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Abstract

Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks

of human disease, but they reside harmlessly as an asymptomatic commensal in the rumi-

nant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are

unable to distinguish non-O157 serogroups due to their heterogeneous metabolic character-

istics, resulting in under-reporting which is likely to conceal their true prevalence. In light of

these deficiencies, the purpose of this study was a twofold approach to investigate

enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemi-

ology approach to understand the genetic diversity and population structure of serogroup

O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to iden-

tify metabolic characteristics that will help the development of a differential media for this

serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated consider-

able diversity in carbon utilisation, which varied in association with eae subtype and

sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised

by the majority of serogroup O145 strains, which, when coupled with current molecular and

culture-based methods, could aid in the identification of presumptive E. coli serogroup O145

isolates. These carbon substrates warrant subsequent testing with additional serogroup

O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic

heterogeneity that was correlated with sequence type and eae subtype, suggesting these

genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome

analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which

is consistent with the identification of distinct phylogenetic lineages. Overall, this study

highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, sug-

gesting that the development of a differential media targeting this serogroup will be

challenging.
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Introduction

Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens residing harmlessly in

the gut of bovine reservoirs, but capable of causing human disease with a broad range of symp-

toms; from diarrhoea to life-threatening haemolytic uraemic syndrome (HUS) [1, 2]. STEC can

be shed in large numbers in faeces excreted by ruminants [3, 4], particularly calves [5], and are

an important source of both foodborne and environmentally acquired STEC infections through

direct contact with faeces or faecally-contaminated environments. Most human infections are

associated with sporadic outbreaks where risk factors include contact with cattle, animal

manure, recreational waters [6] or consumption of contaminated food [7]. STEC have been

identified as the causative pathogenic agent in disease outbreaks associated with a wide variety

of contaminated food products such as romaine lettuce [8], ice-cream [9], and hamburger pat-

ties [10]. In an attempt to manage food-related risk, seven serogroups (O26, O45, O103, O111,

O121, O145 and O157) collectively described as the ‘Top 7’ have been declared adulterants of

ground beef in the United States of America (USA) [11, 12] impacting food safety regulations

and international trade. A cross-sectional study investigating the prevalence of STEC in young

calves (2–21 days of age) throughout New Zealand (NZ) identified STEC O145 as the most

prevalent serogroup (43%) at the dairy farm level compared with the other ‘Top 7’ serogroups

[13]. These prevalence data indicate that, as a zoonotic pathogen, E. coli serogroup O145 repre-

sents both a risk to public health and a regulatory issue for NZ’s meat export industry.

STEC express Shiga toxins encoded by the stx1 and stx2 genes within lambdoid bacterio-

phage [14] maintained in a lysogenic state [15]. Stx toxin production is a component of STEC

pathogenesis in humans that occurs during bacterial adhesion and intestinal colonisation,

leading to impaired intestinal epithelial cell barrier function and diarrhoea [16]. Systemic dis-

semination of Stx toxin through the cardiovascular system may also lead to HUS and other

sequelae [16]. Other important virulence factors for STEC pathogenicity include enterohae-

molysin, a plasmid-associated pore-forming RTX toxin encoded by the ehxA gene [17, 18] and

an outer membrane adhesin, intimin, encoded by the eae gene located within the Locus of

Enterocyte Effacement (LEE) pathogenicity island [19]. Intimin and other LEE-encoded type

III secretion system components and effector proteins mediate the formation of attaching and

effacing lesions [19], which are actin pedestals characterised by microvilli effacement and bac-

terial attachment to the intestinal epithelial cells [19]. The C-terminal end of intimin has a

highly variable amino acid sequence thought to be associated with contrasting host tissue tro-

pisms [20, 21] to the extent that the eae gene has been differentiated into at least 28 different

subtypes [22]. Some STEC serotypes are characterised by a single eae subtype such as O157:H7

(γ), O26:H11 (β), O103:H2 (ε), O111:H8 (θ) and O145:H28 (γ) [23], however, multiple eae
subtypes may be associated with other serogroups [19, 24]. The LEE pathogenicity island is

inserted in the E. coli genome near tRNA genes such as selC, pheV and pheU [19] and is found

in enteropathogenic E. coli (EPEC), that lack stx genes, in addition to the STEC pathotype

[25]. Importantly, many STEC do not possess the eae and ehxA molecular markers; for exam-

ple, a large foodborne outbreak was caused by a hybrid STEC/Enteroaggregative E. coli O104:

H4 strain which was stx2-positive and negative for both eae and ehxA [26, 27], suggesting that

all STEC should be treated as pathogenic, regardless of specific O-serogroups [28]. These dis-

tinct diarrhoeagenic E. coli pathotypes such as STEC and EPEC are often identified according

to the presence or absence of specific virulence factors, such as the stx and eae genes, but dis-

play significant genetic heterogeneity and readily acquire new genetic material via horizontal

gene transfer (HGT) [25].

Current culture-based detection methods for non-O157 STEC do not provide sufficient dis-

crimination between serogroups due to the lack of differential characteristics between non-
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O157 STEC serogroups in comparison to non-pathogenic E. coli [29, 30]. A variety of selective

media currently available have been developed for the detection and isolation of STEC utilising

carbohydrate fermentation patterns to detect specific serogroups based on colony colour [9,

30]. Such media containing carbon substrates have recently been proposed to differentiate the

serogroups O26, O103, O111, O145 and O157 [31], in conjunction with other previously

developed methods [32]. However, the efficacy of such media utilising these substrates has not

been fully validated [31], and this is likely to be a key factor associated with highly variable iso-

lation rates of non-O157 STEC serogroups between studies [29, 33–35] and their probable

under-reporting [36]. Despite the extra efforts required with culture-based techniques for the

isolation of non-O157 serogroups such as O145, in comparison to rapid molecular methods

[37, 38], the identification and isolation of individual bacterial strains provides subsequent

opportunities for further epidemiological and clinical analysis [30, 35, 38]. Other studies have

analysed data from large panels of serogroup-specific STEC strains [39], such as environmen-

tal and clinical isolates [40], but these isolates are often associated with a distinct geographical

area [40].

