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Abstract

Brain injury caused by ischemic insult due to significant reduction or interruption in cerebral 

blood flow leads to disruption of practically all cellular metabolic pathways. This triggers a 

complex stress response followed by overstimulation of downstream enzymatic pathways due to 

massive activation of post-translational modifications (PTM). Mitochondria are one of the most 

sensitive organelle to ischemic conditions. They become dysfunctional due to extensive 

fragmentation, inhibition of acetyl-CoA production, and increased activity of NAD+ consuming 

enzymes. These pathologic conditions ultimately lead to inhibition of oxidative phosphorylation 

and mitochondrial ATP production. Both acetyl-CoA and NAD+ are essential intermediates in 

cellular bioenergetics metabolism and also serve as substrates for post-translational modifications 

such as acetylation and ADP-ribosylation. In this review we discuss ischemia/reperfusion-induced 

changes in NAD+ and acetyl-CoA metabolism, how these affect relevant PTMs, and therapeutic 

approaches that restore the physiological levels of these metabolites leading to promising 

neuroprotection.
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1. Introduction

At the onset, brain ischemia triggered by severely limited or absent blood flow, can be 

considered an acute mitochondrial disease. This is because the essential mitochondrial 

function, oxidative phosphorylation that generates ATP, is the first one ceased due to the 

depletion of tissue oxygen. Although the brain represents only 2% of body weight it is 

particularly sensitive to ischemic conditions since it utilizes about 20% of the total body 

oxygen consumption under resting conditions. Due to the ATP requirement for the majority 

of cellular functions, ischemia impacts practically every aspect of cellular metabolism in all 

cell types. Therefore, ischemia-induced brain damage is one of the most complex and 

devastating neurological condition.

Mitochondria are one of the major targets for development of effective treatment strategies 

in both acute brain injury and neurodegenerative diseases. They are essential in the 

maintenance of normal cellular functions, mainly through regulation of energy production 

[1–5]. The cells’ energy demand is affecting not only the activity of mitochondrial oxidative 

phosphorylation but also the mitochondrial structure and movement. Mitochondria respond 

to energetic stress by re-organizing their sub-cellular distribution and also by structural and 

morphological alterations [4,6–8]. This unique ability of mitochondria to spatially and 

morphologically adapt to changing intracellular environments is termed “mitochondrial 

dynamics”.

Bioenergetic stress and downstream effects caused by ischemic insult depletes NAD+ levels 

and compromises several metabolic pathways and mitochondrial functions [9–13]. 

Mitochondrial protein acetylation is dramatically reduced suggesting a deficiency in 

production of acetyl-CoA (AcCoA), a substrate for acetyltransferases. Additionally, 

mitochondria are extensively fragmented leading to failure in oxidative phosphorylation 

[14–16]. All these events lead to bioenergetics failure and ultimately cell death. In this 

review we will address the metabolic links between NAD+, AcCoA, and mitochondrial 

dynamics that are altered by ischemia/reperfusion triggered conditions.

2. Role of mitochondrial dynamics in mechanisms of pathophysiology

The state of mitochondrial dynamics is determined by the balance between activities of 

fission and fusion processes. There are several physiological functions of mitochondrial 

fission. Fragmented mitochondria can move more efficiently within the cell to reach areas 

where there is a higher demand for local ATP generation. Furthermore, by fragmentation the 

damaged and healthy mitochondrial proteins and DNA can be segregated into separate 

smaller organelles allowing the damaged, dysfunctional subpopulation to be eliminated by 

mitophagy [17,18]. Finally, during cell division mitochondrial fragmentation facilitates 

proper redistribution of mitochondrial mass into daughter cells [19]. However, an extensive 

and prolonged fission due to pathologic stress can lead to transformation of the whole 

mitochondrial population into submicron size organelles [14]. These individual organelles 

are too small to harbor the required amount of all essential metabolites and proteins for 

proper and effective function. Thus, the cellular demand for ATP generation cannot be met 

