 

1 + m 

L m −1 (x ) , 

m = 1 , 2 , · · · . (30) 

 M 

1 , T M 

2 , T 3 and 

T M 

4 are the transpose of the matrices M 

1 , M 

2 ,

 

3 and M 

4 respectively. Associating the initial conditions yields 
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α
m ×m 
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˜ S p , 

I c (t) ≈ T M 
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α
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˜ I c , 
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α
m ×m 
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˜ S r 

I r (t) ≈ T M 

4 
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α
m ×m 
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(t) + 

˜ I r , 

(31) 

here Q 

α
m ×m 

is the Legendre operational matrix of integration and

he subscript m denotes its dimension. We know that [19,20] , Leg-

ndre wavelets can be expanded into an m -term form as 

m 

(t) = ϒm ×m 

A m 

(t) , (32)
here A m 

(t) = 

T [ a 1 (t) , a 2 (t) , · · · , a m 

(t)] is the Block Pulse Func-

ions so that 

 k (t) = 

{
1 , if t ∈ [ k −1 

m 

, k 
m 

] ;
0 , elsewhere . 

(33) 

or each k = 1 , 2 , · · · m, and ϒ the Legendre wavelet matrix 

m ×m 

= 

[ 
�m 

(
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2 m 

)
�m 

(
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2 m 

)
· · ·�m 

(
2 m − 1 

2 m 

)] 
ow the substitution of (32) into system (31) leads to 
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I r (t) ≈ T M 

4 
m 
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α
m ×m 
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A m 

(t) + [ ̃  I r i ] A m 

(t) . 

(34) 

here 

 ̃

 S p i ] = [ ̃  S p 1 , 
˜ S p 2 , · · · , ˜ S p m 

] , [ ̃  I c i ] = [ ̃  I c 1 , ̃  I c 2 , · · · , ̃  I c m 

] 

 ̃

 S r i ] = [ ̃  S r 1 , ˜ S r 2 , · · · , ˜ S r m 

] , [ ̃  I r i ] = [ ̃  I r 1 , ̃  I r 2 , · · · , ̃  I r m 

] . 

ow let 
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α
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1 ×m 
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, · · · , m 
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] (35)

ow Using the collocations points t i = 

2 i −1 
2 k +1 N 

, i = 1 , 2 , 3 , · · · , m

 ∈ N , to disperse t , the substitution of (34) and (35) into system

24) and lead to 
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(36) 

ence we obtain this non-linear system equations with 4 m un-

nown coefficients m 

α,i 
k 

, 1 ≤ i ≤ 4 , 1 ≤ k ≤ m which are easily

ound using Newton iteration method. Then exploiting model (31) ,

eads the south numerical solution ( S p ( t ), I c ( t ), S r ( t ), I r ( t )). 
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Table 2 

Description and values for the parameters [21,22] . 

Parameters Descriptions Estimated baseline values 

�p Recruitment rate of people population 1000 

�r Recruitment rate of susceptible animals 2500 

βc Human transmission probability for COVID-19 Variable 

β r Animal transmission probability for COVID-19 0.05–1.6 

σ Per capita vector-to-host contact rate 6 . 33 × 10 −3 –0.217 

μh Natural death rate in humans 0.0131 

μc Natural mortality rate of animals 0.035 

κ c COVID-19 mortality rate 199 × 10 −4 

γ People recovery rate from COVID-19 0.005 

ϖ HIV People recovery rate from COVID-19 0.002 

θ , ν Regulation parameters 1.0021, 1.002 

ε, τ , ξ hc Regulation parameters 1,001, 1.001, 1.005, 
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10. Numerical simulations with some known COVID-19 data 

We can implement in this section the numerical scheme pre-

sented above using some data recently given in the literature and

summarized in the Table 2 . The numerical simulations for the be-

havior of the COVID-19 prevalence for the generalized model (24) ,

performed for certain values of α are depicted in Fig. 16 (a) when

μc = 0 . 059 and R c = 0 . 64103 and Fig. 16 (b) when μc = 0 . 019 and

R c = 5 . 70103 . 

11. Concluding remarks 

As shown in Fig. 1, Fig. 8 and Fig. 9 , the numbers of victims

and fatalities due to HIV and the new coronavirus remain a fateful

scourge around the world. The combination of both will certainly

be explosive for most affected countries. We especially think of

southern hemisphere countries getting out the summer and mov-

ing into the winter season. It is urgent for those countries (like

South Africa and Chile) to be alerted while it is still time to re-

act efficiently. Indeed, the world has ignored the first alert made

before the pandemic, by the young and now late Chinese doc-

tor Li Wenliang and this is paper serves as a COVID-19 alert for

southern hemisphere countries like Chile and South Africa that are

moving into the winter season and seeing to be heavily hit by the

pandemic. As winter moved to the southern hemisphere, we also

observed the epicenter of the new coronavirus shifting there to

Brazil, which shares similar features (such as Favellas, townships,

poverty, promiscuity) with South Africa and Chile. We have then

used a generalized simple mathematical model of HIV-COVID-19

together with graphs, curves and tables to compare the pandemic

situation in countries that were once the epicenter of the disease,

such as China, Italy, Spain, United Kingdom and United States of

America. We managed to show conditions for existence of stable

equilibria and of different bifurcation (forward and backward) sce-

narios for the model. The fractional (generalized) COVID-19 model

has been solved numerically and a predicted prevalence for the

COVID-19 has been provided. There is a ground to be concerned

for southern hemisphere countries now since it happens that all

those countries that were once epicenter, were in their winter sea-

son during their status of epicenter of the COVID-19 and opted to

ease the lockdown only after the peak of the disease was reached.

The epicenter is now in Brazil, in full winter season, and we ob-

serve its health system and emergency services overcrowded by a

large number of COVID-19 patients and deaths. Recent data show

an increasing number of infections in Chile and South Africa. The

combination with HIV cannot help. Moreover, still far from seeing

the disease reaching its peak in the country, South Africa who has

just enter into the winter season, opted to reopen the country’s

activities and schools. This is exactly the opposite of what was ob-

served in western countries. Recall that South Africa stands now
s the most COVID-19 affected country in Africa and is it going to

e the next epicenter in weeks to come when winter conditions

avorable to the spread of the new coronavirus will be comfily in-

talled? The answer is certainly affirmative seeing the social con-

itions in townships all over the country. The country has however

tarted imposing social distanciation, wearing a face mask in pub-

ic services, hiring of more health workers and targeted community

ests. Will this be enough, as the country chose to reopen most of

t economic sectors as from the 1 June 2020, which coincides with

eginning of its winter season, we can now ask whether the lock-

own that started on the 26 March 2020 was at the right moment.

he coming months will tell us. Lastly, another worrying alert is

he fact that winter is still going to move to Europe and we may

ee again the epicenter shifting towards the north, unless a cure or

accine is found by then. Again the future months will tell us. 
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