Whole genome sequencing (WGS) provides the ability for high-resolution genetic typing

analysis that can be used in epidemiological investigations whilst simultaneously providing

information on an isolate’s gene content. Previous studies to provide STEC serogroup phylog-

enies have been limited through the analysis of WGS data from a limited number of ser-

ogroup-specific strains [41–43], or from datasets biased towards human isolates [44], causing

wide-ranging serogroup-specific diversity to be over looked.

Therefore, the purpose of this study was firstly, to take a broad-ranging approach to under-

stand the genetic diversity and population structure of serogroup O145 at both a local (NZ)

and a global scale using genomic epidemiology methods and, secondly, to identify characteris-

tic metabolic traits associated with serogroup O145 which could prove beneficial in the devel-

opment of culture-dependent tests for this serogroup.

Materials and methods

E. coli serogroup O145 strains

In this study, 53 E. coli serogroup O145 strains (S1 Table) were whole genome sequenced from

NZ (n = 47), Norway (n = 4), Australia (n = 1) (provided by Roy Robbins-Browne, University

of Melbourne) and USA (n = 1). These were isolated from bovine (n = 36), environmental

(n = 6) and human clinical sources (n = 11). The serogroup of these O145 strains (S1 Table)

was confirmed using an O145 serogroup-specific PCR, with the primers (5’-GCGGGTGTT
GCCCGTTCTGT-3’) and (5’-ACGGCATTCCGCTGCGAGTT-3’) [29] and subsequently

with analysis of WGS data. Whole genome sequence data from an additional 69 overseas iso-

lates (human clinical cases: n = 36; bovine: n = 12; food: n = 3; ground beef: n = 1; intact beef:

n = 1; ground pork: n = 2; intact pork: n = 3; swine: n = 3; wolf: n = 2; and unknown: n = 6)

were included in the comparative genome analysis (S2 Table) to provide a global context.

Most of the 122 isolates analysed in the global study were from New Zealand (n = 47) and the

USA (n = 47) with the remainder from the UK (n = 15), Norway (n = 4), Canada (n = 2) and

one each from Australia, Denmark, Germany, Italy and Uruguay. Two isolates were of

unknown geographic origin.

DNA extraction, library preparation and whole genome sequencing

Previously described DNA extraction and library preparation methods [13] were used to pre-

pare the E. coli serogroup O145 isolates for WGS. Aliquots of the first four library preparations

and an aliquot of the pooled libraries underwent a quality control check (Bioanalyzer 2100
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[Agilent Genomics, Santa Clara, CA, USA]) at New Zealand Genomics Limited (NZGL, Mas-

sey Genome Service, Massey University, Palmerston North, New Zealand). WGS was per-

formed by NZGL (University of Otago, Dunedin, New Zealand) using an Illumina HiSeq

paired-end v4 platform (2 x 125 bp).

Genome quality control, assembly and annotation

The raw sequencing reads were evaluated using quality control software (QCtool) [45]. The

sequences were de novo assembled using SPAdes v3.9.1 [46].The quality assessment tool

QUAST was used to assess and compare the quality of the genome assemblies [47], which were

annotated using Prokka (v1.12-beta) [48]. Genome assembly statistics are displayed in the sup-

plementary information (S1 Fig).

Downloading publicly available serogroup O145 raw sequence data

Serogroup O145 strains were identified from NCBI [49], EnteroBase [50] and published papers

(S2 Table). Only whole genome sequences in which the raw read sequence data was available

were further analysed using the same analysis pipeline (namely quality assessment, assembly

and genome analysis). Publicly available whole genome sequences were excluded from the

analysis if any discrepancies indicative of potential contamination such as genome size (<4

Mb or >6Mb) or GC content (<48% or >51%) were identified during the quality assessment,

or if an over-representation of unassigned/ambiguous nucleotides (Ns) in the reads was identi-

fied using FastQC, or if the identity of the wzx and wzy genes of the O-antigen biosynthesis

gene cluster could not be confirmed as homologous to those from serogroup O145.

Genetic characterisation of E. coli serogroup O145 strains

Assembled genomes were batch uploaded to the Center for Genomic Epidemiology (CGE)

server [51] for identification of serotype (O and H antigens; threshold of 85% identity (ID)

and a minimum gene fractional length of 60%) [52], species [53], E. coli associated virulence

factors (n = 76; threshold of 90% ID and a minimum gene fractional length of 60%) [54], plas-

mids (threshold of 95% ID and a minimum gene fractional length of 60%) [55], antibiotic

resistance genes (threshold of 90% ID and a minimum gene fractional length of 60%) [56] and

multi-locus sequence typing (MLST) [57]. The stx variants were determined by VirulenceFin-

der, and the eae subtype was determined by identifying the best nucleotide match using

BLASTN [58]. The EPEC-associated bundle forming pilus subunit bfpA [59] was detected

using Geneious v8.1 [60]. In silico analysis of ribosomal multi-locus sequence types (rMLST)

[61] was generated from single nucleotide polymorphisms identified in 51 genes encoding the

ribosome protein subunits (rps, rpm and rpl). The in silico rMLST analysis was visualised using

neighbour-joining methods in SplitsTree v4.14.4 [62] and edited using the Interactive Tree of

Life (iTOL) webserver [63].

The presence or absence of 37 virulence genes identified using VirulenceFinder [54], which

differed between strains, were used to make a Neighbour-joining tree using the Jaccard index

and converted to the Newick file format using R 3.6.0 [64] and the packages ‘vegan’ [65] and

‘ctc’ [66]. The tree was edited using the iTOL webserver [63] and isolate metadata was included

for eae subtype, sequence type (ST) and isolation source.

The LEE pathogenicity island integration sites were identified using either the location of

LEE-encoded genes including a prophage integrase adjacent to a potential tRNA (selC, pheU
or pheV) integration site, or contigs were assembled to a reference genome and the likely

tRNA integration predicted based on the mapped contigs and gene synteny using Geneious

v8.1 [60]. The reference genomes used were STEC O145:H28 RM13514 (NZ_CP006027) or
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STEC O145:H28 RM12761 (NZ_CP007133) where the LEE is integrated at tRNA selC [43],

STEC O26:H11 11368 (AP010953) [67] where the LEE is integrated at tRNA pheU or STEC

O103:H2 12009 (AP010958) where the LEE is integrated at tRNA pheV [67].