and ultimately will lead to bioenergetics failure and cell death. To reverse this process, the 
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fragmented mitochondria need to fuse back so the contents of the small organelles can 

combine and stabilize protein and DNA levels for normal mitochondrial function. Therefore, 

fusion, by combining the contents of functionally compromised small organelles into 

functioning mitochondria, mitigates the effects of cellular stress. For example, CA1 neurons 

in the hippocampus are the most vulnerable to ischemic attack and mitochondria in these 

neurons are extensively fragmented following ischemic insult [14,15]. This highly 

fragmented state lasts for several days and CA1 neurons ultimately die. On the other hand 

the CA3 and dentate gyrus neurons of the hippocampus are resistant to ischemic conditions 

[20–22]. Although, mitochondria in these cells are fragmented directly after the ischemic 

insult, later at 24 h of reperfusion the highly fragmented population is significantly reduced, 

and the number of longer mitochondria increases when compared to immediate post-insult 

state [14]. This suggests that at later recovery time, factors stimulating the fission process 

are diminished or the fusion activity is sufficiently increased to reverse the fission process. 

Interestingly, similar temporal profile of mitochondrial fragmentation is observed also in 

astrocytes following acute brain injury [14,23].

Mitochondrial fission and fusion is a highly controlled process by several cytosolic and 

mitochondrial proteins belonging to the GTPase family (for review see [24–27]). There are a 

separate set of fusion proteins that control the outer and the inner membrane fusion. 

Mitofusin1 and mitofusin2 (Mfn1 and Mfn2) mediate the mitochondrial outer membrane 

fusion, while the inner membrane fusion is regulated by dynamin-like GTPase encoded by 

optic atrophy 1 gene (Opa1) [18,28]. Fission is facilitated by the dynamin-related protein1 

(Drp1) which needs to be recruited from the cytosol to the outer mitochondrial membrane. 

Several proteins on the outer membrane serve as recruitment factors for Drp1, mitochondrial 

fission factor (MFF), Fis1 protein, and mitochondrial dynamic proteins 49/51 (MiD49/51) 

[29,30]. Overall modulation of the fission and fusion process is rather complex, involving 

several post-translational modifications [4,24,26,27]. Thus, the activity of these proteins is 

tightly regulated by phosphorylation, acetylation, ADP-ribosylation, S-nitrosylation, 

SUMOylation, ubiquitination, o-linked-N-acetyl-glucosamine glycosylation, and proteolytic 

cleavage [27,31–33]. Maintenance of the proper balance between mitochondrial fission and 

fusion by post-translational modifications is essential not only for facilitating normal 

mitochondrial bioenergetic function but also for dynamic cellular stress response to 

pathological conditions. In next paragraphs we discuss the impact of ischemia on NAD+ and 

AcCoA metabolism that modulates acetylation of cellular and mitochondrial proteins.

3. NAD+ metabolism and the cellular and mitochondrial acetylome

3.1. NAD+ metabolism and pathophysiology of brain injury

NAD+ is one of the most abundant metabolic intermediate that is required for about 500 

enzymatic reactions. As a cofactor it is essential for activity of pyruvate dehydrogenase 

complex (PDHC) and several mitochondrial enzymes in the TCA cycle that reduce NAD+ to 

NADH. The matrix localized NADH serves as an electron donor to complex I of the 

respiratory chain where it is reoxidized back to NAD+. Similarly, NADH (and its 

phosphorylated form NADPH) participates as a cofactor in the glycolytic pathway, 

pentophosphate pathway, ketone body, fatty acid, and amino acid metabolism.
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NAD+, apart being a cofactor, also serves as a substrate for NAD+-consuming enzymes that 

catalyze NAD+-dependent protein modifications including poly- and mono-ADP-

ribosylation [34]. The CD38 enzyme that generates the second messenger cyclic-ADP-

ribose (cADPR) also utilizes NAD+ as a substrate [35]. Finally, sirtuins, a class III NAD+ 

dependent de-acetylases remove the acetyl group from a target protein and transfer it on the 

ADP-ribose moiety after release of nicotinamide (Nam) [36–38] (Fig. 1).

