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Abstract

Out-of-phase ventilation occurs when local regions of the lung reach their maximum or minimum 

volumes at breathing phases other than the global end inhalation or exhalation phases. This paper 

presents the N-phase local expansion ratio (LERN) as a surrogate for lung ventilation. A common 

approach to estimate lung ventilation is to use image registration to align the end exhalation and 

inhalation 3DCT images and then analyze the resulting correspondence map. This 2-phase local 

expansion ratio (LER2) is limited because it ignores out-of-phase ventilation and thus may 

underestimate local lung ventilation. To overcome this limitation, LERN measures the maximum 

ratio of local expansion and contraction over the entire breathing cycle. Comparing LER2 to LERN 

provides a means for detecting and characterizing locations of the lung that experience out-of-

phase ventilation. We present a novel in-phase/out-of-phase ventilation (IOV) function plot to 
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visualize and measure the amount of high-function IOV that occurs during a breathing cycle. 

Treatment planning 4DCT scans collected during coached breathing from 32 human subjects with 

lung cancer were analyzed in this study. Results show that out-of-phase breathing occurred in all 

subjects and that the spatial distribution of out-of-phase ventilation varied from subject to subject. 

For the 32 subjects analyzed, 50% of the out-of-phase regions on average were mislabeled as low-

function by LER2 (high-function threshold of 1.1, IOV threshold of 1.05). 4DCT and Xenon-

enhanced CT of four sheep showed that LER8 is more accurate than LER2 for measuring lung 

ventilation.
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I. INTRODUCTION

During normal tidal breathing, it is often assumed that the total lung volume increases 

monotonically during inhalation, reaching a maximum volume at the end of inhalation. 

Similarly, during exhalation, it is often assumed that the total lung volume decreases 

monotonically and reaches a minimum volume at end of exhalation. However, some local 

regions of the lung may reach the maximum and minimum volumes at different respiratory 

phases than the total lung volume [1]. We refer to this phenomena as “out-of-phase” 

ventilation.

It has long been established [2], [3] that the lung experiences nonuniform ventilation during 

normal breathing. There are a number of reasons why out-of-phase ventilation occurs which 

include natural asymmetries in the lung anatomy [4], regional variations in the lung tissue 

material properties [5], and pulmonary pathologies [6]. Previous work using image 

registration and cine CT data [1] has shown that the lung does not expand uniformly during 

breathing. The results in [1] show that the lung expands at different rates at different 

locations in the lung and the spatial pattern of expansion and contraction is repeatable from 

one breath to the next. The lung may be modeled as elastic material [7], [8] and has 

heterogeneous regional ventilation [3], [9], [10]. This indicates that air comes into different 

regions of the lung at different times and speeds during inhalation. Likewise, air leaves 

different regions of the lung at different times and speeds during exhalation. When the 

amount of ventilation heterogeneity is large enough, different regions of the lung may reach 

maximum and minimum volume at different times resulting in out-of-phase ventilation. 

Individuals have different amounts and magnitudes of ventilation heterogeneity, which leads 

to different amounts and magnitudes of out-of-phase ventilation.

Figure 1 illustrates a typical example of in-phase and out-of-phase ventilation that occurs 

during normal tidal breathing in a human subject measured using 4DCT and image 

registration. This figure shows the local volume change of two voxels in different lungs over 

a breathing cycle. Voxel-1 was located in the upper lobe of the left lung and voxel-2 was 

located in the upper lobe of the right lung. For uniform in-phase breathing, this graph would 

be a straight line from the volume at 0EX to the volume at 100IN and another straight line 
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from 100IN back to 0EX. The graph of the volume for voxel-1 shows that it expanded and 

contracted in-phase with the global expansion and contraction of the lung, i.e., its maximum 

volume was reached at 100IN and its minimum volume was reached at 0EX. The volume of 

voxel-2 expanded out-of-phase with the expansion and contraction of the global lung, i.e., 

voxel-2 reached its maximum volume in phase 80IN and its minimum volume in phase 

20EX.

We are interested in studying the spatial nature of out-of-phase breathing to assess local 

ventilation for a small number of subjects. For the rest of the paper, the terms lung function 

and lung ventilation will be used interchangeably. We acknowledge that there are other 

aspects of lung function, but we are ignoring them in this paper. Lung ventilation can be 

measured using ventilation scintigraphy, single photon emission computed tomography 

(SPECT), and positron emission tomography (PET). These techniques are often limited by 

low spatial resolution, high cost, long scan time, and/or low accessibility to patients [11].