Comparative genomics

Single nucleotide polymorphisms (SNPs) were identified in the paired-end sequencing reads

using Snippy v3.0 [68] and STEC O145:H28 RM12761 (NZ_CP007133), associated with a

foodborne STEC outbreak in Belgium, was used as the reference genome [43]. This isolate has

three contigs (a chromosome and two large plasmids) and has a virulence profile similar to

several of the O145 isolates in this study (stx-positive, eae subtype γ). At the time of this study,

there were no publicly available genome sequences from STEC O145 isolated in NZ. Rando-

mised Axelerated Maximum Likelihood (RAxML) Next-Generation [69] maximum-likelihood

trees were generated of the core SNP alignment using a general time-reversible model and ran-

dom seed to perform 20 tree searches using ten random and ten parsimony-based starting

trees. The best-scoring maximum-likelihood tree was viewed in iTOL [63]. Roary [70] was

used to identify the pangenome and the core and accessory genes in the E. coli serogroup O145

strains.

Accession numbers

The accession numbers for E. coli serogroup O145 strains whole genome sequenced in this

study are listed in S3 Table and are deposited with NCBI under the BioProject number

PRJNA435641.

Biolog phenotypic microarray assays

The Omnilog phenotypic microarray system (Biolog Inc, Hayward, California, USA) was used

to investigate the metabolic characteristics of serogroup O145 strains. Serogroup O145 strains

to be examined were selected using random sampling, stratified by the variables: eae subtype,

ST, the geographic origin of isolation and a stx-positive or stx-negative genotype (Table 1).

The plates were prepared as previously described [31], except the colonies were re-suspended

at a light transmittance of 42%. Half of the isolates (n = 14) were tested in replicate (analysed

on separate days) and two in duplicate (analysed on the same day) for the PM1 MicroPlatesTM,

and four biological replicates were tested for the PM2A MicroPlatesTM. The raw Omnilog data

was analysed using R 3.3.1 [64] and the packages ‘opm’ [71] and ‘gplots’ [72]. To compare car-

bon substrate utilisation between the strains, the end-point values per serogroup O145 strain

(n = 28) for each carbon substrate on the phenotypic microarray plates (n = 95) was recorded

and used to produce a cluster dendrogram using hierarchical clustering, with height indicating

the distance between pairs.

Results and discussion

Population structure and genome composition of E. coli serogroup O145

strains

A total of 122 E. coli serogroup O145 strains were analysed, 53 sequenced in this study (S1

Table) and 69 publicly available genome sequences (S2 Table). Using the Achtman MLST sys-

tem [73], a total of 14 distinct STs were identified for the 122 isolates (Fig 1). The predominant

type was ST32 (83 of 122, 68.0%), followed by ST137 (8 of 122, 6.6%), ST17 and ST722 (7 of

122, 5.73% each), ST342 (5 of 122, 4.1%), ST10, ST48 and ST1877 (2 of 122, 1.64% each) and

ST20, ST35, ST526, ST6529, ST7413 and ST unknown (1 of 122, 0.82% each). ST32 was also
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found to be predominant (230 of 239, 96.2%) in a study of O145:H28 strains [44]. Each ST was

also associated with a specific eae subtype, as highlighted in the neighbour-joining tree gener-

ated from SNPs identified in 51 genes encoding the ribosome protein subunits (Fig 1).

A summary of the genome composition for the E. coli serogroup O145 strains (n = 122) is

shown in Fig 2, indicating genome length (bp), coding sequence counts (CDS) and GC content

(%). For all three parameters, clustering occurred according to eae subtype. The shortest

genome lengths were associated with eae-negative, eae subtype ι and α2 strains (4,640,737–

5,010,707 bp). Similarly, the eae-negative and three eae subtype ι strains also had the lowest

CDS counts (3,687–3,946). The CDS counts for the remaining eae subtype ι strains (n = 6), eae
subtype α2, β, ε and λ strains ranged from 4,087 to 5,485. The eae subtype ε strains had both

the longest genome length (5,400,785–5,494,427 bp) and highest CDS counts (5,311–5,434).

The eae-negative strains had a slightly higher GC content (50.81%), however, the GC content

of all serogroup O145 strains was relatively similar (50.22–50.81%).

Table 1. Serogroup O145 strains analysed using the Omnilog phenotypic microarray system.

Strain MicroPlates™ Serotypea Source Origin Sequence type Virulence profile eae subtype

Trh7 PM1, PM2Ab O145:H40 Human Norway ST-10 eae β

TW07865 PM1b, PM2A O145:H28 Human Germany ST-137 stx2, eae, ehxA γ

AGR718 PM1c O145:H46 Bovine Manawatu, New Zealand ST-137 eae, ehxA γ

ERL020412 PM1c O145:H28 Human New Zealand ST-137 eae, ehxA γ

16ER0267A PM1b, PM2Ab O145:H2 Human Auckland, New Zealand ST-17 stx1, eae, ehxA ε

16ER0517A PM1b, PM2A O145:H2 Human Auckland, New Zealand ST-17 stx1, eae, ehxA ε

116B PM1, PM2A O145:H2 Bovine Taranaki, New Zealand ST-17 eae, ehxA ε

188B PM1 O145:H2 Bovine Taranaki, New Zealand ST-17 eae, ehxA ε

267P PM1b, PM2A O145:H2 Bovine Taranaki, New Zealand ST-17 eae, ehxA ε

54B PM1b O145:H2 Bovine Taranaki, New Zealand ST-17 eae, ehxA ε

13ER3103A PM1, PM2A O145:H28 Human Auckland, New Zealand ST-32 stx2, eae, ehxA γ

VC1281m PM1b, PM2A O145:H28 Bovine Canterbury, New Zealand ST-32 eae, ehxA γ

VC847m PM1 O145:H28 Bovine Manawatu-Wellington, New Zealand ST-32 eae, ehxA γ

13ER4824 PM1 O145:H28 Bovine New Zealand ST-32 stx2, eae, ehxA γ

13ER5640 PM1, PM2A O145:H28 Bovine New Zealand ST-32 stx2, eae, ehxA γ

14ER2392 PM1, PM2A O145:H28 Bovine New Zealand ST-32 stx2, eae, ehxA γ

H12ESR01231 PM1b, PM2A O145:H28 Bovine New Zealand ST-32 eae, ehxA γ

H12ESR01387 PM1, PM2A O145:H28 Bovine New Zealand ST-32 stx2, eae, ehxA γ

H12ESR03525 PM1, PM2A O145:H28 Bovine New Zealand ST-32 stx2, eae, ehxA γ

VC308m PM1b O145:H28 Bovine Northland, New Zealand ST-32 eae, ehxA γ

Trh30 PM1, PM2A O145:H28 Human Norway ST-32 eae, ehxA γ

VC1413m PM1b, PM2Ab O145:H28 Bovine Southland, New Zealand ST-32 stx2, eae, ehxA γ