The NAD+ pools have been shown to decrease due to pathologic conditions including 

ischemic insult or traumatic brain injury (TBI) [39–41]. This is caused by the generation of 

free radicals during reperfusion leading to DNA damage and activation of NAD+ consuming 

poly-ADP-ribose polymerase 1 (PARP1) [9,42]. PARP1 utilizes NAD+ as a substrate for 

poly-ADP-ribosylation of specific nuclear proteins, including histones, to facilitate DNA 

repair [43,44]. Uncontrolled activation of PARP1 can deplete cellular NAD+ leading to 

inhibition of ATP production and cell death [45,46]. The increase in poly-ADP-ribose (PAR) 

levels was reported already after the first 2 h of recovery following ischemic insult and was 

associated with NAD+ depletion [9,40,42,47]. An additional depletion of tissue NAD+ pools 

was observed at 24 h of recovery, which is linked to an increased activity of CD38 [47]. The 

NAD+ catabolism after acute brain injury was reduced by treating the animals with PARP1 

inhibitors [9,39,42] or in PARP1 null animals [48].

All enzymes that utilize NAD+ as a substrate cleave the nicotinamide (Nam) moiety and 

generate ADP-ribose (for review see [13]). The released Nam can then be recycled via the 

NAD+ salvage pathway by nicotinamide phosphotransferase (Nampt). Nampt generates 

nicotinamide mononucleotide (NMN) from Nam and phosphoribose pyrophosphate (PRPP). 

The NMN is then used by nicotinamide mononucleotide adenylyl transferase (NMNAT) to 

synthetize NAD+ in the presence of ATP [13,49–51] (Fig. 1).

Another approach applied to prevent the depletion of post-ischemic NAD+ pools was to 

stimulate the NAD+ salvage pathway by administering precursors, Nam or NMN [40,52,53]. 

By feeding into the NAD+ salvage pathway one can facilitate NAD+ synthesis. However, 

Nam and NMN also inhibit PARP1 and CD38 [40,47,52,54,55] and therefore also inhibit the 

NAD+ depletion by reducing its degradation.

3.2. Brain injury and mitochondrial NAD+ metabolism

Although, it was established that acute brain injury is associated with brain tissue NAD+ 

depletion it is still elusive in which subcellular compartment the NAD+ levels are the most 

affected. In brain cells, depending on the cell type, 25% (in astrocytes) to 50% (in neurons) 

of NAD+ is localized to mitochondria [56]. The mechanisms that maintain mitochondrial 

NAD+ pools remain unclear.

Nampt, the rate-limiting enzyme of the NAD+ salvage pathway, has been detected in the 

nucleus and cytoplasm [57]. In the brain it is expressed mainly in the cytoplasmic fraction of 

neurons [58]. Therefore, to generate NAD+ in the mitochondria the product of Nampt, 

NMN, needs to be transported into the mitochondrial matrix. Mitochondrial NAD+ is then 

synthetized by mitochondrial isoform of NMNAT (NMNAT3) [59,60]. However, the 

mechanisms of NMN transport across the mitochondrial membrane are not known.
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One could also replenish mitochondrial NAD+ via its translocation from the cytosolic 

compartment. In yeast and plants, a membrane carrier protein transporting NAD+ across the 

inner mitochondrial membrane from the cytoplasm into mitochondria has been identified 

[61,62]. Surprisingly, overexpression of plant and yeast mitochondrial NAD+ carrier in 

human cells caused a switch from oxidative phosphorylation to glycolytic metabolism, 

reduction of cellular ATP levels, and resulted in dramatic growth retardation [63]. Thus, 

these data suggest that direct NAD+ import is likely to be absent from mammalian 

mitochondria and the major mechanism that replenishes intra-mitochondrial NAD+ is the 

NMNAT3 enzyme driven synthesis [60,63]. However, recent findings challenge this 

conclusion [64] and also the presence of active NMNAT3 enzyme in human mitochondria 

was questioned [65]. Thus, until the NMN or NAD+ transporter in mammalian mitochondria 

will be unequivocally identified and characterized, the intra-mitochondrial NAD+ 

metabolism will remain a matter of debate.