An alternative approach that does not suffer from low spatial resolution is to estimate local 

lung ventilation from end inspiration and end expiration 3DCT image volumes. Reinhardt et 

al. and Ding et al. [12], [13] proposed an approach that used image registration to find a 

dense correspondence map between the end inspiration and end expiration phases. In this 

approach, the Jacobian determinant of the correspondence map is used to compute the local 

lung ventilation (i.e., the local expansion and contraction of the lung). We will refer to this 

approach as the 2-phase local expansion ratio (LER2) since it is computed by registering two 

3D CT image volumes. One limitation of this approach is that it assumes that all local 

regions of the lung reach their maximum and minimum volumes in the global end inhalation 

and exhalation breathing phases, respectively. In other words, it does not take into account 

out-of-phase breathing.

In this paper, we propose a new approach to measure local lung ventilation called the N-

phase local expansion ratio (LERN) that uses all N phases of a 4DCT scan of the lung to 

account for out-of-phase breathing. The LERN approach calculates the maximum ratio of 

expansion to contraction over the breathing cycle at each point in the lung. The example in 

Fig. 1 illustrates the difference between computing lung function using LER2 and LER10. 

Using the LER2 approach, voxel-1 and voxel-2 are assumed to have the same ventilation 

(function) since both expanded from a unit volume at the 0EX phase to a volume of 1.27 at 

the 100IN phase. On the other hand, LER10 uses 10 phases of the breathing cycle to assess 

lung function. Using LER10, the full expansion of voxel-1 was 1.29/0.97 = 1.33 and the full 

expansion of voxel-2 was 1.27/1 = 1.27. Using LER10, we may conclude that voxel-1 has 

higher function (increased ventilation) compared to voxel-2. Furthermore, this example 

shows that LER2 underestimated the lung function of voxel-1.

To investigate the potential benefits of using LER10 compared to LER2 for CT ventilation 

imaging, we analyzed 4DCT lung images collected from 32 human subjects undergoing RT 

for lung cancer. The results are presented in Section III. In this paper, we use LER2 or LERN 

as a surrogate of lung ventilation.
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An earlier version of this paper was presented at the First International Workshop in 

Thoracic Image Analysis, Spain, 2018 [14].

II. METHODS

A. Image Acquisition

1) Acquisition of 4DCT of Human Subjects: This study used 4DCT images from 32 

human subjects (15 female and 17 male) who were undergoing RT and was approved by the 

University of Wisconsin institutional review board (protocol NCT02843568). All subjects in 

this study were diagnosed with lung cancer (30 non-small cell, 1 small cell, 1 endometrial 

cancer metastatic to the lung). The subject age (mean 70.1 +/− 9.0 years, range 52-89 years) 

and Karnofsky Performance Status (mean 90.6 +/− 9, range 70 100) were indicative of 

reasonable health. Subjects were predominately experiencing early stage non-small cell lung 

cancer: Stage I - 18, Stage II - 2, Stage III - 10, Stage IV 0; the small cell lung cancer subject 

had limited stage disease, and the endometrial cancer subject had Stage IIIB disease. 

Exclusion criteria included prior (within last 6 months) or future planned therapeutic surgery 

for the treatment of the existing lung cancer, prior thoracic radiotherapy, severe COPD 

defined as disease requiring an inpatient stay for respiratory deterioration within the past 3 

months, oxygen dependence of more than 2 L/min continuously throughout the day at 

baseline, known underlying collagen vascular disease or intrinsic lung disease that could 

complicate expected sequelae of radiation (idiopathic pulmonary fibrosis, Wegeners 

granulomatosis), uncontrolled intercurrent illness including, but not limited to ongoing or 

active infection, symptomatic congestive heart failure, unstable angina pectoris, cardiac 

arrhythmia, or psychiatric illness/social situations that would limit compliance with study 

requirements. Two 4DCT scans were acquired for each subject before RT, with a 5-minute 

break between the two scans. The 4DCT data sets were acquired on a Siemens EDGE CT 

scanner using 120 kVp, 100 mAs per rotation, tube rotation period slightly greater than 0.5 

seconds, 0.09 pitch, 76.8 mm beam collimation, 128 detector rows, and reconstructed slice 

thicknesses of 0.6 mm. Musical cues and voice instruction guidance were played throughout 

the scan to improve the repeatability of the respiratory pattern [15]. In our helical 4DCT 

acquisition, a reflective marker block is placed on the patient’s abdomen and its height is 

tracked in real time by a camera-based system. The marker’s height is recorded over several 

breathing cycles as the table moves and is used as a measure of respiratory magnitude. The 

observed image data is then sorted by this respiratory signal and reconstructed into a 4DCT 

scan containing 10 breathing phases, where each 3DCT image consists of several stacks 

acquired at different times. Each 4DCT data set was reconstructed into 10 breathing phases, 

with 20% (20IN), 40% (40IN), 60% (60IN), 80% (80IN) and 100% (100IN) of the 

respiratory period’s amplitude inspiration phases and 80% (80EX), 60% (60EX), 40% 

(40EX), 20% (20EX) and 0% (0EX) of the respiratory period’s amplitude expiration phases. 