VC1506m PM1, PM2A O145:H28 Bovine Southland, New Zealand ST-32 eae, ehxA γ

F5J PM1 O145:H2 Environmental Waikato, New Zealand ST-32 eae, ehxA γ

P2B1 PM1b, PM2A O145:H28 Environmental Waikato, New Zealand ST-32 eae, ehxA γ

Trh42 PM1b, PM2A O145:H34 Human Norway ST-35 eae ι

13ER6723A PM1b, PM2A O145:H34 Human Auckland, New Zealand ST-722 stx2, eae ι

R249-1 PM1b, PM2Ab O145:H34 Human Australia ST-722 eae ι

a: O antigen: H antigen

b: MicroPlates™ were completed in replicate (analysed on separate days)

c: MicroPlates™ were completed in duplicate (analysed on the same day)

https://doi.org/10.1371/journal.pone.0235066.t001
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Genetic characterisation of virulence factors and antimicrobial resistance

The virulence profiles of the serogroup O145 isolates (n = 122) (S4 Table) broadly cluster

according to both eae subtype and ST (Fig 3). The eae subtype γ (n = 93) strains cluster

together, with some variation according to ST and at the strain level. WGS data analysis of the

eae subtype γ strains indicates the presence of between 13 and 22 of the 37 virulence factors, as

shown in Fig 3. Notably, the plasmid-associated virulence factor etpD was present in the eight

ST137 strains and absent in the remaining ST32 and ST7413 (n = 85) eae subtype γ strains.

The presence or absence of 37 virulence genes identified using VirulenceFinder, which dif-

fered between strains, were used to make a Neighbour-joining tree using the Jaccard index

and converted to Newick format using R 3.6.0 and the packages ‘vegan’ and ‘ctc’, respectively.

The tree was edited using the iTOL webserver and isolate metadata was included for eae sub-

type, sequence type (ST) and isolation source.

The eae subtype α2 (n = 2), ι (n = 9), eae-negative (n = 2), β (n = 9) and ε (n = 7) strains

broadly form separate clusters, with similarity within each cluster correlating with ST. The eae
subtype ε strains (n = 7, ST17) carry between 17 and 19 virulence factors, and the eae subtype

β strains carry between 8 and 19 virulence factors. In comparison to other serogroup O145

strains, the α2, ι, β (ST10) and eae-negative strains carry fewer virulence factors; eae subtype

α2, ι, β (ST10) and eae-negative strains carry 7, 8 to 11, 8 and 9, and 2 and 3 of the 37 virulence

factors listed in Fig 3, respectively. The low number of virulence factors carried by the eae-neg-

ative and eae subtype α2, ι and β (ST10) strains may be partially due to the absence of plasmid-

acquired virulence factors, such as etpD, ehxA and katP (Fig 3). Five strains (ST722, eae sub-

type ι) are defined as typical EPEC due to the presence of the LEE pathogenicity island and the

bundle forming pilus biosynthesis operon [74].

Of the 122 isolates, 65 were stx-positive (53.3%) including stx variants stx1a (12 of 65,

18.5%), stx2a (35 of 65, 53.8%), stx2c (2 of 65, 3.1%), stx2d (4 of 65, 6.2%) and stx2f (4 of 65,

6.2%). Eight isolates were both stx1 and stx2 positive (stx1a, stx2a, 1 of 65, 1.5%; stx1a, stx2d, 7

of 65, 10.7%). The remaining 57 isolates were stx-negative. Similar stx variants were detected

in an analysis of 239 O145:H28 strains [44]; however, stx2f was not detected and was only

detected in four O145:H34 strains in this study. It has been suggested that different stx variants

may have varying levels of virulence, for example, stx2a has been associated with an increased

risk of developing HUS [75, 76], in comparison stx1 variants were associated with a lower risk

[75]. STEC possessing the stx2f toxin, first described in pigeons [77], have been described as an

emerging pathogen [78]. Preliminary epidemiological data suggested infections caused by

stx2f-positive STEC were associated with mild clinical disease [79], however, one case of HUS

caused by a STEC strain possessing stx2f, and eae positive and ehxA negative, has been

reported [80]. Three of the four stx2f isolates were from human clinical cases, with the source

of the remaining isolate being unknown.

Plasmids were detected in 113 out of 122 strains (S5 Table), with distinct nucleotide

matches (�95% identity and�60% coverage) of plasmid incompatibility factors indicative of

separate plasmids. A single plasmid was identified in 89 O145 strains, two plasmids in 18,

three plasmids in five and a single O145 strain was identified with four plasmids. The most

commonly detected plasmid incompatibility factor was IncFIB (AP001918) which was

Fig 1. Neighbour-joining phylogeny constructed using in silico ribosomal multi-locus sequence typing. A

Neighbour-joining tree of ribosomal multi-locus sequence types (rMLST) generated from single nucleotide

polymorphisms identified in 51 genes encoding the ribosome protein subunits (rps, rpm and rpl). The in silico rMLST

analysis was visualised using neighbour-joining methods in SplitsTree and edited using the iTOL (Interactive Tree of

Life) webserver. Isolate metadata is included for sequence type, eae subtype and isolation source, as indicated by the

colour keys.

https://doi.org/10.1371/journal.pone.0235066.g001
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detected in 96.5% (109 out of 113) of the strains. Interestingly, the IncFIB and IncB/O/K/Z_3

plasmids were found to be highly conserved within a population of 239 O145:H28 strains [44].

The ubiquity of the plasmid incompatibility factor IncFIB detected in this study may suggest

that this plasmid is conserved within the O145 serogroup. Plasmid negative strains (n = 9),

belonged to eae subtype α2 (n = 2), ι (n = 3), and γ (n = 4).