There are two possible mechanisms that can lead to reduction of mitochondrial NAD+ levels. 

First, under high oxidative stress or mitochondrial calcium overload a large, high 

conductance pore can be formed in the inner mitochondria membrane, called the 

mitochondrial permeability transition (MPT) pore [66]. Since it allows solutes of molecular 

weight up to 1500 Da to diffuse across the inner membrane, the activation of MPT leads to 

mitochondrial depolarization, leakage of mitochondrial NAD+ into the cytosol, and osmotic 

swelling [67–69]. Even if pore opening is transient and does not lead to an extensive 

mitochondrial swelling, a potentially significant loss of matrix NAD+ will result in 

inhibition of all NAD+ dependent metabolic processes including oxidative phosphorylation 

[70].

Second, mitochondrial NAD+ pools can also be reduced by activation of intra-mitochondrial 

enzymes that utilize NAD+ as substrate. The major NAD+ consuming enzyme following TBI 

or ischemic brain injury is PARP1. Although there are reports suggesting a presence of intra-

mitochondrial PARP1 activity causing increase in poly-ADP-ribosylation of mitochondrial 

proteins following TBI, so far there is no consensus whether it can lead to pathologic 

depletion of intra-mitochondrial NAD+ pools [13]. Furthermore, to our knowledge there are 

no systematic studies examining the effect of acute brain injury on brain mitochondrial NAD
+ pools.

3.3. NAD+ and mitochondrial protein acetylation

Sirtuins (Sirts) serve as metabolic sensors due to their dependence on NAD+ as a substrate 

[36]. The Sirt family of proteins is comprised from seven members that show a discrete 

pattern of subcellular localization. Sirt1, Sirt6, and Sirt7 are localized in the nucleus but also 

reports show a presence of Sirt1 in the cytosol, suggesting that Sirt1 can shuttle to the 

cytosol under specific circumstances [71]. Sirt2 is localized in the cytosol, and Sirt3, Sirt4, 

and Sirt5 were identified as mitochondrial proteins [72]. However, only Sirt3 is considered 

the major mitochondrial deacetylase [73,74]. Stimulation of Sirt3 by caloric restriction or 

following administration of NAD+ precursors leads to activation of TCA cycle enzyme 

glutamate dehydrogenase (GDH) [73] and isocitrate dehydrogenase 2 (IDH2) [75]. 

Furthermore, Sirt3 deacetylates components of the mitochondrial respiratory complexes, 

Klimova et al. Page 5

Biochim Biophys Acta Mol Basis Dis. Author manuscript; available in PMC 2020 June 25.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



interacts with ATP synthase [76], and activates mitochondrial superoxide dismutase (SOD2). 

Deacetylation of SOD2 protects the cells against reactive oxygen species (ROS) [75,77]. 

Finally, Sirt3 plays an important role in protecting mitochondria against excitotoxic insult by 

deacetylating cyclophilin D (cypD), which leads to inhibition of its activity. CypD is a major 

regulator of the MPT pore [78]. As mentioned in the previous paragraph a prolonged 

opening of the MPT pore leads to dissipation of mitochondrial membrane potential, loss of 

matrix solutes including NAD+, inhibition of oxidative phosphorylation, cessation of 

mitochondrial ATP production, and swelling [68,79,80]. Thus, by deacetylating and 

inhibiting CypD, Sirt3 prevents MPT formation, and helps to maintain mitochondrial 

functions under stress conditions [77,81].

In summary, loss of mitochondrial NAD+ has multiple pathologic consequences that are 

associated with NAD+ roles as a cofactor for several key metabolic enzymes and also as a 

substrate for post-translational modifications. Therefore, depleted mitochondrial NAD+ 

pools lead to inhibition of oxidative phosphorylation and the TCA cycle enzyme activity. 