The 32 subjects in this study were selected from a protocol with a larger cohort. Ten subjects 

that had major artifacts in 4DCT scans were excluded.

2) Acquisition of 4DCT and Xe-CT of Animal Subjects: Appropriate animal ethics 

approval was obtained for these protocols from the University of Iowa Animal Care and Use 

Committee and the study adhered to NIH guidelines for animal experimentation. 
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Respiratory-gated 4DCT and Xe-CT of four adult sheep were used in this study. Volumetric 

CT scans were acquired at different airway pressures with the sheep held apneic. An 

imaging protocol with slice collimation of 0.6 mm, pitch of 0.1, rotation time of 0.5 s, slice 

thickness of 0.75 mm, slice spacing of 0.5 mm, tube current of 100 mAs and tube voltage of 

120kVp was used. A Siemens B30f kernel was used to retrospectively reconstruct 4DCT 

data of 25% (25IN), 50% (50IN), 75% (75IN), and 100% (100IN) inspiration phases and 

75% (75EX), 50% (50EX), 25% (25EX), and 0% (0EX) expiration phases. A portion of the 

lung of about 3 cm thick in the axial direction was selected for Xe-CT imaging near 0EX 

phase. Xe-CT scans were acquired by setting the scanner in ventilation triggering mode, 

typically with 80 KeV energy, 160 mAs tube current, a 360° rotation and a 0.33 s scan time. 

A slab of 12 contiguous axial Xe-CT slices was acquired for 45 breathing cycles as xenon 

gas washes into the lung. For each voxel inside the lung, we fitted an exponential growth 

model to the wash-in Xenon gas density change. The inverse of the time constant of the 

exponential growth was used as a measure of lung function at that voxel. More details of the 

imaging protocols can be found in our previous publication [12].

B. Image Registration

The sum of squared tissue volume difference (SSTVD) image registration algorithm [16] 

was used to register lung CT volumes. This algorithm was chosen since it models the CT 

intensity change of the lung associated with breathing. A detailed comparison of the 

accuracy of the sum of squared differences, mutual information and SSTVD similarity cost 

functions for lung image registration can be found in [17]. The SSTVD image registration 

algorithm has been shown to have sub-voxel accuracy [18], [19]. A brief overview of the 

algorithm follows.

Let Ω ⊂ ℝ3 represent the domain or coordinate system of a 3D CT image to be registered. 

SSTVD image registration estimates a smooth one-to-one correspondence map ϕ : Ω → Ω 
between a fixed image If : Ω → ℝ and a moving image Im : Ω → ℝ that minimizes the cost 

function

C If, Im = CSSTV D If, Im + λ ⋅ Reg ϕ (1)

where CSSTV D is the SSTVD similarity cost, Reg(ϕ) is the regularization cost and λ is the 

regularization weight. The CT image in Housfield unit (HU) is converted into a tissue 

fraction/density image by:

Tissue Fraction = HU − HUair
HUtissue − HUair

= HU + 1000
1055 (2)

where the HUs of tissue and air are approximately HUtissue = 55 and HUair = −1000. The 

tissue fraction images associated with If and Im are denoted by Rf and Rm, respectively, i.e., 

Rf =
If + 1000

1055  and Rm =
Im + 1000

1055 . The sum of squared tissue volume difference (SSTVD) 

similarity metric [16], [18], [20] is given by
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CSSTV D = ∫
Ω

Rf(x) − |Jϕ|(x) × Rm(ϕ(x)) 2dx . (3)

The regularization cost is given by

Reg(ϕ) = ∫
Ω

c1(∇ ⋅ ∇)u(x) + c2∇(∇ ⋅ u(x))
2
dx. (4)

where ∇ = ∂
∂x1

, ∂
∂x2

, ∂
∂x3

T
, ∇ is the divergence operator and u = ϕ - Id is the associated 

displacement vector field, where Id is the identity map. The values c1 = 0.75 and c2 = 0.25 

were used in this study.

The nonrigid transformation ϕ was parameterized by uniform cubic B-splines. A multi-

resolution multi-grid framework was used in the C++ implementation of the registration 

method. Six resolution levels were used, the final B-spline grid spacing was 4x4x4 voxels, 

and the final image resolution was 2x2x2 voxels. A Broyden-Fletcher-Goldfarb-Shanno 

(LBFGS) optimizer was used for limited memory consumption and rapid convergence.

C. 2-Phase Local Expansion Ratio (LER2)

The 2-phase local expansion ratio (LER2) was computed following the approach of 

Reinhardt et al. [12] and Ding et al. [13]. In this approach, local ventilation is estimated by 

first estimating a transformation (i.e., dense correspondence map) between the end 

inspiration and end expiration lung CT image volumes and then taking the Jacobian 

determinant of the transformation. SSTVD image registration was used to estimate a 

nonrigid pullback transformation ϕ that transforms the 100IN phase to look like the 0EX 

phase. The domain of the pullback transformation ϕ is the coordinate system of the 0EX 

phase and its range is the coordinate system of the 100IN phase, i.e., y = ϕ(x) maps a point x 
defined in the 0EX coordinate system to its corresponding location y in the 100IN phase. 