The LEE pathogenicity island integration sites were identified in 73 out of 120 serogroup

O145 strains and are listed in S6 Table. A tRNA pheV integration site was identified for eae
subtype ε (n = 7), β (n = 2) and γ (n = 2) strains, pheU for the eae subtype β (n = 1) strain and

selC for the eae subtype α2 (n = 2), β (n = 1), ι (n = 7), and γ (n = 49) strains. Although the selC

Fig 2. Box and whisker plots indicating the genome composition of E. coli serogroup O145 strains (n = 122). The box and whisker plots indicate the genome

length (bp), number of coding sequences and GC content (%) for the serogroup O145 strains (n = 122). The box spans the interquartile range, with the lower and

upper quartiles indicated by the ends of the box (from left to right) and the median by the vertical line inside the box. Each data point is shown on the plots and

has been grouped according eae subtype in the y axes, as indicated by the figure key.

https://doi.org/10.1371/journal.pone.0235066.g002

PLOS ONE Comparative genomics and carbon metabolism of E. coli serogroup O145

PLOS ONE | https://doi.org/10.1371/journal.pone.0235066 June 25, 2020 9 / 25

https://doi.org/10.1371/journal.pone.0235066.g002
https://doi.org/10.1371/journal.pone.0235066


PLOS ONE Comparative genomics and carbon metabolism of E. coli serogroup O145

PLOS ONE | https://doi.org/10.1371/journal.pone.0235066 June 25, 2020 10 / 25

https://doi.org/10.1371/journal.pone.0235066


LEE integration site for eae subtype ι strains has not previously been identified, the precise

LEE integration site could not be determined for one eae subtype ι strain Trh42 but was

located near tRNA leu. This potential LEE insertion site was also observed for the eae subtype

β strain 73858. The LEE insertion site could not be determined in 47 strains, likely due to

incomplete genome assemblies as a result of using short-read sequencing. The common stx-

bacteriophage insertion sites for serogroup O145 [81] were analysed to identify whether these

sites were occupied or available in stx-negative strains. Although some sites were vacant in the

majority of stx-negative strains, not all insertion sites could be detected. This was possibly due

to the genes surrounding these sites being unannotated; the sites being occupied and the inser-

tion site therefore disrupted; or the genome assembly being incomplete. The detection of stx-

bacteriophage insertion sites in serogroup O145 isolates is problematic due to multiple poten-

tial insertion sites, variations in prophage structure and variation between integration sites,

including between phage which encode the same Stx subtype [44]. In addition, “Stx2-like” pro-

phage, which appear to be defective as a result of nonsense mutations in the stx2A subunit or

absent stx2A and stx2B genes, have been detected in serogroup O145 strains [42], further com-

plicating the detection of stx-bacteriophage insertion sites in this serogroup.

The serogroup O145 genome sequences (n = 122) were examined for antibiotic resistance

genes using ResFinder [56]. Twenty-three of 122 strains (18.9%) carried one or more resis-

tance genes with resistance to up to a maximum of five classes of antibiotics being detected

(Table 2). These strains were from a variety of sources, belonged to multiple STs and eae sub-

types and were isolated in the USA (n = 17), UK (n = 2), NZ (n = 1), Germany (n = 1) and

Canada (n = 1) with the geographic isolation of one strain being unknown. Notably, all 23 of

the resistant strains carried genes conferring aminoglycoside resistance. The variation in the

carriage of antibiotic resistance genes in the serogroup O145 genomes may be a result of vary-

ing selective pressures that may impact the development and transmission of resistance, such

as antimicrobial use in different geographical regions. For example, only one out of 35 ser-

ogroup O145 strains isolated from bovine sources in NZ carried an antibiotic resistance gene;

which may be reflective of the low antimicrobial use in the dairy industry in NZ [82]. As a

result of this variability, it is unlikely that antimicrobial resistance is a property that could be

utilised in the development of a media for the differentiation of serogroup O145.

Comparative genomics of the 122 serogroup O145 strains from diverse geographical

regions and distinct hosts/sources highlighted the genetic heterogeneity within this serogroup.

The strains analysed belonged to 14 different STs, carried between 2 and 22 E. coli associated

virulence factors and 18.9% (23 out of 122) carried genes known to confer antibiotic resistance

(Figs 1 and 3, and Table 2). Genome analysis indicated strains of the same eae subtype had a

similar genome size and number of CDS counts (Fig 2), consistent with other ‘Top 7’ ser-

ogroups [42–44, 67, 83]. However, the eae-negative and eae subtype α2 and ι strains had

smaller genomes (Fig 2) compared to other serogroup O145 strains. The WGS data from α2

and ι strains in this study are consistent with the genome parameters of two further atypical

(bundle forming pilus negative) EPEC (aEPEC) O145:H34 isolates [84] with identical STs and

eae subtypes (α2 and ι) recently analysed (S1 and S2 Tables).

Core and pangenome analysis

The number of conserved and total genes present in serogroup O145 strains (n = 122) is

shown in Fig 4. The core is defined as genes present in all strains (100%) strains, the soft-core

Fig 3. Neighbour-joining tree constructed using the presence or absence data from 37 virulence genes identified

by the center for genomic epidemiology VirulenceFinder webserver.

https://doi.org/10.1371/journal.pone.0235066.g003
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as genes present in between�115 and�121 strains (�95%—�99%) strains, the shell as genes

present in�18 -<115 strains (�15%—<95%) strains and the cloud as genes present in <18

strains (>0%—<15%) (Fig 5). The pangenome analysis suggested a core gene set of 3,036

genes, a soft-core of 252 genes, a shell of 2,916 genes and a cloud of 14,942 genes (Fig 5).

Pangenome analysis of serogroup O145 strains (n = 122) supported the diverse genetic het-

erogeneity within this serogroup (Fig 5). For a given population, when additional genome

sequences are included, an open pangenome will identify un-characterised genes, whereas a

closed pangenome will have approached a constant number [85]. The serogroup O145 pan-

genome of>14,000 genes was open (Fig 4), demonstrating the genetic heterogeneity of this

dataset, and is consistent with the identification of distinct phylogenetic lineages. The number

of core genes reported for E. coli varies among studies and ranges from 1,472 to 5,173 [43, 44,

86–88]. Although pangenomes consisting of>13,000 genes have been reported for E. coli [86,

88], pangenome analysis of 325 E. coli O26 genome sequences and 239 O145:H28 strains indi-

cated an open pangenome with an accessory genome of only 8,804 genes [88] and 9,342 [44],

respectively. These core genome variations are likely to be due to factors such as the number of

genomes analysed and the genetic similarity of the strains included for comparison. For exam-

ple, analysis of two serogroup O145:H28 strains identified a large core gene set of 5,173 as the

two strains are likely to be genetically very similar [43] and the core gene set of 239 O145:H28

strains was 3,804 [44]. In addition, different software and identity thresholds can be used to

define pangenomes, for example, a study of 53 E. coli genomes identified a core genome of

1,472 when reporting gene families rather than individual genes [86]. Therefore, such

Table 2. Detection of genes conferring resistance to certain classes of antibiotics.