Furthermore, the activity of intra-mitochondrial enzymes that utilize NAD+ as a substrate for 

signaling reactions, most importantly deacetylation, are compromised. As a result, due to the 

reduced activity of Sirt3, increased acetylation of CypD and SOD2 will increase 

mitochondrial sensitivity to MPT inducing stress and mitochondria will be a more active 

source of free radicals.

4. Metabolic interplay of NAD+ and acetyl-CoA

4.1. Acetyl-CoA, protein acetylation, and ischemic injury

The acetylation status of proteins is determined by the dynamic interplay between 

deacetylases and acetyl‐transferases. The level of mitochondrial protein acetylation is 

controlled by mitochondria specific acetyl‐transferase, GCN5L1, and deacetylase, Sirt3 [82] 

(Fig. 2). Acetyl‐transferases use AcCoA as source of acetyl groups that are transferred onto 

lysine residues of the target protein. In brain cells the AcCoA is a metabolite mainly derived 

from glucose [83]. During glycolysis, glucose is converted to pyruvate, which is transported 

into mitochondria where the mitochondrial pyruvate dehydrogenase complex (PDHC) 

catalyzes the oxidative decarboxylation of pyruvate to generate AcCoA. As mentioned 

above PDHC requires NAD+ as a cofactor since during this process the NAD+ is reduced to 

NADH. In the next step of the TCA cycle mitochondrial citrate synthase (CS) forms citrate 

from AcCoA and oxaloacetate (Fig. 2). Citrate can either be oxidized by aconitase in the 

TCA cycle or it can be transported to the cytosol as a substrate for the ATP citrate lyase 

(ACLY). This enzyme generates cytosolic AcCoA from citrate in the presence of ATP (Fig. 

3) [84]. Furthermore, in cytosol AcCoA can also be generated from acetate by acetyl-CoA 

synthetase (ACECS1) (for review see [85]). During this reaction ATP is used and 

pyrophosphate is also released. Two isoforms are known in mammalian cells [86].

Interestingly, mainly neurons are immunopositive for acetylated histones [87], probably due 

to their higher AcCoA levels. This is most likely because although neurons constitute only 

about 10% of brain cells they consume 70% of glucose and oxygen supplied to this organ. 

Thus, high glycolytic and TCA cycle metabolic flux leads to generation of higher AcCoA 

levels that drive the acetyl‐transferase activity. This is then reflected in increased acetylation 
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of neuronal histone and non-histone proteins. To our knowledge there are no reports of either 

cell-type specific or subcellular distribution of AcCoA pools in the brain. Furthermore, 

studies examining changes in cellular or mitochondrial AcCoA levels following ischemic 

insult would be also required to shed more lights on mechanism that lead to post-ischemic 

pathophysiology.

During ischemia the glucose and oxygen delivery to the brain is abolished and the 

production of AcCoA is discontinued after glucose pools are depleted [88,89]. As a 

consequence of reduced cytosolic and nuclear AcCoA levels the histone acetylation is 

significantly reduced following ischemia [87,90]. This substantial reduction of histone 

acetylation affects chromatin folding, the control of DNA accessibility and transcriptional 

activation [91], leading to deficiency in proper response to stress conditions. The pathologic 

implications of such excessively low levels of histone acetylation are supported by the 

neuroprotective effect of class I, II and IV histone deacetylase (HDAC) inhibitors [87,92,93]. 

Treatment of animals subjected to ischemia with pan HDAC inhibitors such as Trichostatin 

A (TSA) or suberanilohydroxamic acid (SAHA), normalized the post-ischemic histone 

acetylation and resulted in significant neuroprotection [92], for review see [94].