LER2 measures the expansion of the lung at each point x and is given by

LER2(x) ≜ Jϕ(x) /1 (5)

where |Jϕ| is the determinant of the Jacobian matrix. Equation (5) is the ratio of a 

transformed unit volume of tissue to its original unit volume. The Jacobian matrix Jϕ of the 

transformation ϕ is given by:

Jϕ ≜

∂ϕ1
∂x1

∂ϕ1
∂x2

∂ϕ1
∂x3

∂ϕ2
∂x1

∂ϕ2
∂x2

∂ϕ2
∂x3

∂ϕ3
∂x1

∂ϕ3
∂x2

∂ϕ3
∂x3

. (6)

The derivatives in the Jacobian matrix were computed numerically by the symmetric 

difference.
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D. N-Phase Local Expansion Ratio (LERN)

The proposed LERN measure uses all N phases of a 4DCT scan to estimate the LER. 

Calculation of the LERN involves estimating the local lung volume in each respiratory 

phase. This is achieved by performing pairwise registrations from each breathing phase to 

the 0EX phase as shown in Fig. 2. The Jacobian determinant of the pullback transformation 

ϕi from the ith breathing phase to the 0EX phase is denoted by Ji(x) = |Jϕi (x)|. For i = 0, J0(x) 

= |Jϕ0 (x)| ≜ 1 is the Jacobian determinant of the identity map, i.e., the Jacobian determinant 

of the map from 0EX to 0EX. Note that the values of the Jacobian determinant image Ji 

represents the pointwise lung volume expansion in the ith breathing phase with respect to the 

0EX phase. LERN is defined at x ∈ Ω by

LERN(x) ≜ max
i ∈ 0, ⋯, N − 1

Ji(x)/ min
j ∈ 0, ⋯, N − 1

Jj(x) (7)

where N denotes the number of breathing phases of a 4DCT scan. Note that this definition 

implies that LERN ≥ LER2 where equality holds if and only if the lung was breathing in 

phase at the point x.

We note that LERN is more computationally intensive than LER2, because it requires 

deformable image registration for N-1 pairs of image datasets, whereas LER2 only requires 

one registration.

E. In-phase/Out-of-phase Ventilation (IOV) Threshold

Comparing LERN to LER2 provides a means for detecting and characterizing locations of 

the lung that experience out-of-phase ventilation. One may naively define out-of-phase 

ventilation when LERN is greater than LER2. However, LERN and LER2 both suffer from 

measurement error due to variation in breathing and errors in image registration. The effect 

of measurement error is to over estimate the amount of the lung that is out-of-phase. To 

reduce the problem of overestimation, we define a region of the lung to be out-of-phase if

LERN > T × LER2 (8)

for the IOV threshold T ≥ 1. The value of T specifies a confidence level that LERN differs 

sufficiently from LER2 to label a region as out of phase. We used an IOV threshold value of 

T = 1.05 for the results presented in this paper. See Section IV-B for a discussion of 

threshold sensitivity.

III. RESULTS

For each 4DCT data set (see Section II-A), the respiratory phase was registered to the 0EX 

phase using SSTVD pairwise registration as discussed in Section II-B and illustrated in Fig. 

2. LER2 and LER10 were computed using (5) and (7), respectively.

A. Image Registration Accuracy

The accuracy of LER10 and LER2 calculations depends on the accuracy of the image 

registration. The SSTVD image registration algorithm used in this paper has been shown to 
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have sub-voxel accuracy [18], [19]. For quality control purpose, we investigated image 

registration accuracy for 5 out of the 32 subjects. We used a landmark construction tool 

developed by Murphy et al. [21] to automatically choose a well-distributed set of 100 

landmarks in the end-exhale CT. The corresponding landmarks in the end-inhale CT were 

manually labeled by an expert. The mean landmark errors (MLEs) for those 5 subjects were 

1.10, 0.76, 1.56, 1.35, and 1.26 in voxels, with mean MLE equal to 1.21 voxels (which were 

1mm sided cubes).