Strain Origin Source Sequence type Antibiotic classes

Aminoglycoside Beta-lactam Phenicol Sulphonamide Tetracycline

182131 UK Human 10 + + - - -

MOD1EC5165 Unknown Unknown 20 + + - + -

OLC0719 Canada Unknown 32 + - - + +

VC874o NZ Bovine 32 + - - + +

173758 UK Human 32 + - - + -

FSIS1605420 USA Bovine 32 + - + + +

FSIS1605419 USA Bovine 32 + - + + +

MOD1EC1935 USA Bovine 32 + - - + +

2010C3507 USA Human 32 + - + + +

2010C3508 USA Human 32 + - + + +

2010C3509 USA Human 32 + - + + +

2010C3510 USA Human 32 + - + + +

2010C3526 USA Human 32 + - + + +

MOD1EC1971 USA Human 32 + - + + +

MOD1EC1972 USA Human 32 + - + + +

MOD1EC5842 USA Swine 32 + - - + +

MOD1EC1954 Germany Bovine 137 + + + + +

TW07865 USA Human 137 + + + + +

MOD1EC6028 USA Swine 137 + + + + +

MOD1EC6710 USA Bovine 342 + + - + +

MOD1EC1941 USA Bovine 342 + + - + +

2009C3292 USA Unknown 342 + - - - -

MOD1EC5961 USA Swine 6529 + + - + +

https://doi.org/10.1371/journal.pone.0235066.t002
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parameters should be considered when comparing between studies. Pangenome analysis has

indicated a significant proportion of the E. coli genome as comprised of diverse genes. In

O145:H28 strains (n = 239), plasmid- and phage-associated genes comprised a large propor-

tion of the pangenome [44]. This highlights the genetic heterogeneity of E. coli through HGT,

incorporation of phage genetic material and through gene loss or duplication that can lead to

genetically diverse populations, even within the same serogroup.

Fig 4. Comparison of the number of conserved and total genes in the serogroup O145 pangenome with increasing number of genomes. This analysis

indicates the effect an increasing number of serogroup O145 genomes included in the analysis has on the number of conserved and total genes.

https://doi.org/10.1371/journal.pone.0235066.g004
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Core SNP analysis

Core SNP analysis of the 122 serogroup O145 strains (Fig 6) separated the strains into five phy-

logenetic clades which correlated with both eae subtype and ST. Clade 1 consisted of eae sub-

types ι (n = 9) and α2 (n = 2). Clade 2 consisted of eae subtype β strains belonging to ST10

(n = 2) and the two eae-negative strains. eae subtype β strains belonging to ST342 (n = 5)

formed Clade 3, whilst Clade 4 consisted of eae subtype ε strains (n = 7) and two eae subtype β
strains belonging to ST20 and ST6529. The largest group, Clade 5, consisted of eae subtype γ
strains (n = 93) and 139,513 SNPs were identified within the core genome of these strains

(n = 122). Genome-wide core SNP analysis of 69 E. coli strains across 31 serogroups also iden-

tified significant genetic diversity with 86,350 SNPs identified across 1,371 core genes [42].

These results support the hypothesis of the evolution of distinct E. coli phylogenetic lineages

with different eae subtypes, with subsequent mutations and/or HGT resulting in a large

amount of genetic heterogeneity.

To resolve the phylogeny of the serogroup O145 strains, a core SNP analysis was performed

on the eae subtype γ strains (n = 93) (Fig 7) identifying 6,534 SNPs, accounting for only 4.7%

of the variation seen in the core genome of serogroup O145 strains (n = 122). This indicates

these strains are genetically more similar compared to the other serogroup O145 strains ana-

lysed in this study.

Fig 5. The pangenome composition of serogroup O145 strains (n = 122). Pan genome composition of serogroup O145 strains (n = 122) showing the core as genes

present in all strains (100%), the soft-core as genes present in�115 and�121 strains (�95%—�99%), the shell as genes present in�18 - <115 strains (�15%—<95%)

and the cloud<18 strains (>0%—<15%).

https://doi.org/10.1371/journal.pone.0235066.g005
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Utilisation of carbon substrates

A dendrogram was generated according to the clustering of the utilisation of carbon substrates

on the PM1 MicroPlates™, and significant metabolic variation was observed between ser-

ogroup O145 strains (Fig 8). There was no relationship between the utilisation of specific car-

bon substrates and whether a strain was stx-positive or stx-negative. Similarly, strains of

human and bovine origin did not cluster together (Fig 8, S2 Fig). Instead, clustering of ser-

ogroup O145 strains by carbon utilisation was broadly associated with eae subtype and ST,

which is consistent with the genomic analysis and highlights both the metabolic and genetic

heterogeneity of this serogroup.

The utilisation of carbon substrates and subsequent cluster analysis of metabolic character-

istics displayed by serogroup O145 strains (n = 20) on the PM2A MicroPlates™ (S3 Fig) was

similar to that seen with the PM1 MicroPlates™. However, far fewer carbon substrates (23.2%;

22 out of 95) were utilised by�1 E. coli strain on the PM2A MicroPlates™. The clustering

observed was similar when the replicate (analysed on separate days) and duplicate (analysed

on the same day) data was included, however, there was contrasting utilisation of some carbon

substrates between replicates and duplicates on the PM1 (11.6%; 11/95) and PM2A (4.2%; 4/

95) MicroPlates™ (S2 and S3 Figs). Notably, the utilisation of some substrates, such as D-psi-

cose and glucuronamide, was inconsistent between replicates and duplicates for multiple ser-

ogroup O145 strains, and due to the inconsistency in utilisation, these substrates are likely to

be unsuitable for use in a differential media for serogroup O145.