Interestingly, to achieve neuroprotective effects against ischemic brain damage the increased 

activity of class III NAD+-dependent HDACs, Sirts, are required. This is probably because 

Sirt targets control expression of genes involved in neuroprotection pathways and also Sitr1, 

Sirt2, and Sirt3–5 modulate activity of non-histone proteins and transcription factors linked 

to cellular bioenergetic metabolism, inflammation, and autophagy. Since cellular NAD+ 

levels are significantly depleted following acute brain injury, the activity of these enzymes is 

compromised during the recovery period. Thus, by replenishing the NAD+ levels or 

administering Sirt activators (such as resveratrol) the acetylation of the target proteins can be 

restored. Although reports are not available, one would expect that the loss of mitochondrial 

NAD+ would lead to the inhibition of Sirt3 activity and increased acetylation of 

mitochondrial proteins. As mentioned above this could lead to further inhibition of oxidative 

phosphorylation and the TCA cycle with increased sensitivity of mitochondria to MPT 

inducing stress and higher ROS production rates. Replenishing the mitochondrial NAD+ 

levels could then reverse the negative effect of hyperacetylation due to activation of Sirt3.

4.2. N-acetyl-aspartate as indicator of neuronal damage and source of acetyl-CoA in non-
neuronal brain cells

N-acetyl-aspartate (NAA) is the most abundant acetylated brain metabolite synthetized in 

neuronal mitochondria. Synthesis of NAA is catalyzed by L-aspartate N-acetyltransferase 

(Asp-NAT) via trans-acetylation of AcCoA and aspartate. Several studies demonstrated that 

in adult rat brain NAA synthesis takes place in neuronal mitochondria from AcCoA, 

generated from glucose and aspartate, a product of TCA cycle [95–97]. The NAA synthesis 

rate is one to two orders of magnitude slower when compared with the synthesis rate of 

other brain metabolites [98]. NAA is predominantly localized in neurons, oligodendrocytes-

type-2, and myelin, whereas astrocytes and mature oligodendrocytes contain very low levels 

of NAA [99]. Following the synthesis, NAA is transported down the axons and used by 

oligodendrocytes for myelin synthesis, repair, and maintenance. NAA provides 30% of 
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necessary AcCoA for myelin lipid synthesis. Specifically, NAA is taken by oligodendrocytes 

in axo-glial contact zones and converted into acetate and subsequently AcCoA (see [98]). 

Although NAA synthesis and turnover is very slow and relies on existing AcCoA and 

aspartate, following ischemic injury NAA levels decrease quickly and correlate with the fast 

decrease in ATP [100–102]. This was interpreted that following the acute brain injury like 

TBI or stroke, during the ‘metabolic crisis’ due to disrupted oxidative glucose metabolism, 

the NAA may serve as substrate and provide acetyl moieties to sustain oxidative metabolism 

and also help to maintain histone proteins acetylation levels.

4.3. Acetyl-carnitine and ketone bodies offer neuroprotection via acetyl-CoA metabolism

The brain is capable of replenishing the AcCoA pool via metabolism of alternative 

substrates, i.e. ketones, fatty acids, and acetyl-carnitine [103] (Fig. 4). This innate ability of 

brain to utilize alternative substrates for energy is highly important during pathological 

conditions such as stress, stroke, and brain trauma, which are characterized by impaired 

oxidative glucose metabolism and increased lactate production. The ability of the brain to 

use these substrates has been known for years, however, recent research re-examines these 

phenomena with specific attention to cell-, and compartment-specific points of view. From 

circulating ketone bodies represented by β-hydroxybutyrate (βOHB), acetoacetate, and 

acetone, βOHB is the most abundant ketone body. It is generated by the liver under 

starvation and is transported into brain cells by the monocarboxylate transporters via a 

sodium-independent and sodium-dependent manner (for review see [104]). It can enter 

directly into the mitochondria, however this pathway is yet to be understood. Once in 

mitochondria, βOHB is converted to acetoacetate via β-hydroxybutyrate dehydrogenase 

(BDH), which requires NAD+ as cofactor, thus this reaction results in production of 

acetoacetate and NADH [74]. It is interesting to note that BDH contains several sites for 

Sirt3 regulation, but whether the activity of BDH is affected by acetylation remains to be 

determined [105]. The ability to utilize βOHB for brain energy and metabolism is a subject 

of regional and developmental regulation. Specifically, βOHB is a preferred substrate for 

energy and metabolism in the developing brain. However, it is also present in the adult brain 

during caloric restriction, starvation, and after exogenous administration in high 

concentration [106]. All brain cells are capable of utilizing βOHB for respiration, however, 

neurons and oligodendrocytes use βOHB more efficiently than astrocytes [107]. 