B. Spatial Distribution of Out-of-Phase Breathing

The spatial distribution of out-of-phase ventilation can be visualized by displaying the ratio 

of LER10 to LER2. The larger this ratio is, the larger the out-of-phase ventilation is. Figure 3 

shows the spatial distribution and magnitude of out-of-phase ventilation for 14 of the 32 

subjects. The color bar is graduated from green to yellow to red corresponding to different 

IOV threshold values from 1.0 to 1.1. Regions colored green show in-phase ventilation, i.e., 

they shown agreement between LER10 and LER2 and indicate regions of the lung that had 

peak expansion from 0EX to 100IN. Regions colored yellow to orange are regions 

transitioning from in-phase breathing to out-of-phase breathing. Regions colored red are 

regions of the lung that are clearly ventilating out-of-phase. These images show that all 

subjects had some degree of out-of-phase ventilation. They also show that out-of-phase 

ventilation is subject specific and are distributed throughout the lung.

Although out-of-phase ventilation seems to more likely to occur in the basal part of the lung, 

a detailed analysis of the spatial distribution of out-of-phase ventilation requires further 

study. All the subjects studied in this work had lung cancer. Further study is required to 

understand the relationship between the location of the tumor and the spatial distribution of 

out-of-phase ventilation. Likewise, further study is required to study how the spatial 

distribution of pulmonary comorbidities such as emphysema, COPD, and fibrosis may affect 

out-ofphase lung ventilation. For example, fibrotic lung regions experience less expansion 

and contraction over the breathing cycle compared to healthy lung tissue and thus will affect 

the spatial pattern of out-of-phase breathing accordingly. In addition, further study is 

required to investigate what effect the motion of the heart has on out-of-phase ventilation in 

regions of the lung near the heart.

C. In-Phase/Out-of-Phase Ventilation (IOV) Function Plot

Figure 4 shows the in-phase/out-of-phase ventilation (IOV) function plots for 4 of the 32 

subjects. An IOV plot is a 2D histogram of LER10 versus LER2. A logarithmic scale was 

used for visualization. The functions y = x and y = 1.05x are overlaid on the histogram to 

partition the plot into in-phase and out-of-phase regions. The function y = x corresponds to 

LER10 = LER2. By definition, all points lie above the y = x solid line since LER10 ≥ LER2. 

Points that lie above the y = 1.05x solid line (i.e., points above the IOV threshold of 1.05) 

are defined to be out-of-phase and points that lie between the two lines are defined to be in-

phase.

The 2D plane in Fig. 4 is divided into four regions: A, B, C and D. Region A corresponds to 

in-phase ventilation and regions B, C and D correspond to out-of-phase ventilation. High-
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function regions are defined as regions that have volume change greater than 1.1 whereas 

low-function regions have volume change less than 1.1. The 1.1 threshold used to define 

regions of high ventilation/function was chosen to match our prior work [22]. When 

comparing lung tissue mechanics changes following radiation therapy, lung regions with 

Jacobian value > 1.1 displayed significantly greater reduction in elasticity for the same 

radiation dose, when compared to regions with a Jacobian < 1.1. LER2 defines points to the 

right of the 1.1 vertical line as high function whereas points to the left are defined as low 

function. Likewise, LER10 defines points above the 1.1 horizontal line as high function 

whereas points below this line are defined as low function. Lung function is characterized as 

low-function by both LER2 and LER10 in region B. Lung function is characterized as low-

function by LER2 whereas high-function by LER10 in region C. Finally, lung function is 

characterized as high-function by both LER2 and LER10 in region D. In summary, region B 

and region D are characterized the same by LER2 and LER10 as low-function and high-

function, respectively. On the other hand, region C is characterized as high-function by 

LER10 and mischaracterized as low function by LER2.

Figure 5 shows the in-phase/out-of-phase ventilation (IOV) functional plot for all 32 

subjects. The IOV functional plot shown in Figure 5 is the cumulative 2D histogram of 

LER2 versus LER10 computed from all 32 subjects. P(A), P(B), P(C), and P(D) denote the 

percentages of the voxels in regions A, B, C and D, respectively. On average for the 32 

subjects, 78.7% of all voxels were in region A, i.e., 78.7% of the lung had in-phase 

ventilation using an out-of-phase threshold of 1.05. Conversely, on average 21.3% of the 

lung had out-of-phase ventilation. There were 3.4% of all voxels in region B, i.e., on average 

16% of the out-of-phase ventilation was labeled as low-function by both LER2 and LER10. 

There were 10.6% of all voxels in region C, i.e., on average 50% of the out-of-phase 

ventilation was mislabeled as low-function by LER2 but was correctly labeled as high-

function by the LER10. There were 7.3% of all voxels were in region D, i.e., on average 34% 

of the out-of-phase ventilation was labeled as high-function by both LER2 and LER10.

Table I summarizes the percentages of the lung volume for regions A, B, C and D for each 

of the 32 subjects. This table shows that all subjects had some degree of out-of-phase 

ventilation. The average percentages for regions A, B, C, and D reported in Table I are 

slightly different from 78.7% in Fig. 5. This is because percentages in Fig. 5 were calculated 

using all lung voxels in the population whereas the computations used to generate Table I 

were normalized to 100% for each subject.