Analysis of the utilisation of 190 carbon substrates (PM1 MicroPlates™, PM2A Micro-

Plates™) failed to identify any specific carbon substrates that would be likely to definitively

Fig 6. Maximum-likelihood tree of core single nucleotide polymorphism analysis of serogroup O145 strains

(n = 122). RAxML Next-Generation maximum-likelihood tree of the core single nucleotide polymorphism (SNP)

genome analysis from serogroup O145 genome sequences (n = 122). The tree was generated using 139,513 core SNPs.

Metadata is included for eae subtype and sequence type, and additional information for each isolate can be found in S1

and S2 Tables.

https://doi.org/10.1371/journal.pone.0235066.g006
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differentiate serogroup O145 from other E. coli. However, several carbon substrates were iden-

tified which are utilised by a large proportion of serogroup O145 strains, which, when coupled

with current molecular and culture-based methods, could aid in the identification of presump-

tive E. coli serogroup O145 isolates. For example, D-serine is utilised by eae subtype γ (ST32

and ST137; n = 18) and β (ST10; n = 1), and D-malic acid is utilised by eae subtypes γ (ST32

and ST137; n = 18) and ε (ST17; n = 6) (S2 Fig). These carbon substrates warrant subsequent

testing with additional serogroup O145 strains and further non-O145 strains by including

them as the main energy source in a minimal medium or a selective enrichment media.

However, there is variation in carbon substrate utilisation within serogroup O145 strains of

the same ST and eae subtype. This suggests that the ability to metabolise certain substrates has

either been lost or gained independently on multiple occasions by entirely separate lineages of

serogroup O145. Furthermore, this also suggests that HGT events can lead to phenotypic traits

that are not homogenous between members of the same phylogenetic cluster (either by MLST

or SNP-based typing). Contrasting phenotypic traits leading to variations in metabolic activity

may also arise via point mutations. Other traits, such as virulence factors and antimicrobial

resistance, are also highly heterogeneous within the E. coli serogroup O145 strains studied,

highlighting the limitations of making assumptions about isolates belonging to one serogroup

from genetic data with limited phylogenetic resolution, such as the seven-gene MLST schemes.

As a result, phenotypes cannot always be assumed from genotype, and therefore both pheno-

type and genotype testing are required to understand the epidemiological origin and potential

virulence-associated consequences.

Fig 7. Maximum-likelihood tree of core single nucleotide polymorphism analysis from eae subtype γ serogroup O145 strains (n = 93). RAxML Next-

Generation maximum-likelihood tree of the core single nucleotide polymorphism (SNP) genome analysis from serogroup O145 eae subtype γ genome

sequences (n = 93). The tree was generated using 6,534 core SNPs. Circular and square nodes indicate genomes of New Zealand and non-New Zealand

origin, respectively. Metadata is included for isolation source, and additional information for each isolate can be found in S1 and S2 Tables.

https://doi.org/10.1371/journal.pone.0235066.g007
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Previous studies have examined the carbon utilisation of the ‘Top 7’ E. coli serogroups [31,

89], demonstrating the variability in carbon utilisation and how this variability has hindered

the development of a differential media for many non-O157 serogroups. However, this is the

first study to examine the growth of genetically diverse serogroup O145 strains with a broad

range of carbon substrates. In other studies undertaken to compare metabolic capabilities of

several STEC serogroups, O145 isolates (n = 3) showed little variation in the number of carbon

substrates utilised and β-hydroxy-butyric acid was identified as a candidate metabolite for dif-

ferentiation of O145 from other clinically relevant STEC [31]. However, our study of geneti-

cally diverse O145 demonstrated that the utilisation of β-hydroxy-butyric acid was variable (S2

Fig) with some O145 (eae subtype β (n = 1), ε (n = 4), ι (n = 3) and γ (n = 1, ST137)) strains

unable to utilise β-hydroxy-butyric acid as the only carbon source. The three O145 strains

examined previously [31] displayed similarities in carbon utilisation with O157:H7 strains (eae
subtype γ), were all O145:H28, and are likely to be eae subtype γ, which may account for the

limited variation observed in comparison to the heterogeneity seen in our study [31]. In con-

trast, carbon utilisation of E. coli (n = 153), Shigella (n = 16), Escherichia fergusonii (n = 2),

Escherichia albertii (n = 1) and cryptic Escherichia Clade strains (n = 6) in another study was

shown to be highly variable [90]. The carbon substrate utilisation diversity observed in our

study suggests the development of diagnostic media permitting the selective growth and/or

Fig 8. Cluster dendrogram showing the similarities of E. coli serogroup O145 strains based on their carbon utilisation profile using PM1 MicroPlate™. The end-

point values per serogroup O145 strain (n = 28) for each carbon substrate on the phenotypic microarray plates (n = 95) was recorded and used to produce a cluster

dendrogram using hierarchical clustering, with height indicating the distance between pairs. Metadata is included for sequence type, eae subtype and whether the strains

were toxigenic or non-toxigenic. Sequence type is shown in brackets, stx1 positive as � and stx2 positive as ‡.

https://doi.org/10.1371/journal.pone.0235066.g008
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differentiation of all O145 strains based on carbon source utilisation could be difficult. How-

ever, if the high prevalence of serogroup O145 eae subtype γ strains seen in this study (S1 and

S2 Tables) is reflected in their overall zoonotic potential, the development of a medium solely

for this eae subtype may be beneficial.

Conclusion

In this study, we used comparative genomics and carbon substrate utilisation to understand

the genomic epidemiology and metabolic profiles of E. coli serogroup O145, respectively. We

found considerable genetic heterogeneity within serogroup O145 strains according to the rela-

tive abundance of virulence factors, core genome SNPs, and pangenome analysis. ST and eae
subtype provided an indication of genetic heterogeneity suggesting these parameters are good

indicators to separate distinct E. coli phylogenetic lineages. The genetic heterogeneity within

these strains also provided evidence of a broad virulence continuum; stx2a- and eae-positive

strains are implicated as the cause of severe human disease, both typical and atypical EPEC are

associated with mild diarrhoeal disease or asymptomatic carriage, while other serogroup O145

isolated from wolves lacked many STEC-associated virulence factors and appeared to be host-

associated and unlikely zoonoses. Carbon substrate utilisation by a subset of E. coli serogroup

O145 strains demonstrated considerable metabolic variation, which showed a remarkable

association with eae subtype and ST, consistent with the genomic data. Several carbon sub-

strates, such as D-serine and D-malic acid, were identified which are utilised by many ser-

ogroup O145 strains including eae subtype γ, the predominant eae subtype identified in this

study. These carbon substrates, coupled with molecular tests to detect O145-specific wzx and

wzy gene sequences, could provide targets for further investigation in media to assist in the

identification of presumptive E. coli serogroup O145 strains. Further testing with additional

non-O145 isolates is required to test this hypothesis.
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and N50 value for the serogroup O145 strains (n = 122). Each data point is shown on the plots

and has been colour coded according to eae subtype, as indicated by the figure key.