Furthermore, βOHB has been shown to increase mitochondrial respiration, ATP production, 

and NAD+/NADH ratio in cortical neurons even in the presence of 1 mM of glucose [108]. 

Experiments using 13C NMR (nuclear magnetic resonance spectroscopy) showed that βOHB 

was oxidized to a greater extent in neurons when compared to cortical astrocytes [109].

Increased ketone body utilization results in the significant rise of AcCoA and decrease in 

available Coenzyme A. Thus, βOHB is capable of supporting oxidative metabolism by 

increasing mitochondrial concentrations of AcCoA and increasing intra-mitochondrial 

concentrations of NADH (see review [110]).

Although a ketogenic diet has been used for treatment of refractory epilepsy for decades, the 

mechanisms of neuroprotection offered by ketones are just recently beginning to be 

understood. Hepatic generation of ketones following mobilization of endogenous 
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triglycerides, fatty acids, and their subsequent metabolism via β-oxidation has been well 

studied under starvation, caloric restriction, and exogenous administration in both humans 

and animals. However, little is known about the brain’s endogenous ability to generate 

ketones. It was demonstrated that in vitro astrocytes are the only cells capable to use fatty 

acids for oxidative metabolism via β-oxidation, suggesting that astrocytes can generate 

ketones for neighboring neurons [111]. While Cahoy et al. [112] showed that genes 

responsible for fatty acid metabolism are present in all cells, however, the comparison of 

neuronal and astrocytic transcriptional profiles lead to conclusion that fatty acids oxidation 

is a constitutive metabolic pathway in astrocytes [112,113].

Hence, the astrocytic AcCoA pool can be replenished by fatty acids oxidation and is 

subjected to regional and developmental regulation [114]. Recent evidence demonstrates that 

in addition to astrocytes neural stem/progenitor cells are also dependent on fatty acid 

oxidation in their quiescent state [115]. Astrocytes are capable to upregulate fatty acid 

oxidation in response to injury and stimulation of this pathway by 3,3,5 triiodo-L-thyronine 

(T3) resulted in decreased lesion volume in stroke model [116].

Apart from feeding into mitochondrial respiration, ketone bodies also decease the 

production of ROS by complex I [117], induce BDNF gene expression via activation of the 

transcription factor NF-kB, and its interaction with the histone acetyltransferase p300/EP300 

[108]. Furthermore, βOHB is an inhibitor of class I histone deacetylases (HDACs) [118]. 

Thus, the neuroprotective effect of βOHB is also exerted via mechanisms similar to pan-

HDACs inhibitors TSA and SAHA.

Acetyl-carnitine, the shortest acylcarnitine generated via β-oxidation, doesn’t require 

transferases for intra-mitochondrial transport and provides directly acetyl moieties for the 

TCA cycle. Using 13C NMR, Scafidi et al., showed that astrocytes utilize acetyl-L-carnitine 

for energy and neurotransmitter synthesis [119]. Exogenous administration of acetyl-

carnitine has been shown to be neuroprotective following ischemia, traumatic brain injury, 

multiple sclerosis, and peripheral nerve injury [120–123]. Thus, these alternative substrates, 

βOHB, fatty acids, and acetyl-L-carnitine, provide acetyl moieties for bioenergetics and 

lipids metabolism. Additionally, by altering AcCoA levels, they can affect histone and non-

histone protein acetylation. Thus, they may serve as a therapeutic intervention following the 

acute brain injury or for chronic neurodegenerative diseases.