D. LERN Validation

Specific ventilation derived from Xenon-enhanced CT (Xe-CT) is considered to be a gold 

standard for ventilation imaging modalities [23]. We used 4DCT and Xe-CT of four sheep to 

evaluate the accuracy of LER2 and LER8 to estimate lung ventilation. For each sheep, the 

Spearman correlation coefficient of Xe-CT specific ventilation with LER2 and with LER8 in 

out-of-phase regions are shown in Table II. The mean Spearman correlation coefficients for 

LER2 and LER8 in out-of-phase regions are 0.436 and 0.486, respectively. Since the 

correlation between LER8 and Xe-CT specific ventilation is 11.5% higher than the 

correlation between LER2 and Xe-CT specific ventilation, we conclude that the LER8 
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measure is more accurate than the LER2 measure when quantifying lung function of the four 

sheep. Previous work reported that the mean Spearman’s correlation between LER2 and Xe-

CT specific ventilation was 0.44 [24].

One way to put the LER8 correlation coefficient of 0.486 in perspective is to note that the 

LER2 method was judged to be the most accurate method for estimating ventilation from CT 

images in the 2019 AAPM Computed Tomography Ventilation Imaging Evaluation 2019 

(CTVIE19) Grand Challenge (publication pending). This competition was the largest 

competition of its kind to date consisting of 44 teams (23 of which finished the competition) 

from around the world and required registration of 445 inspiration and expiration CT scans 

collected from over 20 different research centers. We could not evaluate the LERN approach 

on this challenge data set since it only consisted of pairs of CT images. To clarify, some of 

the challenge data sets were actually 4DCT images, however, only two phases, the end 

expiration and end inspiration, were released to the public as the challenge data.

IV. DISCUSSION

A. Potential Clinical Impact

This work has the potential to improve functional avoidance radiotherapy. Radiation therapy 

is used to treat nearly 75% of all lung cancers [25]. Functional avoidance RT reduces the risk 

of radiation-induced lung injury by avoiding irradiating high-function lung tissues (i.e., 

regions of high ventilation) [26]–[34]. Previous work shows that high-function lung tissues 

are more susceptible to radiation damage than low-function lung tissues [22]. A study 

conducted by Yamamoto et al. [11] showed that functional avoidance RT planning 

significantly reduced doses to high-function lung regions without increasing doses to other 

critical organs.

Figure. 6 shows transverse CT images of the lung of a patient with lung cancer. Overlaid 

contours show the radiation dose plans for conventional, LER2-derived functional avoidance, 

and LERN-derived functional avoidance. The smallest isodose curve (yellow) encompasses 

the tumor. The colored regions show the functional avoidance maps where red corresponds 

to high functioning regions and purple and blue corresponds to low functioning regions. This 

figure shows that the LERN-derived plan is better than both the LER2 and conventional 

methods. The LERN has better coverage of the tumor than the LER2 plan whereas at the 

same time having comparable coverage of the tumor to the conventional plan. Also notice 

that the LERN plan delivered less radiation dose to the normal left lung than the 

conventional and LER2 plans. Finally, the dose volume histograms (not shown in this paper) 

show that the LERN method delivered more dose to the tumor and less dose to the anatomy 

to be avoided than both the conventional and LER2 dose plans for the subject illustrated in 

Fig. 6.

B. In-Phase/Out-of-phase Ventilation (IOV) Threshold

The in-phase/out-of-phase (IOV) threshold value T in (8) is used to partition the lung into in-

phase and out-of-phase regions. In this section, we investigate the sensitivity of T to the 

percentage of lung that is defined as out-of-phase. To study the sensitivity of T, we 
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constructed the complementary cumulative distribution function (CCDF) for the 32 human 

subjects in this study (see Fig. 7). In this context, a CCDF is a plot of the percentage of out-

of-phase lung volume versus the threshold value T. We refer to such a CCDF as a IOV 

threshold sensitivity plot. The thick black line in Fig. 7 corresponds to the average of the 32 

plots.

By definition, LER10 > T × LER2 for values of T < 1, i.e., 100% of the lung is defined to be 

out-of-phase for T < 1. At T = 1, all the IOV threshold sensitivity plots have a discontinuity 

due to out-of-phase ventilation (See Fig. 7). On average, approximately 55% of the lung is 

considered as out-of-phase for T = 1. A value of T = 1 is not a useful threshold to define out-

of-phase ventilation for the data sets studied because it would mean that more of the lung is 

out-of-phase than in-phase. This would contradict the definitions of the end inhale and 

exhale phases. Thus, a value of T > 1 should be chosen as the IOV threshold.