(PNG)

S2 Fig. Heat-map showing E. coli serogroup O145 strains carbon utilisation profiles using

PM1 MicroPlate™ with replicates and duplicates. Heat-map of PM1 carbon substrate metab-

olism over a 24-hour incubation period at 37˚C by serogroup O145 strains. The end-point uti-

lisation values (Omnilog Units) were grouped into the following three categories: 0–50

representing no utilisation, 51–150 representing moderate utilisation and 151–400 represent-

ing extensive utilisation, as indicated by the colour key. Each strain (n = 28, n = 14 replicates,

n = 2 duplicates) is indicated on the right and the 95 carbon substrates listed along at the foot

of the figure. Metadata is included for eae subtype, sequence type, source and whether the

strains were toxigenic. eae subtype on the left is represented by the colour key, NA is not appli-

cable, sequence type is shown in brackets, isolate source indicated by the colour boxes next to

the label name with black, red and blue boxes representing bovine, human and environmental

sources, respectively and stx1 positive as � and stx2 positive as ‡.

(PNG)

S3 Fig. Heat-map showing E. coli serogroup O145 strains carbon utilisation profiles using

PM2A MicroPlate™ with replicates. Heat-map of PM2A carbon substrate metabolism over a

24-hour incubation period at 37˚C by serogroup O145 strains. The end-point utilisation values

(Omnilog Units) were grouped into the following three categories: 0–50 representing no utili-

sation, 51–150 representing moderate utilisation and 151–400 representing extensive utilisa-

tion, as indicated by the colour key. Each strain (n = 20 and n = 4 replicates) is indicated on

the right and the 95 carbon substrates listed along at the foot of the figure. Metadata is included

for eae subtype, sequence type, source and whether the strains were toxigenic. eae subtype on

the left is represented by the colour key, NA is not applicable, sequence type is shown in brack-

ets, isolate source indicated by the colour boxes next to the label name with black, red and blue

boxes representing bovine, human and environmental sources, respectively stx1 positive as �

and stx2 positive as ‡.

(PNG)
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9. De Schrijver K, Buvens G, Possé B, Van den Branden D, Oosterlynck O, De Zutter L, et al. Outbreak of

verocytotoxin-producing E. coli O145 and O26 infections associated with the consumption of ice cream

produced at a farm, Belgium, 2007. Eurosurveillance. 2008; 13(7):9–10. https://doi.org/10.2807/ese.13.

07.08041-en PMID: 18445416

10. Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, et al. A multistate outbreak of Escheri-

chia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers: The

PLOS ONE Comparative genomics and carbon metabolism of E. coli serogroup O145

PLOS ONE | https://doi.org/10.1371/journal.pone.0235066 June 25, 2020 20 / 25

https://doi.org/10.7326/0003-4819-109-9-705
http://www.ncbi.nlm.nih.gov/pubmed/3056169
https://doi.org/10.3201/eid0404.980415
https://doi.org/10.3201/eid0404.980415
http://www.ncbi.nlm.nih.gov/pubmed/9866741
https://doi.org/10.1089/fpd.2015.1987
https://doi.org/10.1089/fpd.2015.1987
http://www.ncbi.nlm.nih.gov/pubmed/26075548
https://doi.org/10.1371/journal.pone.0159866
http://www.ncbi.nlm.nih.gov/pubmed/27482711
https://doi.org/10.1046/j.1365-2672.2000.00848.x
https://doi.org/10.1046/j.1365-2672.2000.00848.x
https://doi.org/10.1186/1471-2334-13-450
http://www.ncbi.nlm.nih.gov/pubmed/24079470
https://doi.org/10.1128/microbiolspec.EHEC-0002-2013
https://doi.org/10.1128/microbiolspec.EHEC-0002-2013
https://doi.org/10.4315/0362-028X.JFP-12-503
http://www.ncbi.nlm.nih.gov/pubmed/23726187
https://doi.org/10.2807/ese.13.07.08041-en
https://doi.org/10.2807/ese.13.07.08041-en
http://www.ncbi.nlm.nih.gov/pubmed/18445416
https://doi.org/10.1371/journal.pone.0235066


Washington experience. J Am Med Assoc. 1994; 272(17):1349–53. https://doi.org/10.1001/jama.272.

17.1349

11. U.S. Department of Agriculture FSIS. Risk profile for pathogenic non-O157 Shiga toxin-producing

Escherichia coli 2012. Available from: http://www.fsis.usda.gov/shared/PDF/Non_O157_STEC_Risk_

Profile_May2012.pdf.

12. U.S. Department of Agriculture FSIS. Shiga toxin-producing Escherichia coli in certain raw beef prod-

ucts 2011. Available from: https://www.gpo.gov/fdsys/pkg/FR-2011-09-20/html/2011-24043.htm.

13. Browne AS, Midwinter AC, Withers H, Cookson AL, Biggs PJ, Marshall JC, et al. Molecular epidemiol-

ogy of Shiga toxin-producing Escherichia coli (STEC) on New Zealand dairy farms: Application of a cul-

ture-independent assay and whole-genome sequencing. Appl Environ Microbiol. 2018; 84(14):16.

https://doi.org/10.1128/aem.00481-18 PMID: 29752274

14. O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB. Shiga-like toxin-converting

phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science. 1984;

226(4675):694–6. https://doi.org/10.1126/science.6387911 PMID: 6387911

15. Tozzoli R, Grande L, Michelacci V, Ranieri P, Maugliani A, Caprioli A, et al. Shiga toxin-converting

phages and the emergence of new pathogenic Escherichia coli: A world in motion. Front Cell Infect

Microbiol. 2014; 4:80. https://doi.org/10.3389/fcimb.2014.00080 PMID: 24999453

16. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections.

Clin Microbiol Rev. 1998; 11(3):450–79. PMID: 9665978
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