5. Conclusions

Both NAD+ and AcCoA are cellular metabolic intermediates that are essential for amino 

acids, fatty-acids, and bioenergetic metabolism. Furthermore, they influence gene expression 

by serving as cofactors for epigenetic modifiers mediating post-translational alterations of 

histone and non-histone proteins. Thus, the concentrations of AcCoA and NAD+ affect the 

acetylation levels of proteins controlling transcriptional regulation and metabolic status. As 

we discussed both NAD+ and AcCoA metabolism is disturbed following ischemic stress and 

there is a complex interplay between downstream effects due to imbalance in NAD+ and 

AcCoA homeostasis. The majority of AcCoA is generated via NAD+ dependent processes 

from pyruvate resulting in an intimate relationship between the mechanisms involved in 
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NAD+, AcCoA metabolism, and mitochondrial function and dynamics. Due to the 

complexity of postischemic pathology that involves changes in almost every metabolic 

pathway, a successful treatment strategy will need to comprise of a multi-targeted approach, 

using compound that affects multiple pathways. Administration of intermediates that can 

modulate the post-insult NAD+ and AcCoA levels represents a promising way to manipulate 

several pathways since these metabolites are involved in many enzymatic reactions and also 

play a significant role in regulating enzymes activity and gene expression via post-

translational modifications.
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Fig. 1. 
NAD+ catabolism and the NAD+ salvage pathway. NAD+-consuming enzymes poly-ADP-

ribose polymerase 1 (PARP1), CD38, and sirtuins (Sirts) cleave nicotinamide (Nam) from 

NAD+. PARP1 forms complex ADP-ribose polymers that are attached to the target protein. 

CD38 generates cADP ribose. Sirts conjugate ADP-ribose with an acetyl group removed 

from a lysine residue of an acetylated protein, generating o-acetyl-ADP-ribose. Released 

Nam is then recycled in the NAD+ salvage pathway by nicotinamide phosphotransferase 

(Nampt) that generates nicotinamide mononucleotide (NMN) from Nam and phosphoribose 

pyrophosphate (PRPP). NMN is then converted to NAD+ by nicotinamide mononucleotide 

adenylyl transferase (Nmnat).
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Fig. 2. 
Mitochondrial acetyl-CoA metabolism and protein acetylation. Pyruvate formed during 

glucose metabolism in the cytosol is transported into the mitochondria. Acetyl-CoA is then 

generated by pyruvate dehydrogenase complex (PDHC) from pyruvate. During this reaction 

NAD+ is reduced to NADH that donates electrons to complex I in the respiratory chain 

(RC). In the TCA cycle citrate is produced by citrate synthase (CS) from acetyl-CoA and 

oxaloacetate (OAA). Acetyl-CoA can also be used by mitochondrial acetyltransferase, 

GCN5L1, to acetylate mitochondrial proteins. The acetyl group is removed from the target 

protein by mitochondrial deacetylase, Sirt3, which uses NAD+ and releases the deacetylated 

protein and o-acetyl-ADP-ribose.

Klimova et al. Page 18

Biochim Biophys Acta Mol Basis Dis. Author manuscript; available in PMC 2020 June 25.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 3. 
Cytosolic acetyl-CoA metabolism and protein acetylation. Citrate generated from acetyl-

CoA is transported into the cytosol where it is a substrate for ATP citrate lyase (ACLY). This 

enzyme converts citrate back to acetyl-CoA in the presence of ATP. Acetyl-CoA can be also 

synthetized by cytosolic acetyl-CoA synthetase (ACECS1) from acetate, CoA and ATP. 

Similarly, as in mitochondria, acetyl-CoA is used for acetylation of proteins by 

acetyltransferases (KAT). The acetylated proteins are deacetylated by sirtuins where the 

deacetylation is coupled to NAD+ hydrolysis and o-acetyl-ADP-ribose is released.
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Fig. 4. 
Acetyl-CoA synthesis supported by β-hydroxybutyrate (βOHB), fatty acids β-oxidation, and 

acetyl-L-carnitine metabolism. Acetyl-CoA can be generated from pyruvate, βOHB, β-

oxidation of fatty acids (particularly in astrocytes), and from acetyl-L-carnitine. During these 

metabolic reactions NAD+ is reduced to NADH.
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