Choosing a biologically relevant value of the IOV threshold T is beyond the scope of this 

paper since the number of data sets we studied is too small to make any conclusions and all 

the data sets studied were from a population of individuals with lung cancer. In our future 

work, we plan to investigate this question on a larger data set that includes healthy subjects 

and to validate our choice of threshold with an independent measure of out-of-phase 

ventilation. In this work, we choose the threshold value to be 1.05 based on the average 

curve in Fig. 7 to reflect Jacobian determinant values that were not due to measurement 

error. Based on this threshold, we concluded that on average 20.2% of the lung for the 

individuals studied had out-of-phase ventilation. The IOV threshold determines the 

percentage of lung with out-of-phase ventilation. For example, if we choose T = 1.1, then on 

average 8.8% of the lung would be designated as out-of-phase.

C. Dependence of LERN on Image Registration Algorithm

Jacobian measurements have been shown to be sensitive to image registration algorithms 

[35]–[37]. To test the sensitivity of our results to registration algorithms, we used the Elastix 

image registration software [38] to rerun all pairwise registrations. Instead of SSTVD, the 

mutual information was used as the similarity metric. We used a different multiresolution 

scheme and a different optimizer (standard gradient descent). Using the Elastix toolbox, we 

found that at a 1.05 out-ofphase threshold, 24.2% (compared to 20.2% using SSTVD) of the 

lung had out-of-phase ventilation. The mean Dice coefficient of the out-of-phase images 

computed from two different registration algorithms was 0.65. Fig. 8 shows the IOV spatial 

images of a typical subject computed using both image registration algorithms. Fig. 9 shows 

the IOV function plots for both registration algorithms. These results show that both image 

registration algorithms produce similar out-of phase images.

D. Choice of LERN Coordinate System

The definition of LERN is independent of the choice of the reference coordinate system in 

which it is calculated (See Fig. 2). This can be seen with the following example. Consider a 

4DCT scan of three breathing phases and suppose the volume of a voxel at those phases are 

1, 2, 4, respectively. If the first breathing phase was chosen as the reference, the three 

Jacobian values used in (7) are 1, 2, 4, and LER3 = max 1, 2, 4
min 1, 2, 4 = 4

1 = 4. If the second 
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breathing phase was chosen as the reference, the three Jacobian values are 0.5, 1, 2 and 

LER3 = max 0.5, 1, 2
min 0.5, 1, 2 = 2

0.5 = 4 similarly if the third breathing phase was chosen as the 

reference, we have LER3 = max 0.25, 0.5, 1
min 0.25, 0.5, 1 = 1

0.25 = 4. This example show that the 

computation of LER3 at this voxel is independent of the reference coordinate system.

We now present a formal proof. Assume that ϕi for i = 0,…, N – 1 are given with respect to 

coordinate system 0 as in Fig. 2 and that we want to calculate the LERN in the coordinate 

system of breathing phase j. The transformations from phase i to phase j are given by 

ψij = ϕi o ϕj
−1. The Jacobian determinate of transformation ψij at the point y is given by 

J(ψij(y)) = J(ϕi o ϕj
−1(y)). LERN given in the coordinate system of phase j is

LERN(y) =
maxm ∈ 0, ⋯, N − 1 J(ψmj(y))
minn ∈ 0, ⋯, N − 1 J(ψnj(y))

=
maxm ∈ 0, ⋯, N − 1 J(ϕm o ϕj−1(y))

minn ∈ 0, ⋯, N − 1 J(ϕn o ϕj−1(y))

Substituting y = ϕj(x) into the previous equation gives (7). In other words, LERN(y) 

computed in phase j is just a transformed version of LERN (x) computed in phase 0 by the 

transformation y = ϕj(x).

The statement that the definition of LERN is coordinate system independent does not mean 

that there is not coordinate system bias in practice. LERN coordinate system bias will result 

from the registration algorithm used, registration errors, and lack of inverse consistency and 

transitivity of the transformations. Bias in the LERN calculation will also result from motion 

artifacts, partial volume effects, and noise in the reference phase image. Image registration 

from full inspiration to full expiration is preferable when registering lung images since it is 

easier to compress features such as airways in a digital image than to expand airways. For 

example small airways that are visible in the full inspiration phase are not visible in the full 

expiration phase. One way to think of this is that there are more samples (more voxels) of 

the lung when it is expanded compared to when it is compressed. In Fig. 2 all the phase 

images were registered to the 0EX phase so that the larger lung images were registered to 

the smaller lung image.

E. Lower Bounds of LERN

LERN for N > 2 has two lower bounds. The first lower bound is LER2, because LERN ≥ 

LER2 by definition. The second lower bound is 1
LER2

 and it occurs when the maximum 

Jacobian determinant of the phase transformations is equal to 1. In this case, 1
LER2

represents the ratio of local lung volume in the 0EX phase to local lung volume in the 100IN 

phase. Thus, LERN≥ 1
LER2

. Therefore, LERN ≥ max{LER2, 1/LER2}, i.e., LER2 and 1
LER2

are lower bounds of LERN. We define x ≜ LER2 and y ≜ LERN. The contour lines y = x and 

y = 1
x  in the cumulative 2D histogram of LER2 versus LER10 in Fig. 5 correspond to the 
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lower bounds LER2 and 1
LER2

, respectively. Notice that when x < 1, the contour line y = 1
x

looks like the −45-degree line y = −x+2. The reason for this is as follows. By Taylor 

expansion of the function of y = 1
x  at x = 1, we have 1

x ≈ 1 + (−1)(x − 1) = − x + 2 when x is 

close to 1.

V. CONCLUSIONS

This paper presented the N-phase local expansion ratio (LERN) for characterizing lung 

ventilation. The LERN approach was validated using Xenon-enhanced CT (Xe-CT) data 

collected from sheep on a ventilator. This data is considered a gold standard for ventilation 

imaging modalities [23]. LERN was shown to have a higher correlation with Xe-CT than the 

traditional 2-phase local expansion ratio (LER2).

In-phase/out-of-phase ventilation (IOV) images showed that all 32 human subjects studied 

experienced out-of-phase ventilation and that the location of the out-of-phase ventilation was 

subject specific. In-phase/out-of-phase ventilation (IOV) function plots where used to 

characterize the percentage of in-phase and out-of-phase ventilation and the percent of low 

versus high functioning regions of the lung. The IOV function plots demonstrated that a 

substantial volume of the lung was mischaracterized as low function by LER2 but was 

considered high function by LERN. For the 32 subjects analyzed, 50% of the out-of-phase 

regions on average were mislabeled as low-function by LER2 (high-function threshold of 

1.1, IOV threshold of 1.05).

We demonstrated that LERN computed using different image registration algorithms 

predicted similar out-of-phase ventilation. Finally, we showed that in theory that LERN is 

independent of the coordinate system used as the reference.
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Fig. 1: 
Typical in-phase and out-of-phase expansion and contraction that occurs during normal tidal 

breathing in a human subject. Voxel-1 has in-phase ventilation whereas Voxel-2 has out-of-

phase ventilation. The 10 phases shown represent a breathing cycle. The suffix IN and EX 

correspond to inspiration and expiration phases, respectively. The prefix of each phase 

represents the percent inflation of the whole lungs normalized from end exhale (0%) to end 

inhale (100%). Notice that the y-axis of relative voxel volumes is unitless.
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Fig. 2: 
Pairwise registration from each breathing phase to the 0EX phase used to calculate LER10.
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Fig. 3: 
Out-of-phase ventilation images for 14 subjects. Regions of the lung that show in-phase 

(green), in-phase to out-of-phase transition (yellow to orange) and out-of-phase (red) 

breathing, respectively. These images show the ratio of LER10 to LER2 overlaid on coronal 

CT images. The left lung of Subject 25 had been surgically removed.
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Fig. 4: 
In-phase/out-of-phase ventilation (IOV) plots for four subjects. A logarithmic scale was used 

for visualization. LER2 characterizes points to the right of the 1.1 vertical dashed line as 

high function and to the left as low function. LER10 characterizes points above the 1.1 

horizontal dashed line high function and below as low function. Region A corresponds to 

lung regions with in-phase ventilation and regions B, C and D correspond to lung regions 

with out-of-phase ventilation.
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Fig. 5: 
IOV function plot computed from all 32 subjects.
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Fig. 6: 
Transverse CT images of the lung of a patient with lung cancer. Overlaid contours show the 

isodose curves for conventional, LER2-derived functional avoidance, and LERN-derived 

functional avoidance dose plans. The smallest isodose curve (yellow) encompasses the 

tumor. The colored regions show the functional avoidance maps. Red corresponds to high 

function whereas purple and blue corresponds to low function.

Shao et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: 
IOV threshold sensitivity plots for 32 subjects. A IOV threshold sensitivity plot shows the 

percentage of the lung that is considered out-of-phase for a particular IOV threshold T, i.e., 

regions where LER10 > T × LER2. The thick black line corresponds to the average of the 32 

plots.
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Fig. 8: 
Comparison of the out-of-phase ventilation images of a typical subject computed by the 

SSTVD and Elastix algorithms.
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Fig. 9: 
Comparison of the IOV function plot computed by the SSTVD and Elastix algorithms, 

respectively.
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TABLE II:

Spearman’s correlation coefficients for the sheep experiment. The correlation coefficients in this table show 

that ventilation estimated using LER8 is more correlated with Xe-CT specific ventilation than using LER2. 

Statistical testing shows that LER8 has a significantly (p-value = 0.04) higher correlation coefficient than 

LER2.

Sheep 01 02 03 04 Mean

LER2 0.418 0.635 0.336 0.356 0.436

LER8 0.449 0.681 0.396 0.417 0.486
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